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Metabolism forms a complex, interdependent network, and per-
turbations can have indirect effects that are pervasive. Identi-
fying these patterns and their consequences is difficult, partic-
ularly when the effects occur across canonical pathways, and
these difficulties have long acted as a bottleneck in metabolic
data analysis. This challenge is compounded by technical
limitations in metabolomics approaches that garner incom-
plete datasets. Current network-based tools generally utilize
pathway-level analysis lacking the granular resolution required
to provide context into the effects of all perturbations, regard-
less of magnitude, across the metabolic network. To address
these shortcomings, we introduce algorithms that allow for the
real-time extraction of regulatory patterns and trends from user
data. To minimize the impact of missing measurements within
the metabolic network, we introduce methods that enable com-
plex pattern recognition across multiple reactions. These tools
are available interactively within the user-friendly Metaboverse
app (https://github.com/Metaboverse) to facilitate exploration
and hypothesis generation. We demonstrate that expected sig-
natures are accurately captured by Metaboverse. Using pub-
lic lung adenocarcinoma data, we identify a previously unde-
scribed multi-dimensional signature that correlated with sur-
vival outcomes in lung adenocarcinoma patients. Using a
model of respiratory deficiency, we identify relevant and previ-
ously unreported regulatory patterns that suggest an important
compensatory role for citrate during mitochondrial dysfunc-
tion. This body of work thus demonstrates that Metaboverse
can identify and decipher complex signals from data that have
been otherwise difficult to identify with previous approaches.

Human metabolism has been elementally understood and ap-
preciated since the time of Aristotle and the publication of On the
Parts of Animals [1]. Over the past several centuries, metabolism
has been further vigorously dissected to create a systematic map
of metabolic reactions and their substrates, products, and modifiers.
More recently, the study of metabolism has been aided immensely
by the advent of high-throughput transcriptomics, proteomics, and
metabolomics. Large consortia projects, such as the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [2,3], the Human Metabolome
Database (HMDB) [4], and the Reactome Pathway Database [5–7],
have also provided an invaluable and more holistic network perspec-
tive. Together, these resources have the potential to enhance our

understanding of metabolism through enabling a more systematic
query of datasets and databases. However, the complex and context-
dependent nature of metabolism and the limited available tool set for
metabolic pattern recognition and investigation from large datasets
still confounds a more complete study of metabolism.

To circumvent the challenges related to metabolic complexity, it
is common to adopt reductionist experimental approaches to tease
apart the characteristics and mechanics of these processes and
determine how they fit into the larger picture of biology and disease.
Such strategies are vital to advancing our biological understand-
ing but can also miss essential and multi-dimensional properties of
metabolism. For example, in differential gene expression analysis,
researchers rely on thresholds of magnitude and statistical signifi-
cance to prioritize a short list of genes for further study. However,
biological perturbations lead to complex, cooperative effects, many
of which may seem negligible in isolation. Because metabolism is an
interdependent system and distal components can have coordinated
and rippling effects across the network, reductionist strategies can in-
advertently limit the scope of a metabolism study [8,9]. An additional
challenge arises in metabolomics data analysis as it is common to
only identify 100-200 metabolites for a given experiment [10]. This
limitation leads to missing measurements across a given metabolic
pathway, and can confound downstream data interpretation.

Several computational tools have risen to prominence over the
past decade to try to resolve these issues in data analysis and inter-
pretation; however, they cannot rapidly extract a comprehensive list
of regulatory patterns within user data [5–7, 11–20] (see Suppl. Text
1 for further discussion of these tools). These shortcomings are par-
ticularly pronounced when experimental data have sparse coverage
across the metabolic network. Without a more holistic integration of
data on the metabolic network and the necessary capabilities to distil
patterns across the metabolic network, many relevant mechanistic
and regulatory metabolic patterns will be missed.

To address these limitations in metabolic data analysis, contex-
tualization, and interpretation, we created Metaboverse, a cross-
platform, interactive desktop application to aid users in exploring
and interpreting their data's metabolic story and generating new
data-driven hypotheses. Metaboverse curates a reaction network
database based on a Reactome knowledgebase [5–7], BiGG [21], or
BioModels [22, 23] network. The user's transcriptomics, proteomics,
and/or metabolomics data can then be integrated into the reaction
network in the form of log2(fold change) and statistical values for
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each measurement (as table rows) for each sample comparison (as
table columns) (Fig. 1). Additional methods allow for the interpolation
of protein complex measurements or protein measurements from
upstream components. Once data are integrated onto the network,
user-friendly interactive tools are available to visualize and explore re-
actions and their components individually, by canonical pathway def-
initions, or by nearest reaction neighborhood networks for a selected
reaction and all its connected reactions, regardless of metabolic path-
way participation. These flexible, visual approaches allow for less
biased analysis by not constraining the user's analysis to familiar path-
ways. This approach thus enables the exploration of patterns that may
not be obvious when viewing canonical pathway depictions (Supp.
Fig. 1; Supp. Fig. 2). Metaboverse and its documentation and sup-
porting tutorials are available at https://github.com/Metaboverse
and https://metaboverse.readthedocs.io.

Tools that utilize user data and the metabolic network are gener-
ally limited to pathway-level analysis, or require the user to manually
search for interesting patterns after projecting their data onto the
network image [5–7, 11–20] (see Suppl. Text 1). Previous work by
Checkik, et al. introduced the concept of an “activity motif”, where
a network pattern was based on the expression characteristics of
sequential components in a signaling cascade [24]. We previously
identified multi-dimensional reaction-based patterns using a more
manual approach [25], but based on similar principles. However,
manually identifying a reaction-based pattern using multiple data
measurements is time-consuming. Other network-based analysis
tools often limit themselves to searching for structural network pat-
terns and have been used with success predominantly for the analysis
of protein-protein interaction networks. While these methods are use-
ful for interaction networks, they are less tractable for the analysis of
the metabolic network, where the graph structure is set and consis-
tent, and the behavior of the network’s entities is where the user's
interest likely lies.

Critically, Metaboverse introduces, to our knowledge, the first
implementations of algorithms that enable the rapid and automated
discovery of complex regulatory patterns across all annotated re-
actions within that organism's reaction network and across multiple
sequential reactions. Metaboverse uses the metabolic reaction net-
work to rapidly analyze each reaction on the fly for a variety of possible
patterns based on the available transcript, protein, and metabolite
measurements provided by the user (Fig. 2a). As an example,
the Average reaction pattern search compares the averaged mea-
surements of the reaction inputs and the averaged measurements
of the reaction outputs to determine if there is some net change
across the reaction. Metaboverse can also integrate information
about a reaction's modifying components, such as catalysts and
inhibitors, to identify more complex patterns. Metaboverse then re-
turns an interactive list of reactions that pass the predetermined
fold change or statistical threshold for the user to explore (Supp.
Fig. 3). A complete and current list and description of all avail-
able reaction pattern modules can be found in the documentation at
https://metaboverse.readthedocs.io.

Missing data points, particularly in metabolomics experiments,
are frequent and make the analysis of pathways and identification of
regulatory patterns in the network challenging [10]. Thousands of
metabolites are known to participate in human metabolism, yet the
current state of metabolomics technologies is such that only a limited
number of the metabolites are quantified. This limitation leads to
gaps in the measured metabolic network and can confound pattern
recognition across reactions. Therefore, we developed a reaction
compression algorithm that collapses up to three connected reac-
tions with intermediate missing data points if they can be bridged
with measured data on the distal ends of the reaction series (Fig.

2b). Similar concepts have been used successfully in metabolomic
analysis to define amino acid-related metabolites [26]. To our knowl-
edge, Metaboverse provides the first computational and automated
implementation for creating summarized reaction representations.

To demonstrate the ability of Metaboverse to identify known and
new metabolic regulatory patterns, we first turned to public steady-
state metabolomics data from early stage human lung adenocarci-
nomas [27]. In the original study of this dataset, the authors asked
which metabolites could be used as diagnostic markers to identify
early stage adenocarcinomas. It is important to identify reliable mark-
ers for this pervasive and deadly disease to provide viable and timely
treatment options to patients. However, at the time of publication of
the original study, available screening methods were prone to false
positives. We asked if Metaboverse could capture the metabolic per-
turbations identified in this study, and identify other, more complex
metabolic patterns.

Consistent with the original study [27] and our recent manual
re-analysis of the data [25], steady-state abundances of nucleotide
metabolism components were broadly upregulated in adenocarcino-
mas. Reaction pattern recognition by Metaboverse within and across
canonical pathway representations, and using compressed reac-
tion representations, reliably captured perturbations to nucleotide
metabolism as the top hits (Supp. Fig. 4). Additionally, Metabo-
verse identified a reaction pattern that related to the perturbation of
xanthine, a metabolite highlighted in the original study [27] (Supp.
Fig. 5a). Interestingly, of the measured and statistically significant
metabolite fold changes involved in the TCA cycle, we observed a
reaction pattern driven by a reduced relative abundance of citrate
and an increased relative abundance of malate (Supp. Fig. 5b). The
changes in the concentrations of these two metabolites were both
identified in the original study, but no discussion of their possible
roles in this disease cohort, nor the fact that they are connected in
the metabolic network, are found in the original study [27]. However,
these metabolites are both components of a pathway that is integral to
cancer metabolism. Their perturbations and interactions may provide
valuable insights into the metabolic nature of lung adenocarcinomas.
Metaboverse focuses the user's attention to these metabolites and
specifically their relationships to one another.

As we previously emphasized [25], by comparing the mea-
sured substrate and products of a reaction, we can identify multi-
dimensional regulatory patterns that provide further insights into
metabolic behavior. Strikingly, the top-ranking reaction pattern
identified by Metaboverse involved the enzymatic conversion of
dc-adenosyl methionine and spermidine to form spermine and 5′-
methylthioadenosine by Spermine Synthase (SMS) (Fig. 3a). This
reaction is connected to both polyamine synthesis pathway and the
urea cycle. The second top-ranking reaction pattern centered around
glycerate kinase (Fig. 3b). This reaction pattern, which consisted of a
modest increase of measured glyceric acid coupled with the decrease
of 3-phosphoglyceric acid, was identified manually in our previous
reanalysis of the data [25], and could indicate a change in activity
of glycerate kinase (GLYCTK). These changes across the GLYCTK
reaction could be consequential as the reaction has connections to
serine metabolism, a pathway that contributes to generating an ideal
biosynthesis environment for tumorigenesis [28]. These connections
were missed in the original study as a reaction-level analysis was not
performed and these metabolites' behavior in relation to each other
was not emphasized. However, the significance of these reaction
patterns was obvious with Metaboverse's reaction pattern analysis
module and these patterns were quickly and automatically highlighted
to the user for further investigation.

We initially explored these patterns using tools available within
The Protein Expression Atlas [29–31] (v19.3) and discovered striking
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Fig 1. Metaboverse provides a simple, dynamic user interface for processing and exploring multi-omics datasets. a. The user provides the
name of the organism of interest from a drop-down menu along with an output location. The user then has the option to provide transcriptomics,
proteomics, and/or metabolomics datasets. These datasets can be single- or multi-condition or time-course experiments. Data is formatted as follows:
row names are the measured entity names or IDs, the first column is a log2(fold change) or other measurement value, and the second column is a
statistical measurement. For time-course and multi-condition datasets, this pattern is repeated for each subsequent sample as part of the same data
table. During this step, the user can also provide sample labels and other modifiers to customize the curation and display of the data on the curated
reaction network. Metaboverse will then build the model. Once the model is complete, the user will be able to visualize the patterns identified within
reactions, explore pathway-specific or general perturbation networks, and perform general pathway and nearest reaction neighborhood exploration of the
data. b. Overview of back-end metabolic network curation and data layering.

correlations between the gene expression of the enzymes mentioned
above and patient survival outcomes in the lung adenocarcinoma
(LUAD) cohort from The Cancer Genome Atlas (TCGA). We there-
fore performed Cox (Proportional Hazards) regression analysis for
each gene in the TCGA cohort using an optimized expression cut-
off for each gene [32–34]. SMS expression showed a remarkable
correlation between high- and low-expression and patient outcomes
(optimized FPKM cut-off: 49.5413; Fig. 3c,e; Supp. Fig. 6). Notably,
the log-rank p-value for this relationship between patient outcome
and SMS gene expression ranked in the top 0.65% of all regressions
(#118 / 18169 surveyed genes). The log-rank p-value for GLYCTK in
early stage adenocarcinomas was poor, and is potentially explained
by the lower expression levels of GLYCTK in this cohort, thus is it
difficult to draw a clear connection between the metabolomics and
gene expression data in this case (optimized FPKM cut-off: 0.913;
Fig. 3d,e; Supp. Fig. 6).

One point worth emphasizing is the predicted directionality of
each enzymatic reaction based on the metabolomics data and their
corresponding survival prediction. For the reaction catalyzed by SMS,
higher expression of SMS correlated with poorer prognosis. This
correlation was also reflected in the observations made from the
metabolomics data where adenocarcinoma tissue had decreased
spermidine concentrations and increased 5′-methylthioadenosine
concentrations compared to normal tissue. While caveats exist in
how we interpret steady-state metabolomics data, we could rea-
sonably infer that SMS is more active or abundant in early stage
lung adenocarcinomas and is thus generating more reaction prod-
uct. This metabolite flux could then feed polyamine synthesis and
fuel tumorigenesis and/or proliferation. One recent study in colon
adenocarcinomas has implicated a role for SMS in the silencing of
Bim, which encodes a pro-apoptotic factor, thus promoting cell sur-
vival [35]. Similar patterns in SMS have also been identified in mouse
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Fig 2. Overview of reaction pattern construction and reaction collapsing. a. Examples of a selection of reaction patterns available in Metaboverse.
Reactions are depicted as stars, metabolites as circles, protein complexes as squares, and proteins as diamonds. Core interactions (inputs, outputs)
are depicted as grey arrows, reaction catalysts as green arrows, and reaction inhibitors as red arrows. Component measurements are depicted in a
blue-to-red color map, where lower values are more blue and higher values are more red. b. Example sub-networks where a reaction collapse would
occur. Measured components are depicted as red circles, unmeasured components as white circles, and reactions as stars. Core interactions (inputs,
outputs) are depicted as grey lines and identical components that would form the bridge between two reactions are depicted as dashed black lines
between circles. A collapsed reaction is depicted as a star with a dashed border and its new connections between measured components are dashed
black lines between a measured component and a reaction node. Collapsed reactions representing a particular reaction sequence are marked by an
asterisk (∗) or a number sign (#).

xenografts of lung cancer [36]. There has been little literature-based
evidence for a role of polyamine metabolism, much less SMS, in
lung adenocarcinomas. While the involved metabolites were singly
identified in the original study by their fold changes and a connec-
tion to polyamine synthesis is mentioned [27], no context as to their
reaction-level roles and consequences in lung adenocarcinomas is
provided. Metaboverse quickly provides this resolution and multi-
dimensional context and places a renewed emphasis on the need for
further research into SMS's role in lung adenocarcinomas and tumor
proliferation. Conversely, while statistical power was weak, lower
GLYCTK expression correlated with poorer prognosis, which reflected
the observations made in the steady-state metabolomics data where
adenocarcinoma tissue had increased glyceric acid concentrations
and decreased 3-phosphoglyceric acid concentrations compared to
normal tissue, indicating this enzyme's activity or abundance may
be decreased in tumors compared to normal tissue. These data gen-
erate new hypotheses regarding the role of these enzymes in early
stage lung adenocarcinomas, but further investigation should be per-
formed to definitively assess their impact in this disease. Findings like
these nevertheless provide important context for understanding the
metabolic regulatory environment and its reprogramming within lung
adenocarcinomas and may inform research directions and treatment
strategies for this disease.

To further demonstrate the capabilities of Metaboverse, we ana-
lyzed a model of mitochondrial fatty acid synthesis (mtFAS) deficiency
in S. cerevisiae. mtFAS is an evolutionarily conserved pathway that

produces lipoic acid, a critical co-factor for several metabolic en-
zymes. Recent work has uncovered additional important biological
roles for this pathway. For example, mtFAS coordinates fatty acid
synthesis with the regulation of iron-sulfur (Fe-S) cluster biogen-
esis and the assembly of mitochondrial oxidative phosphorylation
complexes [37–39]. The relatively recent discovery of patients with
mutations in genes encoding key mtFAS enzymes further illustrates
the importance of this pathway in human physiology [40]. The S.
cerevisiae Mct1 protein, homologous to the Malonyl-CoA-Acyl Carrier
Protein Transacylase (MCAT) in humans, transfers a malonyl group
from malonyl-CoA to the mitochondrial acyl carrier protein (ACP).
Deletion of the MCT1 gene abolishes the activity of the mtFAS path-
way in yeast [38]. We therefore used an mct1Δ mutant to explore
the relationship between mtFAS pathway activity and the effects of
its perturbation on downstream metabolic processes.

Previously, we generated proteomics data in mct1Δ yeast after
the shift from fermentable to non-fermentable growth media [38].
We complemented these data with RNA sequencing at 0, 3, and
12 hours and steady-state metabolomics at 0, 0.25, 0.5, 1, 3, and
12 hours after this shift in growth media. By transitioning from a
fermentable to a non-fermentable carbon source, yeast move from a
glucose-repressed state to a state of increased respiratory potential.
Upon layering these data on the S. cerevisiae metabolic network
using Metaboverse and analyzing the network using the reaction
pattern recognition module, we were able to explore acute and ex-
tended metabolic responses to mtFAS deficiency. Importantly, the
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Fig 3. Metaboverse identifies novel putative regulatory signatures in early stage lung adenocarcinoma steady-state metabolomics data. a.
Reaction between spermidine and 5′-methylthioadenosine identified by Metaboverse's pattern recognition analysis module as the first-highest ranking
Average reaction pattern. b. Reaction between glyceric acid and 3-Phosphoglyceric acid identified by Metaboverse's pattern recognition analysis module
as the second-highest ranking Average reaction pattern. Kaplan-Meier plots for the optimal expression cut-offs calculated for c. SMS (Spermine Synthase,
FPKM cut-off: 49.5413; high: 105 tumors, low: 382 tumors) and d. GLYCTK (Glycerate Kinase, FPKM cut-off: 0.913; high: 104 tumors, low: 383
tumors). Shading indicates 95% confidence intervals for each expression group. Dashed lines indicate median survival times for each expression group.
Risk tables are displayed below each Kaplan-Meier plot, and include the number of individuals in each risk category at time = 0 years. e. Distribution
of Benjamini-Hochberg-corrected log-rank p-values for the Cox proportional hazards regression for each gene in the TCGA lung adenocarcinoma
RNA-sequencing cohort. The rankings for SMS and GLYCTK are denoted by the dashed and labeled vertical lines. Metabolomics values are shown as
node shading, where an increasingly blue shade indicates downregulation, and an increasingly red shade indicates upregulation. Measured log2(fold
change) and statistical values for each entity are displayed below the node name. A gray node indicates a reaction. A bold gray node with a purple
border indicates a motif at this reaction. Circles indicate metabolites and diamonds indicate proteins. Gray edges indicate core relationships between
reaction inputs and outputs. Green edges indicate a catalyst. Background shading demarcates different cellular compartmentalization.

top-ranked ModReg reaction patterns (by magnitude where both sides
were statistically significant) at 12 hours predictably centered around
Mct1 protein abundance, Coenzyme A species measurements, and
other fatty acid synthesis-related reactions (Fig. 4a; Suppl. Fig.
7a-c,e-h).

We also observed respiratory signatures consistent with our pre-
vious studies [38, 41], including, for example, the identification of a
statistically significant pattern in the electron transfer from ubiquinol

to cytochrome C via Complex III of the electron transport chain (ETC)
(Supp. Fig. 7g, 8a). At the protein level, the cytochrome C isoforms,
Cyc1 and Cyc7, and Complex III components, were significantly de-
creased in abundance compared with wild-type cells. These compo-
nents catalyze the transfer of electrons from ubiquinol to cytochrome
C. We have observed this pattern in oxidative phosphorylation com-
plexes during mtFAS perturbations by various other means [37, 38].

The second expected pattern of interest identified by reaction pat-

September 6, 2021 5/31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2021. ; https://doi.org/10.1101/2020.06.25.171850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.171850
http://creativecommons.org/licenses/by/4.0/


Working manuscript - contents subject to change

Fig 4. Metaboverse identifies novel compensatory mechanisms to mitochondrial dysfunction. a. “MCAT transfers Mal from Mal-CoA to NDU-
FAB1” reaction pattern. b. “Transport of Citrate from Mitochondrial Matrix to cytosol” reaction pattern using steady-state metabolomics and proteomics
data (12 hours). c. “Transport of Citrate from Mitochondrial Matrix to cytosol” reaction pattern using early (3 hours) metabolomics (cont. on next page)
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Fig 4. (cont.) and RNA-sequencing data. d. Time-course behavior of citrate and isocitrate metabolites at earlier (0, 0.25, 0.5, 1, 3-hour) time-points.
e. Spot growth assays for wild-type and mct1Δ mutant strains with no expression (EV), overexpression of CTP1, and overexpression of CTP1-GFP
construct on raffinose-supplemented growth medium. f. Bubble plot for the GO term enrichment results for genes identified in the SpQN-corrected
co-expression analysis of CTP1 in the refine.bio wild-type cohort (n = 1248). -log10(FDR) is plotted along the x-axis and fold change enrichment
is plotted as bubble size and color intensity. g. Heatmap of amino acid metabolites for wild-type and mct1Δ mutant strain proteomics at 3 hours
post-raffinose carbon source shift. h. Graphical overview of yeast glycolysis pathway and other related reactions overlaid with summary annotations
based on RNA-sequencing, proteomics, and metabolomics measurements during steady-state growth (12 hrs). Circles indicate metabolites and squares
indicate proteins. RTG target proteins also contain a yellow asterisk within the square. Entities with no measurement are filled white, entities with no
significant change are shaded grey. Increasingly yellow to orange shades indicate positive fold changes and increasingly blue shades indicate negative
fold changes. A more complete legend for the shading criteria can be found in Supp. Fig. 13. i. Heatmap of amino-acid-regulated enzymes for wild-type
and mct1Δ mutant strain proteomics at 12 hours post-raffinose carbon source shift. j. Heatmap of anaplerotic enzymes for wild-type and mct1Δ mutant
strain proteomics at 12 hours post-raffinose carbon source shift. Measured values are shown as node shading in network plots, where an increasingly
blue shade indicates downregulation, and an increasingly red shade indicates upregulation. Measured log2(fold change) and statistical values for each
entity are displayed below the node name and represent the comparison of mct1Δ vs. wild-type samples. RNA-sequencing comparisons contained
n=4 in each group, proteomics comparisons contained n = 3 in each group, and metabolomics comparisons contained n = 6 in each each comparison
group, except for the 3-hour wild-type group, which contained n = 5. A gray node indicates a reaction. A bold gray node with a purple border indicates a
potential regulatory pattern at this reaction for the given data type time points. Circles indicate metabolites, diamonds indicate proteins, and triangles
indicate gene components. Gray edges are core relationships between reaction inputs and outputs. Green edges indicate a catalyst. Dashed blue
edges point from a metabolite component to the complex in which it is involved. Dashed orange edges point from a protein component to the complex in
which it is involved. Dashed purple edges point from a gene component to its protein product. Protein complexes with dashed borders indicate that the
values displayed on that node were inferred from the constituent protein, metabolite, and gene measurements. Background shading demarcates different
cellular compartmentalization. Heatmap values were mean-centered at 0 (z-score). Hierarchical clustering was performed where indicated by the linkage
lines using a simple agglomerative (bottom-up) hierarchical clustering method (or UPGMA (unweighted pair group method with arithmetic mean)).

tern analysis in Metaboverse was the general reduction of TCA cycle-
related enzyme abundances and TCA cycle intermediate metabolite
concentrations (Supp. Fig. 7c, 8b). We observed the upregula-
tion of Dic1 protein abundance. Coincidentally, DIC1 expression
is essential for growth on non-fermentable media due to its role in
shuttling phosphate across the mitochondrial inner membrane in
exchange for malate or succinate [42]. These two metabolites are
essential intermediates within the TCA cycle, and their depletion has
negative consequences on mitochondrial respiration. When yeast
are switched to a non-fermentable carbon source, especially when
deficits in TCA cycle flux are present as in the mtFAS model, they
appear to adapt by increasing Dic1 protein levels. This may in turn
facilitate malate or succinate transport and aid in maintaining some
level of TCA cycle flux and mitochondrial respiration. With this hypoth-
esis in mind, it is interesting to see the general increase in whole-cell
malate concentrations in the mct1Δ mutant compared to a wild-type
strain.

One top-ranking, and frankly unexpected, reaction pattern identi-
fied using Metaboverse in the yeast multi-omics dataset was “Trans-
port of Citrate from Mitochondrial Matrix to cytosol” (Fig. 4b; Suppl.
Fig. 7d). This reaction pattern was also identified at the 3-hour
time-point using metabolomics and RNA-sequencing data (Fig. 4c).
We noticed that earlier metabolomics measurements showed cit-
rate levels initially decreasing then increasing over the time-course
(Fig. 4d). Ctp1, the protein catalyst governing this identified reaction
pattern, is a tricarboxylate transporter that transfers citrate from the
mitochondrial matrix to the cytosol [43].

Given that citrate is a key metabolite in the TCA cycle, we hypoth-
esized that Ctp1 protein levels decrease in response to early citrate
depletion to maintain citrate pools within the mitochondrial matrix,
where it is perhaps most physiologically important for these cells to
be able to adapt to the loss of MCT1. If mct1Δ cells downregulate
Ctp1 as an adaptive mechanism, then forced overexpression of Ctp1
should lead to growth defects in this context. Indeed, we observed a
specific sensitivity to Ctp1 overexpression in the mct1Δ background
(Fig. 4e; Suppl. Fig. 14). This is despite elevated whole-cell concen-
trations of citrate in the CTP1-overexpression background compared
to mct1Δ alone (Suppl. Fig. 9f). We also determined that the CTP1
overexpression-GFP C-terminal fusion vector ablated this growth
defect, suggesting the perhaps the GFP-fusion vector of Ctp1 was

inactive and this growth phenotype was specific to functional Ctp1
localizing to the mitochondria and not spurious effects from protein
overexpression.

We next performed co-expression analysis with the yeast tran-
scriptomics compendia from refine.bio [44, 45]. We identified
genes that correlated (r > 0.5) with CTP1 expression in wild-type
yeast across various experimental conditions. Enriched GO terms
from this analysis revealed enrichment of aspartate, lysine, and other
amino acid biosynthesis programs (Fig. 4f; Suppl. Fig. 10; Suppl.
Fig. 11). Of note, aspartate can be converted into fumarate via the
urea cycle and purine synthesis pathway, which might partially explain
increased fumurate concentrations despite a non-functional electron
transport chain. Additionally, lysine can be used as a substrate for
the generation of acetyl-CoA, which plays a central role in the mtFAS
pathway [38], and provides further evidence connecting MCT1 back
to mtFAS and MCT1 deletion. These co-expression patterns were
reflected in the yeast refine.bio compendium across all conditions
and genetic backgrounds [44]. Metabolic rewiring of these and other
amino acids additionally were apparent in the metabolomics data (Fig.
4g) and in the proteomics data (Fig. 4i). These data suggest that
broad rewiring of biosynthesis pathways is occurring in the mct1Δ
background, potentially partially explaining its ability to grow normally
compared to wild-type (Fig. 4e). However, CTP1 overexpression in
this case appears to disrupt this biosynthetic rewiring, disabling the
ability of mct1Δ cells to tune their growth with their genetic defect
and related mtFAS and respiratory defects.

One well studied response to mitochondrial stress is the retro-
grade signaling pathway, which is known to act as a bridge for com-
munication between the mitochondria and nucleus [46]. Previous
evidence has suggested that one of the goals of the retrograde sig-
naling pathway is to maintain α-ketoglutarate pools for biosynthetic
processes. We also observed increased protein abundance levels in
components of this anaplerotic pathway, namely Mae1, Pyc1, Pyc2,
Cit2/Cit3, and Gdh2 (Fig. 4j). These enzymes sequentially cat-
alyze the conversions of malate to pyruvate to oxaloacetate to citrate,
respectively. PYC1 and CIT2 are also targets of the retrograde sig-
naling pathway [46]. Work on the retrograde signaling response has
also suggested a role for elevated Cit2 expression in maintaining the
metabolite pools necessary for anabolic growth [46], which we also
see in the mct1Δ background through general rewiring of biosynthetic
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components at earlier measured time-points (Fig. 4j; Suppl. Fig. 12).
If metabolic compensation in mct1Δ cells requires increased cit-
rate pools within mitochondria to maintain α-ketoglutarate pools for
biosynthetic processes, CTP1 downregulation could contribute to
mitochondrial citrate homeostasis.

We observed several other patterns that would enable this com-
pensatory biosynthetic reprogramming. The protein abundances of
Dld3, another target of the RTG pathway, and Dld1, were significantly
increased in the mct1Δ background (Fig. 4i). Dld3 catalyzes the
conversion of 2-hydroxyglutarate and pyruvate to α-ketoglutarate and
lactate, while Dld1 catalyzes the conversion of lactate to pyruvate.
These reactions' coordination could thus supplement α-ketoglutarate
pools while additionally processing any available lactate in the envi-
ronment to provide further substrate for the Dld3-catalyzed reaction
(Fig. 4h,i; Supp. Fig. 13).

Another predicted role for CTP1 in the mct1Δ background relates
to the regulation of glycolysis. Cytosolic citrate is a potent inhibitor
of phosphofructokinase, which is an important regulator of glycoly-
sis [47, 48]. In the mct1Δ background, we see the broad increase
in glycolytic enzyme abundances and can thus predict a degree of
carbon flux through the TCA cycle. Ctp1 is also decreased in over-
all abundance, so we can infer that phosphofructokinase inhibition
by citrate is limited. However, when CTP1 is overexpressed in the
mct1Δ background, citrate is likely saturating in the cytosol and in-
hibiting glycolysis, leading to the downstream disruption of carbon
flux through the TCA cycle (Supp. Fig. 13). This point is reflected in
the comparison of CTP1-overexpression in the mct1Δ background
to mct1Δ alone, where we observed decreased abundances of the
expected downstream central carbon and TCA metabolism interme-
diates, such as succinate (Suppl. Fig. 9j) and pyruvate (Suppl. Fig.
9d), in response to CTP1 overexpression.

These data and the insights provided by Metaboverse implicate a
novel putative role for changes in Ctp1 as part of a broader response
to mtFAS deficiency and mitochondrial dysfunction to maintain carbon
flux in a manner that allows for continued cellular growth. Specifically,
these data demonstrate that CTP1 overexpression limits cell growth
in a model of mtFAS deficiency and that CTP1 expression is generally
coordinated with amino acid biosynthesis. CTP1 could thus be act-
ing as part of a broader metabolic program which serves to sustain
growth in scenarios where mitochondrial homeostasis is disrupted.
Ctp1 also likely aids in maintaining carbon flux through portions of the
TCA cycle that contribute to biosynthesis, even though respiration is
generally non-operational in this biological model due to the inability
of these cells to assemble respiratory complexes. It has long been
recognized that the signaling and stress responses to mtFAS defects
and mitochondrial dysfunction are broad, and the current literature
has likely only scratched the surface regarding these responses.
These lines of evidence place Ctp1 and citrate homeostasis within
this regulatory equation and further emphasize that complex and
coordinated compensatory mechanisms respond to mitochondrial
dysfunction to allow for continued cellular growth and survival.

Using Metaboverse, we identified canonical metabolic phenom-
ena across various datasets, as well as novel putative regulatory
patterns that could be further tested. We demonstrated that using
public metabolomics data from lung adenocarcinomas, we could
identify reaction patterns that corresponded with patient survival
based on the gene expression of these reactions' enzymes. We
demonstrated that reaction pattern identification in a model of yeast
mitochondrial dysfunction could identify relevant regulatory patterns
and compensatory mechanisms. Critically, Metaboverse identifies
biologically relevant patterns that remain hidden using existing analyt-
ical approaches. Metaboverse is provided as an easy-to-use visual
tool so that users with no computational experience can easily ex-

plore their datasets, identify relevant reaction patterns, and generate
new and compelling hypotheses. We expect Metaboverse to become
a foundational analytical tool and augment the user's experience
when analyzing their own data or pre-existing datasets. Users will be
able to frame their data in the context of the entire metabolic reaction
network, discover new and interesting patterns, and design experi-
ments with a more holistic mindset to learn how reaction patterns fit
into the larger metabolic story of their model.

Methods
For the current instructions and details of features, we refer the user to
the Metaboverse documentation (https://metaboverse.readthedocs.io).
Processed data from the yeast mct1Δ analysis are available in distributed
versions of Metaboverse (as test data.zip) to act as a test dataset for
users to familiarize themselves with the input data format requirements.

Network curation. Biological networks are curated using the current ver-
sion of the Reactome knowledgebase [5–7]. In particular, the pathway
records and Ensembl- and UniProt-Reactome mapping tables are inte-
grated into the network database for Metaboverse. Additionally, the ChEBI
and The Human Metabolome databases are also referenced for metabolite
synonym mapping to accept more flexible metabolite input nomenclature
from the user [4, 49]. These data are used to generate a series of mapping
dictionaries for entities to reactions and reactions to pathways for the cu-
ration of the total reaction network. Reaction annotations are additionally
obtained from the Reactome knowledgebase [5–7]. As of the time of writing,
users can also provide BiGG [21] and BioModels [22,23] networks; however,
full support cannot always be guaranteed due to the more bespoke nature
of some network models from these sources. The resulting curation file is
output as a pickle-formatted .mvdb file.

Listing 1. mvdb database structure.

Reactome species ID

Reactome database version

Curation date

metaboverse-cli curation date

Reactome database version

Reactome database date

pathway database

for every pathway ID

pathway ID

Reactome ID

common name

list of reactions

reaction database

for every reaction ID

reaction ID

Reactome ID

common name

compartment ID

reversible

reaction notes and description

list of reactants

list of products

list of modifiers

ID

type

species database

for every species ID

species name

cont.
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name database

for every species name

species ID

Ensembl database

for every Ensembl ID

gene name

UniProt database

for every UniProt ID

protein name

ChEBI database

for every metabolite name

ChEBI ID

ChEBI synonym database

for every ChEBI ID

list of all associated metabolite names

UniProt metabolite database

for every UniProt metabolite name

ChEBI ID

complex database

for every complex ID

complex ID

complex name

compartment ID

participating complex

pathway

top level pathway

list of ChEBI & UniProt & Ensembl IDs

list of UniProt participant IDs

list of Ensembl participant IDs

list of mirbase participant IDs

list of NCBI participant IDs

compartment database

for every compartment ID

compartment name

After the relevant information is parsed from each table or record, the
global network is propagated using the NetworkX framework [50] to gener-
ate nodes for each reaction and reaction component and edges connecting
components to the appropriate reactions. In some cases, a separate ID is
used to generate two nodes for the same metabolite within two separate
compartments to aid in downstream visualization; however, user data for
the given entity would be mapped to both nodes.

After the network is curated for the user-specified organism, each node's
degree (or magnitude of edges or connections) is determined to aid in the
user's downstream ability to avoid visualizing high-degree components,
such as a proton or water, on the metabolic network, which can lead to visual
network entanglement and cluttering and a decrease in computational per-
formance [25]. The user may also choose to add metabolites or other com-
ponents to a blocklist, which will lead to these entities being ignored during
analysis and visualization. The resulting graph template is output as a JSON-
formatted .template.mvrs file. A reaction neighbors JSON-formatted file
is also output with the file suffix, .nbdb. These files, along with the initial
.mvdb file are curated for each available organism with each release of
Metaboverse to decrease back-end processing time on the user's machine.
These files are hosted at https://rutter.chpc.utah.edu/Metaboverse.

Listing 2. template.mvrs file structure.
# This structure also stores other reference components from

the .mvdb file

"nodes"

for every reaction & species

map id

name

reversible

notes

type

sub-type

compartment

compartment display name

"edges"

for every edge tuple

type

sub-type

Listing 3. nbdb file structure.

for every reaction

list of first-degree neighbors

Listing 4. Graph construction overview.
def construct-graph(

reaction-database, pathway-database, species-database,

name-database, protein-database, chebi-database,

uniprot-database, complex-database, organism-id,

gene-database, compartment-database,

component-database):

1. for each reaction in reaction-database:

1.1 parse reaction notes, metadata, and reactants,

products, and modifiers

1.2 add a node for the reaction with the relevant

annotations

1.3 for reactants, products, and modifiers:

1.3.1 add a node for that component with relevant

annotations

1.3.2 add an edge between that component and its

parent reaction node

1.3.3 if component is a complex:

1.3.3.1 find all child components

1.3.3.2 add a node for each child component

1.3.3.3 add an edge between that child component

and its parent complex node

2. for each node in graph:

2.1 calculate its degree

2.2 fuzzy match component name or ID to available

synonyms in references

2.3 convert mapped value to RGBA scale for

visualization

2.4 if component is a protein complex:

2.4.1 infer values from its child components

3. for each node in graph:

3.1 if component is a gene:

3.1.1 broadcast its values to its related protein

node if no protein value available
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3.2 if component is a protein or metabolite:

3.2.1 broadcast its values to its related complex

node (if one exists)

4. return graph

In order to overlay user data on the global network, first, user-provided
gene expression, protein abundance, and/or metabolite abundances' names
are mapped to Metaboverse compatible identifiers. For components that
Metaboverse is unable to map, a table is returned to the user so they can
provide alternative names to aid in mapping. Second, provided data values
are mapped to the appropriate nodes in the network. In cases where gene
expression data are available, but protein abundance values are missing,
Metaboverse will take the average of the available gene expression values
to broadcast to the protein node. For complexes, the median of all available
component values (metabolites, proteins, etc.) are calculated in order to
weight the inferred value towards values of more frequent magnitude. An
aggregated p-value is inferred by multiplying the geometric mean of the
p-values by e, as in [51, 52]. This method was chosen as it: 1) implies de-
pendence between p-values, as can be expected between the regulation of
components of a protein complex, 2) weights the resulting p-value towards
significance and prevents penalizing the complex's inferred p-value for one
component with a poor p-value, and 3) ensures the resulting p-value is
not lower than the minimum actual p-value from the set. Nodes for which
values were inferred will be marked by a dashed border during visualization
to clearly show which values are known and which were inferred. Statistical
values are derived from the highest value of the components (assuming a
scale of 1 denotes no statistical significance and 0 denotes high statistical
significance).

Y (x1, ..., xk) := median(x1, ..., xk) (1)

F (p1, ..., pk) := e · k
√
p1p2 · · · pk , (2)

where F (p1, ..., pk) ≤ 1.0.

Collapsing reactions with missing expression or abundance values
in user data. After data mapping is complete, Metaboverse will generate a
collapsed network representation for optional viewing during later visual-
ization. Metaboverse enforces a limit of up to three reactions that can be
collapsed as data down a pathway should be inferred only so far. Reaction
collapsing allows for partial matches between inputs and outputs of two
reactions to account for key metabolic pathways where a metabolite that is
output by one reaction may not be required for the subsequent reaction. For
example, pperhaps ATP is produced by reaction A but is not required for
reaction B. To perform a partial collapse, Metaboverse operates by largely
the same scheme as outlined below, but additionally if a perfect match be-
tween reactions is not available, checks for partial matches by filtering out
high-degree nodes (quartile 98 of all non-reaction node degrees) and then
checking if, by default, at least 30% of the nodes match with its neighbor.
Additional parameters for the reaction-collapse are as follows:

1. If a reaction has at least one known or inferred value for inputs
(substrates) and one known or inferred value for outputs (products),
the reaction will be left as is. During the entire reaction collapse
step, known catalysts can be included when assessing whether a
reaction has measured output values (increased catalyst should
lead to more output in most cases), and inhibitors can be included
when assessing whether the reaction has measured input values
(increased inhibitor should lead to an accumulation of input in most
cases). Catalysts and inhibitors are not included when determining
reaction neighbors, as described below.

2. If a reaction has at least one known input, the input is left as is, and
each reaction that shares the same inputs with the first reaction's out-
puts is determined whether it has a measured output. If the neighbor
reaction does not contain a known output value, the reaction is left
as is. If the neighboring reaction does contain a measured output,
the first reaction's inputs and the neighboring reaction's outputs are
collapsed to form a single, pseudo-reaction between the two. If the
reaction has at least one known output, the inverse is performed

where neighbors with components identical to the reaction's inputs
are assessed for whether a collapsed reaction can be created.

3. If a reaction has no measured values, it is determined if the neigh-
boring reactions on both sides (one sharing the reaction's inputs and
other sharing the reaction's outputs) have measured values. If both
neighbors contain a measured value, a collapsed pseudo-reaction
is created, summarizing all three reactions.

4. All other reactions are maintained in the network.

For collapsed reactions, appropriate notes are included to describe the
collapse. During visualization, these collapsed reactions are marked by
black dashed edges and dashed node borders.

Listing 5. Reaction collapse schema.
def collapse-reactions(

graph, reaction-database, neighbors-database,

degree-dictionary, sample-number <int>,

collapse_with_modifiers <bool>, blocklist,

degree-threshold=50, collapse-threshold=0.3):

1. for each reaction in reaction-database:

1.1 if one side of reaction missing values:

1.1.1 identify complete and partial matching

neighbor reactions for missing side of

reaction

1.1.2 if neighbor reaction has measurement:

1.1.2.1 create new collapsed reaction

1.1.2.2 tag these reactions for removal

1.2 if both sides of reaction missing values:

1.2.1 identify neighbors on both sides of reaction

1.2.2 if both neighbor reactions have measurements:

1.2.2.1 create new collapsed reaction

1.2.2.2 tag these reactions for removal

2. remove original reactions that were collapsed

from output reaction database

3. return graph, updated_reactions, changed_reactions,

removed_reaction

Regulatory pattern searches and sorting. Metaboverse provides a va-
riety of different regulatory patterns for the user to explore. To identify a
reaction-pattern is to compare some value that is computed from a reaction
or a pathway with a user-specified threshold.

The identified reaction-patterns will be listed in a stamp view. Each
stamp represents a reaction, with a glyph of the reaction, or the name
of the pathway on it. In this stamp view, the identified patterns can be
sorted according to three criteria: the number of pathways containing the
reaction (not applicable for pathway pattern identification), the magnitude
of the change of the computed value, and the statistical significance. When
sorting by the number of pathways or the magnitude of the change, the
identified reactions are arranged in order from the largest to the smallest.
When sorting by the statistical significance, reactions with statistical signif-
icance on both the input side (substrates) and the output side (products)
are listed first by the product of their maximum statistics, followed by the
reactions with statistical significance on one of the two sides, and finally
the reactions with no statistical significance on both sides. Within each tier,
the reactions are sorted from lowest to highest p-values. For all values or
statistics used in sorting, only those that determined the reaction-pattern
are used.

Listing 6. Pattern search schema.
// identify reaction patterns

function identify-motifs(

threshold, reaction-database, expression-dictionary,
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stats-dictionary, blocklist) {

1. for each reaction in reaction-database,

1.1 parse reaction reactants, products, and modifiers

1.2 parse reaction component values

1.3 perform necessary calculations for each side of

the reaction based on the reaction pattern

being analyzed

1.4 determine if the absolute difference between the

considered sides of the reaction pass the

threshold

1.5 if absolute difference >= threshold,

1.5.1 add reaction pattern to output array

1.6 return identified motif array

}

// display reaction patterns

function display-motifs() {

2. for each reaction in identified-motif-array,

2.1 if "sort type" === magnitude,

2.1.1 sort reaction patterns by highest to lowest

absolute difference

2.2 if "sort type" === statistical,

2.2.1 for each statistical value associated with a

reaction component relevant to the

selected reaction pattern,

2.2.1.1 if both sides of the reaction pass the

statistical threshold,

2.2.1.1a partition reaction into "both sides

significant" category

2.2.1.1b sort reaction patterns by the

product of the two reaction sides

statistical values

2.2.1.2 if one side of the reaction passes the

statistical threshold,

2.2.1.2a partition reaction into "one side

significant" category

2.2.1.2b sort reaction patterns by the

product of the two reaction sides

statistical values

2.2.1.3 if neither side of the reaction passes

the statistical threshold,

2.2.1.3a partition reaction into "neither

side significant" category

2.2.1.3b sort reaction patterns by the

product of the two reaction sides

statistical values

3. for each reaction motif,

3.1 create interactive reaction stamp

3.2 display based on sorted position

}

When a reaction is selected from the stamp view, all the pathways con-
taining the corresponding reactions will be listed below the stamp. Clicking
on a pathway ID will draw the selected pathway in which the reaction-
pattern was found, with all other reaction-patterns within this pathway also
highlighted. For time-course and multi-condition datasets, the selected
reaction-pattern's total behavior is displayed below these windows as line-
plots showing the reaction components' behavior across all time-points or
conditions.
Nearest neighborhood searches and prioritization. To visualize all con-

nections to a given network component, a user can select an entity (a gene,
protein, or metabolite) and visualize all reactions in which the component
is involved. By doing so, the user can visualize other downstream effects
the change of one entity might have across the total network, which conse-
quently aids in bridging and identifying any reaction that may occur between
canonically annotated pathways. These neighborhoods can be expanded
to view multiple downstream reaction steps and their accompanying genes,
proteins, and metabolites by modulating the appropriate user option in the
software.

The user can also limit which entities are shown by enforcing a degree
threshold. By setting this value at 50, for example, the network would not
show nodes that have 50 or more connections. One caveat, however, is
that this feature will occasionally break synchronous pathways into multiple
pieces if one of these high-degree nodes formed the bridge between two
ends of a pathway.

Perturbation networks. Perturbation networks are generated by search-
ing each reaction in the total reaction network for any reaction where at
least one component is significantly perturbed. The user can modify the
necessary criteria to base the search on the expression or abundance value
or the statistical value and can choose the thresholding value to be used.
For the expression thresholding, the provided value is assumed to be the
absolute value, so a thresholding value of 3 would include any reactions
where at least one component showed a greater than 3 measured change
or less than -3 measured change, the value of which is dependent on the
data provided by the user. Thus, these networks could represent reactions
where a component was perturbed to a significant degree on a log2 fold
change scale, z-score scale, or other appropriate unit for that biological
context. Once a list of perturbed reactions is collected, the network is con-
structed, including each of these reactions and their components. Perturbed
neighboring reactions that share components are thus connected within
the network, and perturbed reactions that are not next to other perturbed
reactions are shown as disconnected sub-networks.

Network visualization and exploration. Force-directed layouts of net-
works are constructed using D3 (https://d3js.org) by taking a user-
selected pathway or entity and querying the reactions that are components
of the selected pathway or entity. All inputs, outputs, modifiers, and other
components of these reactions, along with edges where both source and
target are found in the sub-network as nodes, are included and displayed.
Relevant metadata, such as user-provided data and reaction descriptions,
can be accessed by the user in real-time. To visualize a pathway, a user
selects a pathway, and all component reactions and their substrates, prod-
ucts, modifiers, and metadata are queried from the total reaction database.
Super-pathways help categorize these pathways and are defined as any
pathway containing more than 200 nodes.

Time-course and multiple condition experiments are automatically de-
tected from the user's input data. When users provide these data and
specifies the appropriate experimental parameters on the variable input
page, they will have the option to provide time point or condition labels.
Provided data should be listed in the data table in the same order that the
labels are provided. Within all visualization modules, the data for each time
point or condition can then be displayed using a slider bar, which will allow
the user to cycle between time points or conditions.

Compartments are derived from Reactome annotations [5–7]. Compart-
ment visualizations are generated using D3's hull plotting feature. Compart-
ment boundaries are defined at the reaction levels and made to encompass
each reaction's substrates, products, and modifiers for that given compart-
ment.

Some performance optimization features are included by default to pre-
vent computational overload. For example, nearest neighbor sub-networks
with more than 1,500 nodes, or nodes with more than 500 edges, will
not be plotted because the plotting of this information in real-time can be
prohibitively slow.

Packaging. The Metaboverse application is packaged using Electron
(https://electronjs.org). Back-end network curation and data process-
ing are performed using Python (https://www.python.org/) and the Net-
workX [50], pandas [53, 54], NumPy [55], SciPy [54, 56], and Matplotlib
(v3.4.2) [57] libraries. This back-end functionality is packaged as a single,
operating system-specific executable using the PyInstaller library (https://
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www.pyinstaller.org) and is available to the app's visual interface for data
processing. Front-end visualization is performed using Javascript and re-
lies on the D3 (https://d3js.org) and JQuery packages (https://jquery.
com). Saving network representations to a PNG file is performed using the
(https://github.com/edeno/d3-save-svg) and string-pixel-width (https:
//github.com/adambisek/string-pixel-width) packages. Documenta-
tion for Metaboverse is available at https://metaboverse.readthedocs.
io. Continuous integration services are performed by GitHub Actions to
routinely run test cases for each change made to the Metaboverse ar-
chitecture. The Metaboverse source code can be accessed at https:
//github.com/Metaboverse/metaboverse. The code used to draft and re-
vise this manuscript, as well as all associated scripts used to generate
and visualize the data presented in this manuscript, can be accessed at
https://github.com/Metaboverse/Metaboverse-manuscript/.

Validation with biological data.

Human lung adenocarcinoma metabolomics & analysis. Data
were accessed from Metabolomics Workbench project PR000305 and
processed as in our previous re-study of these data [25]. P-values were
derived using a two-tailed, homoscedastic Student's T-test and adjusted
using the Benjamini-Hochberg correction procedure. Initial Kaplan-Meier
survival analysis was performed using tools and data hosted on The Human
Protein Atlas (v20.1; Released 2021-02-24) [29–31]. Survival analysis as
displayed in this manuscript were performed in R (v4.0.3) using the survival
(v3.2-11) and survminer (v0.4.9) packages. TCGA FPKM gene expression
data were sourced from the Human Protein Atlas project (https://www.
proteinatlas.org/download/rna_cancer_sample.tsv.zip) and clinical
patient data were sourced from TCGA (https://portal.gdc.cancer.gov/
projects/TCGA-LUAD). Clinical data were censored as “Dead” or “Alive”
and “Alive” patients were right-censored using Days Since Last Follow-up.
Patients were stratified into two gene expression groups (High, Low) us-
ing the optimized surv cutpoint() function from the survminer package
(v0.4.9) with the minimum proportion for a group set at 0.2 [34].

Yeast strains. Saccharomyces cerevisiae BY4743 (MATa/α, his3/his3,
leu2/leu2, ura3/ura3, met15/MET15, lys2/LYS2) was used to generate the
mct1Δ strain as described in [38].

Yeast growth assays. Growth assays were performed using S-min me-
dia with no uracil added and containing either 2% glucose or 2% raffinose.
Equal numbers of wild-type or mct1Δ yeast transformed with empty vector,
CTP1-overexpression, and CTP1-C-terminal GFP-overexpression plasmids
were spotted as 10-fold serial dilutions during mid-log phase (OD600=0.3-
0.6). Plates were incubated at 30 °C for 2–3 days before imaging.

RNA-sequencing sample preparation and analysis. RNA sequenc-
ing data were generated by growing Saccharomyces cerevisiae biological
replicates for strains mct1Δ (n=4) and wild-type (n=4). Briefly, cells were
grown in glucose and switched to raffinose-supplemented growth medium
for 0, 3, and 12 hours such that at the time of harvest, cultures were at
OD600=1. Cultures were flash-frozen, and later total RNA was isolated using
the Direct-zol kit (Zymo Research) with on-column DNase digestion and
water elution. Sequencing libraries were prepared by purifying intact poly(A)
RNA from total RNA samples (100-500 ng) with oligo(dT) magnetic beads,
and stranded mRNA sequencing libraries were prepared as described using
the Illumina TruSeq Stranded mRNA Library Preparation Kit (RS-122-2101,
RS-122-2102). Purified libraries were qualified on an Agilent Technologies
2200 TapeStation using a D1000 ScreenTape assay (cat# 5067-5582 and
5067-5583). The molarity of adapter-modified molecules was defined by
quantitative PCR using the Kapa Biosystems Kapa Library Quant Kit (cat#
KK4824). Individual libraries were normalized to 5 nM, and equal volumes
were pooled in preparation for Illumina sequence analysis. Sequencing
libraries (25 pM) were chemically denatured and applied to an Illumina
HiSeq v4 single-read flow cell using an Illumina cBot. Hybridized molecules
were clonally amplified and annealed to sequencing primers with reagents
from an Illumina HiSeq SR Cluster Kit v4-cBot (GD-401-4001). Following
transfer of the flowcell to an Illumina HiSeq 2500 instrument (HCSv2.2.38
and RTA v1.18.61), a 50 cycle single-read sequence run was performed
using HiSeq SBS Kit v4 sequencing reagents (FC-401-4002).

Sequence FASTQ files were processed using XPRESSpipe (v0.6.0) [58].
Batch and log files are available at https://github.com/Metaboverse/

Metaboverse-manuscript/tree/main/data/sce_mct1_omics. Notably,
reads were trimmed of adapters (AGATCGGAAGAGCACACGTCTGAACTCCAGTCA).
Based on library complexity quality control, de-duplicated alignments were
used for read quantification due to the high number of duplicated sequences
in each library. Differential expression analysis was performed using DE-
Seq2 [59] by comparing mct1Δ samples with wild-type samples at the
12-hour time-point to match the steady-state proteomics data. log2(fold
change) and false discovery rate (“p-adj”) values were extracted from the
DESeq2 output.

Proteomics analysis. Steady-state quantitative proteomics data pre-
viously processed and obtained from [38]. Briefly, cells were grown in
glucose and switched to raffinose-supplemented growth medium overnight
and harvested at mid-log phase. For this analysis, we compared the mct1Δ
(n=3) with the wild-type (n=3) cell populations. log2(fold change) values
and Benjamini-Hochberg corrected p-values were generated by comparing
mct1Δ with the wild-type cells. P-values were generated before correction
using a 2-tailed, homoscedastic Student's T-test.

Gas chromatography metabolomics sample preparation and
metabolite extraction. Metabolomics data were generated by growing
the appropriate yeast strains in synthetic complete media supplemented
with 2% glucose until they reached saturation (n=6; except in one 3-hour
wild-type sample, where n=5). Cells were then transferred to S-min media
containing 2% raffinose and leucine and harvested after 0, 15, 30, 60, and
180 minutes (n=6/time-point/strain, except for the 3-hour wild-type samples,
where n=5) at OD600=0.6-0.8.

A 75% boiling ethanol (EtOH) solution containing the internal standard
d4-succinic acid (Sigma 293075) was then added to each sample. Boiling
samples were vortexed and incubated at 90 °C for 5 minutes. Samples
were then incubated at -20 ˚C for 1 hour. After incubation, samples were
centrifuged at 5,000 x g for 10 minutes at 4˚C. The supernatant was then
transferred from each sample tube into a labeled, fresh 13x100mm glass
culture tube. A second standard was then added (d27-myristic acid CDN
Isotopes: D-1711). Pooled quality control samples were made by removing
a fraction of collected supernatant from each sample, and process blanks
were made using only extraction solvent and no cell culture. The samples
were then dried en vacuo. This process was completed in three separate
batches.

Gas chromatography mass spectrometry analysis of samples. All
GC-MS analysis was performed with an Agilent 5977b GC-MS MSD-HES
and an Agilent 7693A automatic liquid sampler. Dried samples were sus-
pended in 40 µL of a 40 mg/mL O-methoxylamine hydrochloride (MOX) (MP
Bio #155405) in dry pyridine (EMD Millipore #PX2012-7) and incubated
for 1 hour at 37 °C in a sand bath. 25 µL of this solution were added
to auto sampler vials. 60 µL of N-methyl-N-trimethylsilyltrifluoracetamide
(MSTFA with 1%TMCS, Thermo #TS48913) were added automatically via
the auto sampler and incubated for 30 minutes at 37 °C. After incubation,
samples were vortexed, and 1 µL of the prepared sample was injected into
the gas chromatograph inlet in the split mode with the inlet temperature
held at 250 °C. A 10:1 split ratio was used for the analysis of the majority
of metabolites. For those metabolites that saturated the instrument at the
10:1 split concentration, a split of 50:1 was used for the analysis. The gas
chromatograph had an initial temperature of 60 °C for 1 minute followed
by a 10 °C/min ramp to 325 °C and a hold time of 5 minutes. A 30-meter
Phenomenex Zebron AB-5HT with 5m inert Guardian capillary column was
employed for chromatographic separation. Helium was used as the carrier
gas at a rate of 1 mL/min.

Data were collected using MassHunter software (Agilent). Metabo-
lites were identified, and their peak area was recorded using MassHunter
Quant. These data were transferred to an Excel spreadsheet (Microsoft,
Redmond WA). Metabolite identity was established using a combination of
an in-house metabolite library developed using pure purchased standards,
the NIST (https://www.nist.gov) and Fiehn libraries [60]. Resulting data
from all samples were normalized to the internal standard d4-succinate.
P-values were derived using a homoscedastic, two-tailed Student's T-test
and adjusted using the Benjamini-Hochberg correction procedure.

Liquid chromatography metabolomics sample preparation and
metabolite extraction. Metabolomics data were generated by growing
the appropriate yeast strains in synthetic complete media supplemented
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with 2% glucose until they reached saturation (n=3). Cells were then trans-
ferred to S-min media containing 2% raffinose and leucine and harvested
after 0, 15, 30, 60, and 180 minutes (n=6/time-point/strain, except for the
3-hour wild-type samples, where n=5) at OD600=0.6-0.8.

The procedures for metabolite extraction were performed as previously
described [61]. Yeast cultures were pelleted, snap frozen and kept at
−80°C. 5ml of 75% boiled ethanol was added to every frozen pellet. Pellets
were vortexed and incubated at 90°C for 5 minutes. All samples were
then centrifuged at 5,000 Relative Centrifugal Force (RCF) for 10 minutes.
Supernatants were transferred to fresh tubes, evaporated overnight in a
Speed Vacuum, and then stored at −80°C until they were run on the mass
spectrometer.

Liquid chromatography mass spectrometry analysis of samples.
The conditions for liquid chromatography are described in previous stud-
ies [62, 63]. Briefly, a hydrophilic interaction liquid chromatography method
(HILIC) with an Xbridge amide column (100 × 2.1 mm, 3.5 µm) (Waters)
was employed on a Dionex (Ultimate 3000 UHPLC) for compound sepa-
ration and detection at room temperature. The mobile phase A was 20
mM ammonium acetate and 15 mM ammonium hydroxide in water with 3%
acetonitrile, pH 9.0, and the mobile phase B was acetonitrile. The linear
gradient was as follows: 0 min, 85% B; 1.5 min, 85% B, 5.5 min, 35% B;
10 min, 35% B, 10.5 min, 35% B, 14.5 min, 35% B, 15 min, 85% B, and 20
min, 85% B. The flow rate was 0.15 ml/min from 0 to 10 min and 15 to 20
min, and 0.3 ml/min from 10.5 to 14.5 min. All solvents were LCMS grade
and purchased from Thermo Fisher Scientific.

Mass spectrometry was performed as described in previous stud-
ies [62, 63]. Briefly, the Q Exactive MS (Thermo Scientific) is equipped with
a heated electrospray ionization probe (HESI), and the relevant parameters
are as listed: evaporation temperature, 120°C; sheath gas, 30; auxiliary
gas, 10; sweep gas, 3; spray voltage, 3.6 kV for positive mode and 2.5 kV
for negative mode. Capillary temperature was set at 320°C, and S-lens
was 55. A full scan range from 60 to 900 (m/z) was used. The resolution
was set at 70,000. The maximum injection time was 200 ms. Automated
gain control (AGC) was targeted at 3,000,000 ions.

Data were collected, metabolites were identified, and their peak area
was recorded using El-MAVEN software [64–66]. These data were trans-
ferred to an Excel spreadsheet (Microsoft, Redmond WA). Metabolite identity
was established using a combination of an in-house metabolite library devel-
oped using pure purchased standards, the NIST (https://www.nist.gov)
and Fiehn libraries [60]. Resulting data from all samples were normalized
to the internal standard d4-succinate. P-values were derived using a ho-
moscedastic, two-tailed Student's T-test and adjusted using the Benjamini-
Hochberg correction procedure.

Correlation analysis. To correct the expression bias arising from highly
expressed genes, gene expression data were first corrected using spatial
quantile normalization (SpQN; v1.0.0) for each dataset with the first four
principle components being removed for each dataset [45]. Genes were
considered co-expressed in refine.bio datasets if r > 0.5 and in the lab-
generated wild-type data if > 0.75.

Gene ontology enrichment analysis was performed by processing the
correlated gene sets from each dataset using the PANTHER Overrepresen-
tation Test (v16; Released 20210224) on the GO biological process com-
plete annotation dataset (https://doi.org/10.5281/zenodo.4735677; Re-
leased 2021-05-01) [67, 68] via the Gene Ontology (GO) Resource [69, 70].
Enrichments were determined using Fisher's Exact Test and p-values were
corrected using the PANTHER false discovery rate calculation [67, 68]. En-
richments were prioritized by fold change. For overlapping GO terms, the
GO term was the highest fold change was used for the visualization. Enrich-
ment FDRs and fold changes were visualized as bubble plots generated
using seaborn (v0.11.0) and Matplotlib (v3.4.2) [57, 71]. Scatterplots of
co-expressed genes against the gene of interest were generated using the
regplot() function from seaborn (v0.11.0) and Matplotlib (v3.4.2) [57, 71].

Heatmap and boxplot visualization. Heatmaps were generated using
the clustermap() function from seaborn (v0.11.0) and Matplotlib (v3.4.2)
using custom gene, protein, or metabolite lists [57, 71]. Heatmap values
were mean-centered at 0 (z-score). Hierarchical clustering was performed
where indicated by the linkage lines using a simple agglomerative (bottom-
up) hierarchical clustering method (or UPGMA (unweighted pair group

method with arithmetic mean)). Gene comparison boxplots were generated
using the swarmplot() and boxplot() functions from seaborn (v0.11.0)
and Matplotlib (v3.4.2) [57, 71].

Data availability
Gene expression counts for lung adenocarcinomas were sourced
from the Human Protein Atlas project's TCGA FPKM gene ex-
pression data (https://www.proteinatlas.org/download/rna_cancer_
sample.tsv.zip) and clinical patient data were sourced from TCGA (https:
//portal.gdc.cancer.gov/projects/TCGA-LUAD).

mct1Δ and accompanying wild-type transcriptomics time-course
data are deposited at the GEO repository under identifier GSE151606.
Metabolomics data are deposited at the Metabolomics Workbench repos-
itory under project identifier PR000961, study identifier ST001401 (DOI:
10.21228/M8GD71).

For gene co-expression analyses, all yeast samples available in
refine.bio were accessed on March 16, 2021 [44].

The curated networks for these data are available at https://github.
com/Metaboverse/Metaboverse-manuscript/tree/main/manuscript_

files. Networks were generated by taking the 12-hour transcriptomics and
proteomics datasets with their appropriate log2(fold change) and statistical
values, along with the 0, 15, 30, 60, and 180 minute metabolomics datasets
with their respective log2(fold change) and statistical values and layering
these data on the Saccharomyces cereviseae global reaction network as
curated by Metaboverse from the Reactome database [5–7]. reaction-
patterns and perturbation network analyses were performed within the
Metaboverse platform.

Code availability
The Metaboverse source code is available at https://github.com/

Metaboverse/Metaboverse and https://github.com/Metaboverse/

metaboverse-cli. The latest version of the software can be found at https:
//github.com/Metaboverse/Metaboverse/releases/latest. The source
code and data for this manuscript and the subsequent analyses are available
at https://github.com/Metaboverse/Metaboverse-manuscript/.

References
1. Aristotle, W. Ogle. On the parts of animals. London, K. Paul, French

& Co (1882).
2. M. Kanehisaa, S. Goto. KEGG: Kyoto Encyclopedia of Genes

and Genomes. Nucleic Acids Res 28 (2000). https://doi.org/
10.1093/nar/28.1.27.

3. M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, K. Morishima.
KEGG: new perspectives on genomes, pathways, diseases and
drugs. Nucleic Acids Res 45 (2017). https://doi.org/10.1093/
nar/gkw1092.

4. D. Wishart, et al.. HMDB 4.0: the human metabolome database
for 2018. Nucleic Acids Res 46 (2018). https://doi.org/10.1093/
nar/gkx1089.

5. G. Joshi-Tope, et al.. Reactome: a knowledgebase of biological
pathways. Nucleic Acids Res 33 (2005). https://doi.org/10.1093/
nar/gki072.

6. B. Jassal, et al.. The reactome pathway knowledgebase. Nucleic
Acids Res 48 (2020). https://doi.org/10.1093/nar/gkz1031.

7. A. Fabregat, et al.. The Reactome Pathway Knowledgebase. Nucleic
Acids Res 46 (2018). https://doi.org/10.1093/nar/gkx1132.

8. C. Zerfaß, M. Asally, O. Soyer. Interrogating metabolism as an elec-
tron flow system. Curr Opin Syst Biol 13 (2019). https://doi.org/
10.1016/j.coisb.2018.10.001.

9. M. Beguerisse-Dı́az, G. Bosque, D. Oyarzún, J. Picó, M. Barahona.
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S1 Text: A brief overview of representative metabolic network analysis tools. We will highlight four such representative and
popular tools for their respective properties, though many more exist [1]. First is MetaboAnalyst, which relies heavily on set enrichment
methods for the analysis of data or examining the belongingness of sets of significantly changed analytes (i.e., metabolite, protein, or gene
measurements), for extracting interesting information. Network visualization is available, but it focuses primarily on interaction networks,
and its ability to extract regulatory information is limited, particularly in an automated fashion [2,3]. Second is Cytoscape, which serves as a
general go-to platform for representing and visualizing biological or other networks. One strength of Cytoscape is the ability to design apps
or plug-ins to conduct customized analyses; however, comprehensive and metabolism-specific regulatory identification methods are
unavailable [4]. One plug-in for Cytoscape that focuses on metabolic data is MetScape, but again, this tool is generally limited to pathway
enrichment, correlation networks, and data visualization and does not integrate approaches to identify regulatory mechanisms at the
reaction-level within the data [5-7]. MetExplore focuses on the curation of networks and is particularly useful for collaborative annotation of
emerging models of organisms with incomplete metabolic network curations. It additionally can layer experimental data on the network for
visualization [8,9]. A companion tool to MetExplore is MetExploreViz, which enables interactive and flexible visualization of omics data on
metabolic networks [10]. Reactome, which our tool uses for the curation of biological networks, also offers analytical tools for user data, but
again relies on set enrichment or manual methods for identifying patterns [11-13]. While all have their respective utility, there is a pressing
need for tools that integrate these features and automate pattern and trend detection across metabolic networks to extract regulatory and
other features from data. For an in-depth discussion of other metabolomics and metabolism computational tools, we refer readers to the
resource paper, [14].
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S1 Fig: Example of the General Exploration module. a. By hovering on the icon, users can view the shape legend. Below the shape legend is the
compartment legend, where all currently displayed compartments in the selected pathway will be shown. b. Users can toggle features on or off using
the appropriate buttons. For example, users could choose to display all reaction names, not just when a reaction is selected. c. Users can modulate
graphing parameters, such as the number of reaction neighborhoods to graph when selecting a network component for nearest neighborhood analysis.
d. Notes about the selected reaction or synonyms for the selected reaction component appear here, as well as other information. e. The drop-down
menu for the selection of a super-pathway. f. The drop-down menu for the selection of a specific pathway within the selected super-pathway. g. For
time-course and multi-condition datasets, a slider bar will appear that users can use to change value shading of nodes and highlighted reaction-patterns.
h. Viewing area for the selected pathway. i. When users double-click on a reaction component, a nearest neighborhood graph will be displayed. In this
instance, citrate was selected, and all reactions citrate is involved in across all pathways are plotted.
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S2 Fig: Example of the Perturbation Networks module. a. Users can select what constitutes a perturbed reaction by modulating the appropriate
thresholds. Only one type of perturbation (by magnitude or by statistical value) will be used. b. Users select a super-pathway, for which all perturbed
reactions belonging to that super-pathway are selected and displayed. Reactions that are neighbors and perturbed will be shown stitched together within
the network, even if these reactions are connected across different pathways.
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S3 Fig: Example of the Pattern Analysis module. a. The patterns currently available to search in Metaboverse are displayed in this panel. Users
can adjust the thresholds for the given pattern using the appropriate fields. b. For the selected pattern type, all available reaction-patterns within the
organism's network will appear here. Reactions will be sorted by statistical values, as provided by the user, that were relevant to the identified pattern.
Green stamps indicate both sides of the reaction contained significant values, yellow stamps indicate one side of the reaction contained significant values,
and gray stamps indicate neither side of the reaction contained significant values. c. This panel displays all of the pathways in which the reaction-pattern
can be found. The graphic provides a simplified view of the reaction's primary substrates and products, with the nodes shaded by associated value. A
user can select one of these pathways for viewing. d. The selected pathway is displayed here, with all reaction-patterns in the pathway highlighted with a
bold purple border. e. If a user would like to view the selected pathway within the ‘Explore‘ module, they can click the icon to open the pathway in a new
window. All reaction-patterns within the displayed pathway are listed below. f. For time-course or multi-condition datasets, the user can choose to display
reaction-patterns for the selected time-point or condition that are not present in another time-point or condition. g. For time-course or multi-condition
datasets, a slider bar will appear with the time-points or conditions for the user to select. h. This panel provides a shape legend for the different shape
types used in Metaboverse. i. For time-course or multi-condition datasets, a line plot will appear for the selected reaction. While panels above only
display the behavior of that reaction-pattern at a single time-point or condition, the line plot will display that reaction's behavior across all of the available
time-points or conditions.
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S4 Fig: Metaboverse identifies reaction patterns in nucleotide metabolism. Reaction patterns (red boxes) in metabolism of nucleotides pathway
(R-HSA-15869).
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S5 Fig: Metaboverse identifies reaction patterns in xanthine and TCA metabolism. a. Identification of xanthine regulation by both the pattern
recognition and perturbation analysis modules. b. Disruptions of TCA metabolism support canonical disruptions during adenocarcinoma development.
Metabolomics values are shown as node shading, where an increasingly blue shade indicates downregulation, and an increasingly red shade indicates
upregulation. Measured log2(fold change) and statistical values for each entity are displayed below the node name. A gray node indicates a reaction. A
bold gray node with a purple border indicates a motif at this reaction. Circles indicate metabolites, squares indicate complexes, and diamonds indicate
proteins. Gray edges indicate core relationships between reaction inputs and outputs. Green edges indicate a catalyst, and red edges indicate inhibitors.
Dashed blue edges point from a metabolite component to the protein complex in which it is involved. Dashed orange edges point from a protein
component to the protein complex in which it is involved. Protein complexes with dashed borders indicate that the values displayed on that node were
inferred from the constituent protein and metabolite measurements. Hub limit was set at 30 during generation of the network visualization as shown in
sub-panel b.
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S6 Fig: Overall survival outcomes correlations of SMS and GLYCTK gene expression in early stage adenocarinomas are stronger than in
later stage adenocarcinomas. (top) gene FPKM distributions for SMS and GLYCTK. (middle) Kaplan-Meier plots for early stage (stage IA-B) samples
for SMS and GLYCTK and distribution of all genes' Benjamini-Hochberg log-rank p-values. (bottom) Kaplan-Meier plots for late stage (stage II+) samples
for SMS and GLYCTK and distribution of all genes' Benjamini-Hochberg log-rank p-values. Shading in Kaplain-Meier plots indicates 95% confidence
intervals for each expression group. Dashed lines indicate median survival times for each expression group. Risk tables are displayed below each
Kaplan-Meier plot, and include the number of individuals in each risk category at time = 0 years.
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S7 Fig: Top-ranking ModReg reaction patterns identified in steady-state proteomics and metabolomics data in the mct1Δ background. Stamp
view snapshots of the eight top-ranking ModReg reaction patterns in the mct1Δ vs. wild-type comparison using steady-state (12 hr) proteomics and
metabolomics data. Reaction patterns were sorted by difference in magnitude of the different relevant components. Only results where the input/output
and modifier were both statistically significant are shown. RNA-sequencing comparisons contained n=4 in each group, proteomics comparisons contained
n = 3 in each group, and metabolomics comparisons contained n = 6 in each each comparison group, except for the 3-hour wild-type group, which
contained n = 5. a. “MCAT transfers Mal from Mal-CoA to NDUFAB1”. b. “propionyl-CoA + carnitine => propionylcarnitine + CoA SH”. c. “Succinate
<=> Fumarate (with FAD redox reaction on enzyme)”. d. “Transport of Citrate from Mitochondrial Matrix to cytosol”. e. “sphinganine + stearyl-CoA =>
dihydroceramide + CoASH”. f. “AWAT2 transfers PALM from PALM-CoA to HXOL, forming palmityl palmitate ester”. g. “Electron transfer from ubiquinol
to cytochrome c of complex III”. h. “ACSL3,4 ligate CoA to AA to form AA-CoA”.
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S8 Fig: Metaboverse identifies and contextualizes important respiratory signatures in mct1Δ cells. a. Steady-state proteomics (12 hours)
overlaid on the reaction, “Electron transfer from ubiquinol to cytochrome c of complex III.” b. Steady-state proteomics (12 hours) and metabolomics at 15
minutes overlaid on TCA-related reactions. Time stamps for each data type are displayed in the lower-right hand corner of each subplot. Measured values
are shown as node shading, where an increasingly blue shade indicates downregulation, and an increasingly red shade indicates upregulation. Measured
log2(fold change) and statistical values for each entity are displayed below the node name and represent the comparison of mct1Δ vs. wild-type samples.
RNA-sequencing comparisons contained n=4 in each group, proteomics comparisons contained n = 3 in each group, and metabolomics comparisons
contained n = 6 in each each comparison group, except for the 3-hour wild-type group, which contained n = 5. A gray node indicates a reaction. A bold
gray node with a purple border indicates a potential regulatory pattern at this reaction for the given data type time points. Circles indicate metabolites,
squares indicate complexes, diamonds indicate proteins, and triangles indicate gene components. Gray edges are core relationships between reaction
inputs and outputs. Green edges indicate a catalyst. Dashed blue edges point from a metabolite component to the complex in which it is involved.
Dashed orange edges point from a protein component to the complex in which it is involved. Dashed purple edges point from a gene component to
its protein product. Protein complexes with dashed borders indicate that the values displayed on that node were inferred from the constituent protein,
metabolite, and gene measurements. The background shading demonstrates Metaboverse's ability to show cellular compartmentalization, although
users may opt to toggle compartment shading off at any time.
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S9 Fig: Metabolite relative abundance changes during CTP1 overexpression in mct1Δ or wild-type backgrounds. Boxplot overlaid with swarm
plot for metabolites quantified by LC-MS in the mct1Δ or wild-type background with either an empty vector or vector overexpressing CTP1 for a. glucose,
b. fructose 6-phosphate (F6P), c. fructose 1,6-bisphosphate (F16BP), d. pyruvate, e. CoenzymeA species (CoA), f. citrate, g. α-ketoglutarate (a-KG), h.
glutamine, i. glutamate, j. succinate, k. fumarate, l. malate, m. adenine, n. alanine, o. arginine, p. asparagine, q. aspartate, r. ATP, s. inosine, t.
leucine, u. lysine, v. uracil, and w. valine. All measurements were normalized using the average of the WT + EV samples for each metabolite. Each
comparison group contained n = 3 samples. Center line represents data median, top and bottom lines represent 1.5x interquartile range. All data points
are visualized as dots.
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S10 Fig. Yeast co-expression analysis of CTP1 across all wild-type samples in refine.bio. Genes that correlated with CTP1 (r > 0.5) after SpQN
normalization from the wild-type samples available in the refine.bio compendium [44, 45] (n = 1248).
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S11 Fig. Yeast co-expression analysis of CTP1 across all samples in refine.bio. top. Genes that correlated with CTP1 (r > 0.5) after SpQN
normalization from all samples available in the refine.bio compendium (n = 6370) [44, 45]. bottom. Bubble plot for the GO term enrichment results for
genes identified in the SpQN-corrected co-expression analysis of CTP1 across all refine.bio yeast samples. -log10(FDR) is plotted along the x-axis
and fold change enrichment is plotted as bubble size and color intensity.
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S12 Fig: Amino acid metabolism rewiring occurs in early (3 hours) metabolomics data in the mct1Δ background. Heatmap of amino acid and
nucleotide metabolites for wild-type and mct1Δ mutant strain proteomics at 180 minutes post-raffinose carbon source shift. Metabolomics comparisons
contained n = 6 in each each comparison group, except for the 3-hour wild-type group, which contained n = 5. Heatmap values were mean-centered at 0
(z-score). Hierarchical clustering was performed where indicated by the linkage lines using a simple agglomerative (bottom-up) hierarchical clustering
method (or UPGMA (unweighted pair group method with arithmetic mean)).
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S14 Fig: MCT1 deletion and CTP1 overexpression growth assays. Spot dilutions of wild-type and mct1Δ yeast transformed with either empty vector
(EV), CTP1 overexpression (CTP1) vector, or CTP1-GFP fusion overexpression (CTP1-GFP) vector on synthetic media lacking uracil supplemented with
either 2% glucose (left) or 2% raffinose (right). Cells were plated at mid-log phase (OD600=0.3-0.6).
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