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ABSTRACT 22 

Brain stress testing using blood oxygenation level-dependent (BOLD) MRI to evaluate changes in 23 

cerebrovascular reactivity (CVR) is of growing interest for evaluating white matter integrity. However, 24 

even under healthy conditions, the white matter BOLD-CVR response differs notably from that observed 25 

in the gray matter. In addition to actual arterial vascular control, the venous draining topology may 26 

influence the WM-CVR response leading to signal delays and dispersions. These types of alterations in 27 

hemodynamic parameters are sometimes linked with pathology, but may also arise from differences in 28 

normal venous architecture. In this work, high-resolution T2*weighted anatomical images combined 29 

with BOLD imaging during a hypercapnic breathing protocol were acquired using a 7 tesla MRI system. 30 

Hemodynamic parameters including base CVR, hemodynamic lag, lag-corrected CVR, response onset 31 

and signal dispersion, and finally ∆CVR (corrected CVR minus base CVR) were calculated in 8 subjects. 32 

Parameter maps were spatially normalized and correlated against an MNI-registered white matter 33 

medullary vein atlas. Moderate correlations (Pearson’s rho) were observed between medullary vessel 34 

frequency (MVF) and ∆CVR (0.52; 0.58 for total WM), MVF and hemodynamic lag (0.42; 0.54 for total 35 

WM), MVF and signal dispersion (0.44; 0.53 for total WM), and finally MVF and signal onset (0.43; 0.52 36 

for total WM). Results indicate that, when assessed in the context of the WM venous architecture, 37 

changes in the response shape may only be partially reflective of the actual vascular reactivity response 38 

occurring further upstream by control vessels. This finding may have implications when attributing 39 

diseases mechanisms and/or progression to presumed impaired WM BOLD-CVR. 40 

INTRODUCTION 41 

Vascular reactivity mapping using blood oxygenation level-dependent (BOLD) magnetic resonance 42 

imaging (MRI) in combination with a vasoactive stimulus is of increasing interest for clinical investigation 43 

of a wide range of cerebrovascular diseases. Of particular interest is the relationship between the BOLD 44 
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cerebrovascular reactivity (-CVR) response1 with white matter (WM) integrity as a means through which 45 

to better understand or predict the development of WM lesions2-4. A recurring assumption is that 46 

factors governing the signal characteristics in WM are arterial in origin and should be compared against 47 

the response of the gray matter (GM). It follows then that deviations from the GM reference response 48 

may indicate impairment, flow redistribution5, variable CO2 sensitivity6, or differences in the rate of the 49 

vascular response7. This work proposes that an additional component, related to how venous blood is 50 

drained from WM tissue, modulates the WM BOLD-CVR to stimulus separate from factors related to 51 

direct arterial control.  52 

GM cortical arteries are organized centripetally (towards the center); arteries penetrate from the pial 53 

surface towards the center of the brain while branching within the cortex. In some cases, these vessels 54 

may also penetrate the sub-cortical WM. In this superficial brain region, drainage occurs centrifugally 55 

(away from the center) as associated veins carry blood back to the pial surface and eventually the 56 

superior sagittal sinus via the intra-cortical, subcortical, and superficial medullary veins8, 9. In deeper WM 57 

regions, blood is drained centripetally. This pattern is clear when observing the medullary veins that 58 

originate 1-2cm below the cortex and drain via the subependymal veins lateral to the ventricles (see 59 

figure 1)10. This organization, which distinctly demarcates superficial and deep cerebral drainage 60 

networks8, is sometimes connected by short anastomotic medullary veins and trans cerebral veins that 61 

link the pial and subependymal veins8. Collateral drainage is between these networks is limited. Moving 62 

inwards towards the ventricles, specific vein structures of the deep drainage system are classified by 4 63 

convergence zones11 (see figure 1 in Taoka et. al 201710 and for an overview of venous drainage in the 64 

cerebrum see the introduction of Khalatbari et al. 20219). Based on high-resolution T2* weighted 65 

imaging, it is possible to distinguish structural elements related to zones 2 through 4 (figure 1)8.  66 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.03.458842doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458842


The relationship between auto-regulatory control vessels and the venous structures that drain from 67 

associated tissues differs between the superficial and deep networks. The cortical and sub-cortical 68 

arterioles/capillaries run near their superficial draining veins/veinules12. This tight coupling is essential 69 

due to the high energy, and auto-regulatory demand of the neuronal tissue and also means that de-70 

oxyhemoglobin (dHb) mediated BOLD contrast changes in the cortex provide a relatively specific 71 

representation of local auto-regulatory control. It is also worth noting that cortical physiology leads to a 72 

several-fold increase in vascular density in superficial regions as compared to the deeper brain regions13, 73 

14. An additional consequence is that medullary veins draining the deep WM may pool blood from distal 74 

control vessels. In some cases, venous blood will traverse several zones of convergence before finally 75 

congregating at the subependymal veins.  76 

The deep venous architecture has two implications concerning the WM BOLD-CVR contrast. The first 77 

being that large vessel density increases when moving inwards towards the ventricles, and the second 78 

being that aggregation of dHb through convergence in deep medullary veins will lead to BOLD-CVR 79 

signal delays and/or dispersion. While the grey matter BOLD-CVR response represents a robust 80 

surrogate for CVR mediated blood flow changes, the white matter response is nuanced and reflects 81 

multi-component behavior rooted in the initial control vessel response (i.e. true CVR) and then the 82 

downstream pooling behavior of the blood. If this is the case, then it obliges extra consideration when 83 

attributing changes in WM BOLD-CVR response shape, magnitude, and rate as possible pathological 84 

mechanisms.  85 

To further investigate this notion, the vascular responses generated using hypercapnic-BOLD imaging 86 

were contextualized using high-resolution T2* weighted imaging at 7 tesla. In addition to standard CVR 87 

maps generated using a controlled CO2 stimulus, maps of hemodynamic lag, lag-corrected CVR, signal 88 

onset, and dispersion were created. Parameter maps were compared with minimum intensity 89 
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projections (MinIP) of venous structures derived from anatomical scans. This was driven by the 90 

hypothesis that differences in parametric response measures would spatially correlate with venous 91 

features described above. Finally, maps were registered to MNI space and correlated against a high-92 

resolution medullary vein frequency atlas15.  93 

METHODS 94 

This was a retrospective study in which a survey of the local imaging database identified datasets 95 

containing high-resolution dynamic BOLD imaging data (with consistent acquisition parameters) during 96 

which a controlled hypercapnic stimulus was administered. Further inclusion criteria were that 97 

participants also underwent a high-resolution T2* weighted anatomical scan such that comparisons 98 

could be made between hemodynamic parameter maps and deep white matter vasculature. A total of 8 99 

datasets were identified (average age 31 yrs., range 19-48 yrs., 4 females). Data was acquired with 100 

approval by the medical research ethics committee of University Medical Center Utrecht and written 101 

informed consent was obtained from all subjects. The experiments were performed according to the 102 

guidelines and regulations of the WMO (Wet Medisch Wetenschappelijk Onderzoek) and conforming to 103 

the declaration of Helsinki. All datasets have been used, at least in part, in previous publications16, 17. In 104 

this work, a series of new and original (re-)analyses were performed. 105 

Data Acquisition 106 

MRI acquisition was done using a Philips 7 tesla MRI scanner (Philips, Best, The Netherlands) using a 32 107 

channel receive coil in combination with a volume transmit coil (Nova Medical, Wilmington, MA, USA). 108 

Third-order image-based shimming was performed. Imaging data consisted of a high-resolution 3D 109 

multi-shot GE-EPI T2* weighted anatomical acquisition18 (flip angle: 24°, TR/TE: 77/27 ms, EPI factor: 13, 110 

SENSE factor RL/FH: 2.3/1, reconstructed resolution: 0.5 mm isotropic, FOV: 240 x 150 x 192 mm3, 111 

acquisition matrix: 480 x 381 x 300 mm3, scan duration: 385 s) and a dynamic Blood Oxygenation Level 112 
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Dependent (BOLD) acquisition (Multi-slice single-shot GE-EPI BOLD images (flip angle: 90°, TR/TE 113 

3000/25 ms, EPI/SENSE factor 47/3, reconstructed resolution: 1.5 x 1.5 mm2, slice thickness: 1.6 mm, 114 

FOV: 217.6 x 192 mm2, acquisition matrix: 133 x 120, slices: 43). Arterial gases were manipulated during 115 

the BOLD scan using a third-generation RespirAct system (Thornhill Medical, Toronto, Canada) in 116 

combination with a rebreathing facemask. Two hypercapnic respiratory protocols were implemented 117 

within the included datasets. In three datasets a single 120s hypercapnic stimulus was administered 118 

interleaved with 120 second baseline periods. The remaining datasets used a respiratory paradigm 119 

consisting of 90s baseline periods interleaved with 90s hypercapnic, hyperoxic and hypercapnic-120 

hyperoxic blocks, respectively. While it has been shown that the nature of the vasoactive stimulus can 121 

modulate hemodynamic parameter maps, this work aimed to evaluate the spatial distribution of various 122 

responses. Considering this, the inclusion of data derived using different hypercapnic paradigms was 123 

considered acceptable.  124 

Data Processing 125 

Initial processing of the BOLD data consisted of brain extraction (BET19), motion correction (MCFLIRT20), 126 

and segmentation (FAST21) using FSL (FMRIB, Oxford, UK)22. Motion corrected BOLD data was then 127 

‘scrubbed’ using functions included in the seeVR toolbox (seeVR, Utrecht, The Netherlands)23. This data 128 

cleaning step (outlined in figure 2) involved using a general linear model (GLM) to remove nuisance 129 

signals identified using motion parameters and their derivatives (time derivative, square), a linear drift 130 

term (1st order Legendre polynomial), and the individual PetO2 trace measured by the RespirAct. 131 

Regressing out the O2 information ensured that further analysis was weighted primarily towards the 132 

vasodilatory effect of the hypercapnic stimulus. The regression of the PetO2 information was not 133 

included for the three normoxic datasets in which only a hypercapnic stimulus was applied. The 134 

associated Pet CO2 trace was convolved with a series of six double-gamma HRF functions (see equation 135 
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1: α1 = 1, β1 = 1-6, α2 = 1, β2 = 1)24 with increasing dispersion properties to simulate the ‘spreading-out’ 136 

of the WM BOLD-CVR response to step-changes in arterial CO2
7; these convolved traces were then 137 

included in the GLM as explanatory variables. After running the GLM, the sum of the variance explained 138 

by the nuisance regressors was subtracted from the input data to generate the ‘cleaned’ BOLD data to 139 

be used for further analysis. 140 

Hemodynamic lag mapping 141 

Hemodynamic lag maps were generated based on a modified RAPIDTIDE approach25, 26 implemented in 142 

the seeVR toolbox. First, a manual bulk alignment between the PetCO2 trace and the average GM BOLD 143 

signal was performed. This manual approach minimized alignment errors that can occur due to noise or 144 

spike artifacts when using automated cross-correlation. The BOLD time-series data and PetCO2 traces 145 

were then linearly interpolated by a factor of 4 (effective TR: 0.75 s). The PetCO2 trace was then used as 146 

a seed to generate an optimized BOLD signal regressor26. GM voxels within a time-shift of -1 to 2 TRs (-3 147 

to 6 seconds) and showing a correlation of <0.7 were temporally aligned and principal component 148 

analysis (PCA) was applied to identify the components that explained at least 85% of the signal variance. 149 

These principle components were then extracted to form a new seed trace. This process was iterated 150 

until the root mean squared error (RMSE) between subsequent traces converged to less than 0.005. 151 

Next, the final trace (optimized BOLD regressor) was cross-correlated against each brain voxel and the 152 

temporal signal lag was determined based on the maximum correlation value. 153 

CVR mapping 154 

To generate the standard base CVR map (i.e. without accounting for WM hemodynamic lag), the bulk-155 

aligned PetCO2 trace was regressed against each voxel of the baseline-normalized cleaned BOLD data. 156 

The slope of this linear regression was taken as the CVR in units of percent signal change per mmHg 157 

increase in CO2. Corrected CVR maps were generated by shifting the bulk-aligned PetCO2 trace according 158 
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to the voxel-wise hemodynamic lag before performing the linear regression. Finally, a CVR difference 159 

map, from now on referred to as the ∆CVR map, was calculated by subtracting the base CVR map from 160 

the lag-corrected CVR map. Detailed reports of GM CVR from this (or a subset) data have been 161 

previously reported5, 16 162 

Onset and dispersion mapping 163 

The double gamma function used to produce onset and dispersion maps is expressed as: 164 

𝑠𝑠(𝑡𝑡) =  𝑡𝑡
(𝛼𝛼1−1)𝛽𝛽1

−𝛼𝛼1𝑒𝑒−𝛽𝛽1
−1𝑡𝑡

𝛾𝛾(𝛼𝛼1)
−  𝑡𝑡

𝛼𝛼2−1𝛽𝛽2
−𝛼𝛼2𝑒𝑒−𝛽𝛽2

−1𝑡𝑡

𝛿𝛿𝛾𝛾(𝛼𝛼2)               (1) 165 

Where the α1,2 parameters model a global signal shift or onset (α1 is set equal to α2)24
, β1 models the 166 

signal dispersion, β2 models the undershoot and δ modulates a vertical signal dispersion. For CO2 167 

mediated BOLD responses, no undershoot is expected and so β2 was set equal to 1. To limit vertical 168 

dispersion, the δ parameter was set to 1000; this also restricted the overall contribution of the second 169 

gamma function for simplicity. The range of α1,2 was set from 1-2 in increments of 0.2 and the range of 170 

β1 was set from 1 to 200 in increments of 2. 171 

Previously HRFs have been convolved with the PetCO2 trace to model the possible BOLD signal 172 

response7. However, it was apparent that the optimized BOLD signal regressor provided a more suitable 173 

archetype for the direct response of highly reactive vessels to changes in arterial CO2. Therefore, the 174 

optimized probe was taken as an initial reference point (instead of the PetCO2 trace) from which point 175 

the voxel-wise changes in onset or dispersion were investigated. In doing this, any modulations of the 176 

blood CO2 bolus (as defined by the PetCO2) occurring between the lungs and brain did not warrant 177 

consideration when modeling the brain response. This process generated a series of 600 HRF functions 178 

that were fit to each voxel time-series using a least-squares method. The onset and dispersion 179 
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parameters correspond to the HRF with the highest R2 were then chosen to generate onset and 180 

dispersion maps. Example HRF functions and their convolutions are provided in supplementary figure 1. 181 

Image processing 182 

Hemodynamic parameter maps were co-registered to the T2* anatomical image via the associated 183 

mean BOLD image using a linear transformation (FLIRT: 9 parameters, mutual information, trilinear 184 

interpolation). Processing of the T2* anatomical data consisted of brain extraction (BET) and 185 

segmentation with bias field removal (FAST). The bias-field removed T2* image was then used to 186 

generate a minimum intensity projection (MinIP) image to highlight venous structures. For this, the 187 

minimum intensity value through a stack of 8 slices above and below each slice (17 slices, 9.5mm slab) 188 

of interest was projected. It should be noted that using the bias-field corrected image made little 189 

difference as compared to using the original T2*.  190 

The T2* anatomical image was then registered to a 1mm T2-weighted version of the MNI152 atlas27 191 

using an affine registration with 12 degrees of freedom (FLIRT) followed by a non-linear registration 192 

(FNIRT28). Both the linear transformation matrix and non-linear warp fields were then applied to the 193 

T2*-registered hemodynamic parameter maps to bring them to MNI space. All maps were subsequently 194 

averaged such that the WM parameters could be evaluated in the context of medullar vein frequency 195 

using a high-resolution medullary vein atlas15. This atlas is expressed in units of ‘counts’ and is based on 196 

a dataset of 30 subjects scanned using the same 7 T scanner and a similar T2*-weighted sequence as the 197 

one used to acquire the data presented in this study. 198 

Statistical analysis 199 

Considering the aim to investigate the spatial correlation between white matter venous topology and 200 

hemodynamic responses, the distributions of MNI-registered parameter maps were compared with the 201 
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vessel frequency expressed in the medullary vein atlas. WM regions with significant medullary vein 202 

content were isolated in a 20mm slab beginning at the top of the ventricles (between slices 102-122 in 203 

the MNI volume; see supplementary figure 2). Heat-scatter plots of hemodynamic parameters versus 204 

vein frequency were generated and the Pearson correlation coefficient (rho, r) for overlapping voxels 205 

was determined. For correlation calculations involving the medullary atlas, a second atlas was generated 206 

in which all WM regions were included. This served as a proxy to evaluate relationships in voxels with 207 

presumably low vessel density (i.e. first to second zones of convergence; figure 1) that were not 208 

encompassed by the medullary mask. Correlation values below 0.39 were considered weak. Values from 209 

0.4-0.59 were considered moderate. Values from 0.6 and 0.79 were considered strong and values above 210 

0.8 were considered very strong. A supplementary correlation analysis was performed to examine the 211 

relationships between different hemodynamic parameters. 212 

RESULTS 213 

The average baseline PetCO2 value across all participants was approximately 34.8 mmHg. The average 214 

PetCO2 value during the hypercapnic stimulus across all participants was 44.4 mmHg (for the five 215 

participants that experienced two hypercapnic blocks, the average value of both was taken). The 216 

average increase in PetCO2 between baseline and stimulus periods across all participants was 217 

approximately 9.5 mmHg. 218 

Both hemodynamic lag analysis and signal dispersion modeling highlighted heterogeneous temporal 219 

responses in the WM in concordance with previous reports5-7. Visual inspection of single-subject data 220 

indicated higher lag and dispersion values localized centrally in regions above the ventricles and 221 

dispersing radially at points parallel to the ventricles (see figures 3 and 4). Moving towards the sub-222 

cortical white matter, lag and dispersion values became lower. This was also the case for the calculated 223 

∆CVR that generally associated spatially with the lag/dispersion. In the context of the venous topology, 224 
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∆CVR, lag, and dispersion were lower around the assumed first zone of convergence until the transition 225 

regions between the first and second zones. This is emphasized in figure 3A (white arrows), where both 226 

the base CVR and lag-corrected CVR remain low. When comparing these regions against the MinIP, 227 

there appear to be no large visible veins. 228 

Spatial patterns observed in single subject datasets remained consistent in the MNI-averaged maps 229 

(figure 5). The Pearson’s correlation value calculated between ∆CVR and the medullar frequency was 230 

0.52 (0.58 when including all WM voxels). When comparing hemodynamic lag, the correlation 231 

coefficient was 0.42 (0.54 when including all WM voxels). For the dispersion and onset parameters, the 232 

Pearson correlation values were 0.44 (0.53 when including all WM voxels) and 0.43 (0.52 when including 233 

all WM voxels), respectively. Therefore, all hemodynamic parameters considered showed a moderate 234 

correlation indicating positive relationships with the frequency of medullary veins (figure 5). 235 

A secondary analysis was performed to compare the relationships between various hemodynamic 236 

parameters within the region defined by the medullary atlas. The Pearson value when comparing the 237 

dispersion and ∆CVR parameters against the hemodynamic lag showed a strong correlation at 0.70 and 238 

0.75, respectively. Finally, the lag-corrected CVR showed a very strong correlation with the base CVR 239 

with a Pearson value of 0.94. This was expected, but highlights changes that can occur to CVR after 240 

correcting for lag. Scatter plots are provided in supplementary figure 2B.  241 

A two-tailed t-test performed for each correlation showed that all were significantly different from the 242 

null hypothesis of zero correlation (p-value > 0.01). 243 

DISCUSSION 244 

In this retrospective work, high-resolution T2*-weighted anatomical and functional imaging was applied 245 

to investigate the properties of the WM BOLD-CVR response to a vasoactive stimulus. The application of 246 
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advanced hemodynamic analysis provided parametric maps of voxel-wise CVR, hemodynamic lag, lag-247 

corrected CVR, signal onset and dispersion, and finally the ∆CVR. The main finding reported herein was 248 

that parametric maps showed moderate positive correlations with the frequency of the larger medullary 249 

veins responsible for draining much of the WM tissue. In light of the physical principles underpinning the 250 

BOLD signal contrast, this finding supports the hypothesis that drainage topology plays an important 251 

role in determining WM BOLD-CVR characteristics that might otherwise be attributed solely to auto-252 

regulatory dilation or constriction. 253 

For healthy subjects, CBF29 and CMRO2
30, 31 are considerably lower in WM as compared to GM. Several 254 

studies have reported non-significant differences in the oxygen extraction fraction (OEF) between WM 255 

and GM in healthy subjects (see meta-analysis presented in Fan et al. 2020 32) indicating a regional 256 

equilibrium between CBF and CMRO2. It follows that changes in venous hemoglobin saturation, along 257 

with venous CBV, will drive the WM BOLD signal contrast under hypercapnia. Moreover, as shown with 258 

ASL-based methods29, relatively low perfusion means that the WM BOLD contrast-to-noise (CNR; or 259 

detection sensitivity) is limited compared to GM, even at high magnetic field strength. While factors 260 

related to the true arterial response to CO2 (i.e. speed, flow distribution, CO2 sensitivity) will determine 261 

the venous hemodynamic input conditions, the accumulation of dHb in progressively larger collecting 262 

veins will modulate the WM BOLD-CVR response shape. A corollary is the impact of large draining veins 263 

that can reduce the specificity of cortical fMRI responses. Supplementary figure 3 provides an example 264 

of signal dispersion seen when comparing the total GM BOLD response to the response measured in a 265 

downstream region of the superior sagittal sinus. In the case of certain WM regions, large draining veins 266 

rather than control vessels may dominate response properties leading to ag and dispersion. This is partly 267 

due to due to the overall low vascular density in WM tissue. A conceptual explanation of how WM 268 

drainage properties influence the CVR response is shown in figure 6. 269 
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Progressive pooling of dHb as the blood drains through the venous tributaries towards the 270 

subependymal veins has two important consequences. First, the total amount of dHb increases as blood 271 

moves away from superficial WM (below the sub-cortical WM) towards the larger peri-ventricular 272 

medullary veins. In these central regions, both the blood volume fraction and total dHb concentration 273 

may evoke a stronger BOLD signal effect as increased CBF reduces the OEF at capillary beds. Second, as 274 

the venous blood drains, it moves away from the actual site of arterial reactivity leading to a potential 275 

delocalization of the CVR signal response. Particularly since intravenous signal contributions from large 276 

veins medullary can dominate the BOLD signal response at lower fields33. This effect can be exacerbated 277 

by partial volume effects due to large voxels sizes (~3 mm3) and large smoothing kernels (5-8mm2) that 278 

are typically applied in CVR studies using clinical 3T MRI systems. 279 

 In light of this new perspective, integrating knowledge of venous organization may aid in sharpening the 280 

application of CVR as a biomarker for diseases affecting the WM. Particularly in the case of medullary 281 

veins, whose characteristics have been shown to provide prognostic information in patients that have 282 

suffered from stroke34, and have been linked to a variety of disorders10. It is important to distinguish the 283 

absence of a BOLD-CVR response due to low perfusion or low blood volume from arterial aspects or 284 

actual impairments in the vascular ability to respond to a stimulus. Techniques to achieve might include 285 

scans that are sensitive to blood volume, or the rate-of-change in blood volume. For example, 286 

displacement encoding via stimulated echoes (DENSE)35, 36 MRI might reveal whether fast volume 287 

changes occur long before the presumably dispersed (or lagged) BOLD effects. To better understand 288 

possible large vein contributions, the acquisition of complimentary high-resolution anatomical T2*-289 

images or susceptibility-weighted images SWI is recommended. 290 

Limitations 291 
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The use of the HRF-convolved data probes (figure 2B) can aid in restricting the variance explained by 292 

nuisance signals. This analysis step was inspired by the approach of convolving a design matrix with an 293 

assumed HRF function when modeling stimulus-response in task-based fMRI. However, increasing the 294 

complexity of the GLM will influence the residual data used to generate hemodynamic maps (figure 2C). 295 

The same may hold for ambiguities related to the linear model used to account for possible drift in the 296 

MR signal and BOLD signal drift arising due to endogenous CO2 accumulation or increased minute 297 

ventilation. Correct nuisance signal regression is a subject of debate in the field of fMRI and remains an 298 

open question in the context of BOLD-CVR response to hypercapnia. One way to minimize potential 299 

errors in BOLD-CVR experiments is the inclusion of multiple hypercapnic periods in a run as presented by 300 

Poublanc et. al7 and as applied in five of the subjects in this study. Including multiple transitions can 301 

provide a means through which to ‘regularize’ the GLM fit and avoid mischaracterizing low CNR signals 302 

for excessively dispersed signals. Accordingly, the inclusion of two different CO2 breathing protocols in 303 

this study (one block versus two) may have increased the variance in the presented data.  304 

Another source of variance is related to the use of the medullary atlas. While this atlas was produced 305 

using the same MR system and a very similar acquisition sequence, it was not specifically generated 306 

using the datasets included in this study, nor was it created with the property to distinguish smaller 307 

vessels located around the first and second zones of convergence. Considering that the focus of this 308 

work was on the spatial relationship between hemodynamic patterns and venous topology, and since 309 

the amount of available data in this retrospective study was limited, this variation was accepted. 310 

Finally, as with cortical fMRI, acquisitions with higher spatial resolutions can reduce localization errors37 311 

related to the WM BOLD-CVR response that may be dominated by larger medullary draining veins. Ultra-312 

high field MR systems are appealing for this reason. For clinical MR systems, the loss in SNR can be 313 

mitigated by using longer TR and increasing the duration of hypercapnic periods for more signal 314 
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averaging. This approach will come at the expense of temporal fidelity, which may be recovered by using 315 

high acceleration factors (again, at the expense of SNR).  316 

Conclusion 317 

The confluence of arterial hemodynamics and BOLD signal characteristics weighted by venous 318 

architecture unrelated to smooth-muscle mediated dilation/contraction play a significant role in 319 

defining the WM BOLD-signal response to hypercapnia. This caveat should be taken into account when 320 

attributing diseases mechanisms and/or progression to presumed impaired WM BOLD-CVR.  321 
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Figure 1A: High-resolution T2*-weighted anatomical image of a representative subject. Based on this volume, a minimum 
intensity projection image (MinIP) is generated using 9.5mm slabs. The transverse and coronal MinIP images are shown in 
figure 1B and 1C, respectively. The inlay in 1C highlights the radial pattern of the large medullary veins. These veins fan outward 
from the ventricles to penetrate deeper white matter tissue. The expanded image in figure 1D highlights branching patterns 
that can be attributed to distinct convergence zones. As described by Okodura et al.8, zone 1 is characterized by the presence of 
superficial medullary veins and smaller branching patterns known as coat-rack and bamboo-branch unions. These structures 
are too fine to be resolved using MR imaging. The transition to zone 2 is mainly characterized by the candelabra structures 
created where laterally running tributaries converge with deeply running medullary veins. These deep medullary veins course 
through the third convergence zone to form palm-like unions with subependymal veins forming the fourth zone of convergence 
at the lateral ventricle. 
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Figure 2A: Occasionally motion parameters derived using intensity-based realignment methods can correlate with the 
hypercapnic task. This is in addition to subject motion related to hyperventilation or the transitions between baseline and 
hypercapnic breathing. In this case, highly correlated nuisance signals should not be included in the GLM since they will account 
for some of the desired signal responses. The average whole-brain signal is cross-correlated against the motion parameters and 
their derivatives. Parameters with an absolute correlation higher than 0.3 were rejected, while the remaining parameters are 
used for data scrubbing; Figure 2B: In 5 of 8 subjects, hyperoxic blocks were administered during the breathing protocol. In 
these datasets, the PetO2 traces were added as nuisance regressors to remove variance explained by the O2 challenge. A linear 
term was added to account for drift. The PetCO2 along with 6 HRF-convolved PetCO2 traces were included to provide a priori 
information regarding the vascular challenge; Figure 2C: nuisance regressors and data probes were used to explain the voxel-
wise BOLD responses. For each voxel, the sum of the variance explained by the nuisance regressors was removed from the 
original voxel signal. The resulting ‘cleaned’ data was then used for further hemodynamic analysis. 
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Figure 3A: the MinIP and related hemodynamic parameter maps for a representative subject (48yrs, female) undergoing the 
normoxic, single hypercapnic-block paradigm are shown. Increases in lag-corrected CVR spatially correlate with longer 
hemodynamic lag and higher signal dispersion. Moreover, a clear relationship between lag and dispersion can be seen, as 
expected. White arrows indicate low CVR regions that remain unaffected when correcting for signal lag. When comparing to the 
corresponding region in the MinIP, this area seems devoid of large vessels suggesting low BOLD CNR related to low blood 
volume; Figure 3B: an enlarged region of the left-posterior WM where spatial correlations between medullary vessels (left: 
MinIP) and various hemodynamic parameters can be inferred; Figure 3C: the normalized BOLD time-series calculated within 
several regions of interest defined by increasing lag (left) and dispersion (right) are shown with a GM time-series for reference 
(green). These time courses highlight the relationship between increasing temporal parameters and the shape of the BOLD-CVR 
response.  
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Figure 4: the MinIP and related hemodynamic parameter maps for a representative subject (19yrs, female) showing white 
matter lag, dispersion, and CVR difference maps. Spatial correlation between regions of temporally dispersed signals coincide 
with a larger magnitude in the corrected CVR. These are also regions with higher medullary vessel density as can be seen in the 
left inset.  
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Figure 5A: MNI-averaged (1 mm) hemodynamic parameter maps for all subjects showing ∆CVR, hemodynamic lag, and 
dispersion as well as the MNI-averaged medullar vein frequency atlas (bottom). Hemodynamic parameter maps were smoothed 
using a Gaussian kernel with a filter width of 5 voxels and an FWHM of 3mm; Figure 5B: heat-scatter plots showing the 
correlation between each parameter map with the medullar frequency map. A bin size of 50 was used and the color map 
represents the data counts for each bin. A depiction of the MNI slab included for correlation analysis along with heat-scatter 
plots comparing various hemodynamic parameters with one another are supplied in supplementary figure 2. 
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Figure 6A: A sagittal slice from a representative subject T2*-weighted image. The corresponding MinIP is shown on the right. 
The venous drainage system can be separated into superficial and deep drainage networks. The superficial network drains 
cortical blood towards the superior sagittal sinus while the deep system drains white matter blood via the subependymal veins. 
The degree of collateral drainage between superficial and deep venous networks remains generally unclear. Figure 6B: The 
deep drainage architecture may have implications on the WM BOLD-CVR response to hypercapnia. In this conceptual 
representation, three representative BOLD voxels are considered. The green voxel contains very little venous blood volume. 
Here, reactive WM capillary beds may not evoke a strong BOLD signal response mainly due to the low total dHb content. Blood 
from such regions at the WM periphery join via tributaries at the second convergence zone (orange voxel). Here, the venous 
blood volume fraction increases appreciably, setting up the possibility to evoke stronger BOLD signal contrast. A similar effect 
occurs around zone 3 where visibly large medullary vessels come together. Moving inwards towards the ventricles, the total 
venous volume and total dHb content increase considerably. The venous transit time along with the congregation of blood from 
distal regions will lead to signal delays and dispersion. These effects are underscored when looking at signal increases in CVR 
maps after correcting for hemodynamic lag (figure 5).  
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