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Supplementary Material 
This supplementary material file contains the following: 

- Supplementary Results 
- Supplementary Table S1 
- Supplementary Figures S1-S5 

Additionally, Supplementary Data (S1 and S2) can be downloaded at 
https://tinyurl.com/pd6f2n3k. 

Supplementary Results 

Evaluating prediction accuracy on current vegetation map 
For the task of predicting paleovegetation, which is presented in the main text, we only 
have limited data points with past vegetation information (those compiled through the 
literature review). This limits our ability to evaluate how accurately the trained models 
predict the true vegetation patterns, based on these few subsampled data points. Yet, the 
current vegetation data for North America provides a large dataset and thus a suitable 
framework to test the ability to predict the overall vegetation pattern correctly. 

To investigate how well our model can predict vegetation only based on a small 
subsample of the actual vegetation, we trained a BNN model using only 281 of the 
approximately 11,000 current vegetation points across North America (Supplementary 
Fig. S3 A+B). This number of training points is equal to the number of paleovegetation 
points used for training of the paleo-models, although in case of the paleo-data these 
points are distributed throughout several geological stages. While these training data only 
constitute about 2.5% of the current vegetation information, our model was able to predict 
the entire current vegetation (Supplementary Fig. S3 C), with a prediction accuracy of 
88.1% (Table 1). When making visible where on the map our model misclassified 
vegetation labels, we find that these misclassifications predominantly occur in the 
transitioning areas between open and closed vegetation (Supplementary Fig. S3 D). This 
suggests that, while our model accurately learns the general distributions of both 
vegetation types, the misclassifications are mainly a result of limited resolution of the 
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vegetation boundaries, likely caused by the relatively small number of training vegetation 
points. 

We find that a 5-fold increase in the number of training points (n=1,405) increases the 
resolution of the predictions, leading to an increased prediction accuracy of 91.6% (Table 
1, Supplementary Fig. S4). This shows that more data points can increase the accuracy 
of the model, suggesting that our model accuracies presented in the main text could be 
further improved with more paleovegetation data points being available. However, this 
bottleneck of limited training data and the resulting limitations in prediction accuracy can 
be partly accommodated by applying posterior thresholds to the vegetation predictions 
(see below). 

Applying posterior thresholds to increase accuracy 
One of the advantages of using BNNs over regular neural network implementations is the 
explicit modeling of uncertainty in the model predictions by producing posterior probability 
(PP) estimates for each vegetation prediction (see Methods for more detailed 
information). These PPs are derived from a posterior sample of the BNN weights and are 
thus different in their nature to the class-probabilities resulting from the output layer of a 
regular neural network, which instead represent point estimates. We utilize the PP 
estimates by setting a posterior threshold to only make vegetation predictions for sites 
that have a high prediction certainty, while assigning all predictions below the thresholds 
as “unknown”. We select this PP threshold individually for each model to ensure a 
specified minimum prediction accuracy. 

In the case of our model trained on 281 current vegetation points, we find that a PP 
threshold of 0.56 leads to an expected prediction accuracy of > 90% (Table 1), while still 
allowing to make vegetation predictions for 94.5% of all North American terrestrial cells 
(Supplementary Fig. S5). Increasing the PP threshold to 0.74 leads to an expected 
prediction accuracy of > 95%, while predicting 77.2% of the map with high confidence 
(Supplementary Fig. S3 E). For the model trained on 1,405 current vegetation labels, a 
posterior threshold of 0.66 was sufficient to ensure 95% prediction accuracy, allowing to 
make high accuracy vegetation predictions for 89.5% of North American terrestrial cells 
(Supplementary Fig. S4). Prediction accuracies even higher than 95% could be achieved 
by setting higher posterior thresholds, at the cost of an increasing number of predictions 
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labeled as unknown (Supplementary Fig. S5). This trade-off between quality and quantity 
of the predictions allows us to focus the predictions of the model only on areas for which 
we can confidently infer vegetation, leading to a substantial increase in prediction 
accuracy (Supplementary Fig. S3 F). This property of BNN models is of particular interest 
when the number of available vegetation information for training is limited, as is the case 
for our paleovegetation models. 
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Supplementary Tables 

Supplementary Table S1. Association scores of mammal and plant taxa with open habitat. The openness 
score was calculated as the fraction of occurrences of each taxon that fall within predicted open habitat, 
averaged across the predicted 1 Mya increments throughout the last 30 Mya. 

Taxon Openness 
score Taxon Openness 

score Taxon Openness 
score 

Cynomys 0.99 Puma 0.55 Lauraceae 0.27 
Onychomys 0.86 Tapirus 0.55 Platanaceae 0.24 
Ochotona 0.80 Equus 0.55 Gomphotherium 0.23 
Perognathus 0.79 Ondatra 0.55 Erethizon 0.22 
Zapus 0.78 Castor 0.51 Sylvilagus 0.21 
Brachyerix 0.75 Taxidea 0.51 Fabaceae 0.21 
Baiomys 0.74 Cryptotis 0.49 Myricaceae 0.20 
Neotoma 0.74 Mammuthus 0.49 Eumops 0.20 
Mustela 0.73 Phenacomys 0.48 Panthera 0.20 
Mephitis 0.69 Anacardiaceae 0.47 Lontra 0.19 
Scalopus 0.68 Lepus 0.46 Typhaceae 0.17 
Tamias 0.68 Lasionycteris 0.46 Ericaceae 0.17 
Aphelops 0.67 Boraginaceae 0.45 Oleaceae 0.15 
Tayassu 0.67 Peromyscus 0.45 Juglandaceae 0.15 
Notiosorex 0.66 Meliaceae 0.45 Ulmaceae 0.15 
Reithrodontomys 0.66 Thomomys 0.44 Berberidaceae 0.15 
Oryzomys 0.66 Dipodomys 0.44 Asteraceae 0.15 
Sorex 0.65 Mammut 0.43 Rosaceae 0.14 
Spermophilus 0.65 Urocyon 0.43 Polygonaceae 0.14 
Dipoides 0.63 Ursus 0.42 Vitaceae 0.14 
Blarina 0.63 Geomys 0.42 Salicaceae 0.13 
Hypolagus 0.62 Ranunculaceae 0.41 Cyperaceae 0.13 
Ammospermophilus 0.61 Eptesicus 0.39 Grossulariaceae 0.12 
Poaceae 0.61 Marmota 0.38 Sapindaceae 0.12 
Myotis 0.61 Procyon 0.38 Fagaceae 0.11 
Vulpes 0.61 Ebenaceae 0.37 Dasypus 0.10 
Cannabaceae 0.60 Sigmodon 0.35 Betulaceae 0.09 
Bassariscus 0.60 Platygonus 0.35 Caprifoliaceae 0.06 
Canis 0.59 Odocoileus 0.34 Cornaceae 0.03 
Antrozous 0.59 Sciurus 0.32 Potamogetonaceae 0.02 
Spilogale 0.57 Felis 0.30 Nymphaeaceae 0.02 
Cratogeomys 0.56 Adoxaceae 0.30 Altingiaceae 0.00 
Scapanus 0.56 Hydrangeaceae 0.29   
Lynx 0.55 Rhamnaceae 0.29   
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Supplementary Figures 

 

Supplementary Figure S1. Prediction accuracy of tested models. The tested scenarios differed in the 
number of nodes (32-8 or 8), the used features (all, only biotic, or only abiotic), the pooling strategy applied 
to the biological features (sum-pooling or max-pooling), and the number of current vegetation instances 
used for training (0, 281, or 1405, see Table 1 in main text for model ID key). Blue bars show the overall 
prediction accuracy of each model (five-fold cross validation), which constitutes the weighted mean of the 
paleovegetation prediction accuracy (dark grey) and the prediction accuracy of for the entire North 
American current vegetation map (light grey), excluding the grid cells that were used for training. The blue 
horizontal bar shows the maximum reached prediction accuracy of 89.2% (model #2). 
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Supplementary Figure S2. Temporal distribution of paleovegetation sites analyzed. The ages shown in 
the histograms were binned using the geological stage boundaries according to the International 
Chronostratigraphic Chart, v2020/03. 
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Supplementary Figure S3. Utility of applying posterior probability thresholds to vegetation predictions. The 
true current distribution of open (yellow) and closed habitat (green) in North America (A) is based on the 
SYNMAP potential vegetation data. A random subsample of 281 of these current vegetation points (B) was 
used for training the BNN model. We used the trained model to predict the current vegetation of North 
America, based on the mammal, plant, and climate associations with the vegetation type that were learned 
by the model (C). While the majority of the current map was predicted correctly (84.8% accuracy, excl. 
training points), there are several incorrect vegetation predictions, highlighted in red (D). A posterior 
threshold can be applied to our model predictions (E), which allows us to distinguish between confident 
vegetation predictions (colored), and those the model is uncertain about (grey). In this case we applied a 
posterior threshold that ensures a prediction accuracy of > 95%. The resulting predictions show only a small 
fraction of falsely predicted vegetation labels (F), while the majority of the problematic predictions are now 
modeled as uncertain (light blue). 
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Supplementary Figure S4. Predictions of a model trained with 1,405 current vegetation sites. See caption 
of Supplementary Fig. S3 for more details. 
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Supplementary Figure S5. Trade-off between increasing prediction accuracy and fewer vegetation label 
predictions with increasingly strict posterior thresholds. Results are shown for a model trained on 281 
current vegetation labels (no paleontological data), as well as for a model with a 5-fold increased number 
of current training labels (n=1,405). The displayed accuracies were calculated based on all current 
vegetation labels across North America, excluding the labels used for training. 

 


