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ABSTRACT 

Background: Hepatitis B virus (HBV), the main risk factor for hepatocellular carcinoma (HCC) 

development, integrates into the host genome, causing genetic instability, which may trigger 

malignancies to exhibit chronic DNA replication stress, providing exploitable therapeutic 

vulnerabilities. Therefore, customizing prognostication approach and expanding therapeutic 

options are of great clinical significance to HBV-associated HCCs. 

Methods: A robust machine-learning framework was designed to develop a DNA replication 

stress-related prognostic index (𝑃𝐼𝑅𝑆) based on 606 retrospectively collected HBV-associated 

HCC cases. Molecular profiles and drug response of HCC cell lines were leveraged to predict 

therapeutic targets and agents for patients with high mortality risk. 

Results: Compared with established population-based predictors, 𝑃𝐼𝑅𝑆  manifested superior 

performance for prognostic prediction in HBV-associated HCCs. Lower 𝑃𝐼𝑅𝑆  tightly associated 

with higher expression of HBV oncoproteins, activated immune/metabolism pathways and 

higher likelihood of responding to immunotherapy; while higher 𝑃𝐼𝑅𝑆  showed co-occurrence 

manner with elevated Ki-67 progression marker and cancer stemness, and significantly 

enriched in DNA replication stress, cell cycle pathways, chromatin remodeling regulons, and 

presented an ‘immune-cold’ phenotype with unfavorable clinical outcome. Through large-

scale in silico drug screening, four potential therapeutic targets (TOP2A, PRMT1, CSNK1D, and 

PPIH) and five agents including three topoisomerase inhibitors (teniposide, doxorubicin, and 

epirubicin) and two CDK inhibitors (JNJ-7706621 and PHA-793887) were identified for patients 

with high 𝑃𝐼𝑅𝑆. 

Conclusions: Overall, 𝑃𝐼𝑅𝑆   holds potential to improve the population-based therapeutic 

strategies in HCC and sheds new insight to the clinical management for those HBV carriers; 

current analytic framework provides a roadmap for the rational clinical development of 

personalized treatment. 
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stratification; precision oncology 
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INTRODUCTION 

Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths, 

and hepatitis B virus (HBV) and hepatitis C virus (HCV) infection are the major risk factors for 

HCC development 1. Unlike HCV, an RNA virus which never integrates into the host genome, 

HBV is a small DNA virus who frequently integrates into the genome of the host hepatic cells 

and progressively contributes to hepatocarcinogenesis. However, the precise mechanism by 

which it causes HCC remains unknown and the optimal therapeutic regimens for treating HBV-

associated HCC have not yet been established 2, 3. Most importantly, HBV carriers have a worse 

prognosis, with relative risks of 6.27 and 2.2 for mortality of HCC and chronic liver disease, 

respectively 4, 5. Nevertheless, most prognostic predictors were developed based on the entire 

HCC population without exploring tailored clinical management for patients with higher risk 6-

9, which is insufficient for precise prognostic stratifications and medication. Therefore, an 

urgent need is pursued to tailor effective management for HBV-associated HCC. 

 

Integrated HBV DNA in the host genome triggers genotoxicity and genome instability, leading 

to selective advantages for tumour progression 10. Of note, genome stability is carefully 

surveilled by DNA damage response (DDR), inducing DNA repair and cell-cycle checkpoints 

that stall the replication of damaged cells, and often causes replication stress, which in turn 

exacerbates genome instability and therefore potentiates oncogenic transformation 11. There 

is a growing compendium of novel therapeutics that target DDR and cell cycles 12, 13, and Dreyer 

et al. recently reported that high replication stress offered therapeutic opportunities for 

pancreatic cancer 14. Nevertheless, evidence is scarce regarding how to exploit DNA replication 

stress for HCC, especially for those HBV carriers who were considered to have higher sensitive 

to DNA damage 15. 

 

To address above issues, for the first time to our best knowledge, we developed a robust DNA 

replication stress-related prognostic index ( 𝑃𝐼𝑅𝑆  ) for HBV-associated HCC and predicted 

potential therapeutic targets as well as agents for those patients with high mortality risk. 

Specifically, 𝑃𝐼𝑅𝑆   exhibited superior predictive performance in 606 cases across four 

independent cohorts comparing to previously established population-based signatures. 
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Furthermore, four potential therapeutic targets (i.e., TOP2A, PRMT1, CSNK1D, and PPIH) and 

five agents including three topoisomerase inhibitors (i.e., teniposide, doxorubicin, and 

epirubicin) and two CDK inhibitors (i.e., JNJ-7706621 and PHA-793887) were identified for 

patients with high 𝑃𝐼𝑅𝑆, which holds potential to improve the population-based therapeutic 

strategies in HCC and sheds new insight to the clinical management for those HBV carriers. 

 

MATERIALS AND METHODS 

RNA-sequencing cohort 

Molecular profiles of patients diagnosed with HCC were collected from the Cancer Genome 

Atlas under project of TCGA-LIHC. The raw paired-end reads FASTQ files were acquired for 

transcriptome quantification and virus detection. DNA methylation matrix was obtained from 

XENA archive (https://xenabrowser.net/). Segment of copy number was downloaded from 

FireBrowse (http://firebrowse.org/). Somatic mutations, clinicopathological characteristics, 

and clinical outcome were retrieved from cBioPortal (https://www.cbioportal.org/). A total of 

359 primary tumors and 50 adjacent normal samples shared with multi-omics profiles and 

survival information were identified. Another RNA-Seq cohort, CN-LIHC, includes 318 paired 

tumor and normal liver tissues from 159 Chinese HCC patients infected by HBV were also 

retrieved from the literature 16; transcriptome expression measured as the number of 

fragments per kilobase million (FPKM), somatic mutation, gene-level proteomic data and 

clinical outcome were collected. Additionally, the liver cancer-RIKEN (LIRI-JP) project from the 

International Cancer Genome Consortium (ICGC) portal (https://dcc.icgc.org/) with 216 HCCs 

was downloaded for clinical information, transcriptome FPKM value and somatic mutations; 

Hepatitis B antigen (HBAg) status for each donor was retrieved from the literature 17, leading 

to 62 HBV-associated HCCs for LIRI-JP cohort.  

 

RNA analysis  

Data preprocessing 

The raw paired-end reads were aligned to GRCh37/hg19 human reference genome using 

MOSAIK. The mapped reads in genomic features were counted using HTSeq package and 

annotated in GENCODE27 to generate transcriptome raw counts. We chose the “union” mode 
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of HTSeq so as to overcome the non-strand-specific RNA sequencing issue in kit used by TCGA. 

We then converted raw counts to FPKM and further into transcripts per kilobase million (TPM) 

values, signal of which were more similar to those quantified from microarray and more 

comparable between cases 18. 

 

Virus detection 

We leveraged VirusSeq to align the RNA-Seq libraries to both human and HBV genomes to 

detect HBV and quantify viral oncoprotein expression 19. At least one of four oncoproteins, i.e., 

HBVgp3-X, HBVgp2-S, HBVgp2-pre-S1/S2, and HBVgp4-c was identified in 103 out of 359 HCCs 

in TCGA-LIHC cohort. According to our previous study 20, we established a new and 

comprehensive variable to explain the original viral expression by principal component 

analysis (PCA). Specifically, we developed 𝐻𝐵𝑉𝑝𝑐𝑎  which considered the first and second PCs 

that explained 80.1% and 15.3% of the variation, respectively. Mathematically, let 𝐸𝑖𝑗  

represents log2(FPKM + 1) of oncoprotein 𝑗 in sample 𝑖, and 𝐶𝑗𝑘  denotes the corresponding 

coefficient of oncoprotein (𝐻𝐵𝑉𝑗 , 𝑗 ∈ {1,2,3,4} ) for principal component 𝑘  (𝑘 ∈ {1,2} ). A 

matrix ℳ was calculated as below: 

ℳ = [

𝐸11 ⋯ 𝐸1𝑗

⋮ ⋱ ⋮
𝐸𝑖1 ⋯ 𝐸𝑖𝑗

] [

𝐶11 ⋯ 𝐶1𝑘

⋮ ⋱ ⋮
𝐶𝑗1 ⋯ 𝐶𝑗𝑘

] =

[
 
 
 
 
 ∑ 𝐸1𝑗𝐶𝑗1

4

𝑗=1
∑ 𝐸1𝑗𝐶𝑗𝑘

4

𝑗=1

⋮ ⋮

∑ 𝐸𝑖𝑗𝐶𝑗1

4

𝑗=1
∑ 𝐸𝑖𝑗𝐶𝑗𝑘

4

𝑗=1 ]
 
 
 
 
 

 

where 𝑖 = 1,… ,103; 𝑗 = 1,2,3,4; 𝑘 = 1,2 . We took the row sum of ℳ  and derived the 

𝐻𝐵𝑉𝑝𝑐𝑎  as the following: 

𝐻𝐵𝑉𝑝𝑐𝑎 =

(
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Microarray cohorts 

We retrospectively collected the gene expression profiles of frozen tumor tissue samples of 

HCC with available HBV infection status from two microarray cohorts, including GSE14520 and 

GSE121248. Specifically, 212 out of 221 HCC samples from GSE14520 showed active viral 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.04.458962doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.04.458962


replication chronic carrier or chronic carrier of HBV, and all 70 cases in GSE121248 carried 

chronic HBV. The OS information for GSE14520 cohort was retrieved from the literature 21.  

 

Batch effect removal 

The potential cross-cohort batch effect was removed by removeBatchEffect() function using R 

package “limma” 22, and PCA was harnessed to evaluate whether batch effect was removed 

appropriately (Figure S1a-b).  

 

Cancer cell lines 

Expression profile, somatic mutation, and description of human cancer cell lines (CCLs) were 

downloaded from the dependency map (DepMap) portal (https://depmap.org/portal/) 23. The 

CERES scores for 17,645 genes in 990 CCLs were acquired from DepMap (CRISPR [Avana] Public 

21Q2). CERES computationally estimated gene-dependency from CRISPR–Cas9 essentiality 

screens while adjusting the copy number-specific effect 24. Drug response of CCLs were 

obtained from PRISM Repurposing Primary Screen (19Q4) which archived in DepMap. The 

primary PRISM Repurposing dataset records pooled-cell line chemical-perturbation viability 

screens for 4,518 compounds against 578 CCLs; the secondary dataset records pooled-cell line 

chemical-perturbation viability screens for 1,448 compounds screened against 489 CCLs 

undergoing eight dose points: 0.00061, 0.00244, 0.00977, 0.0391, 0.15625, 0.625, 2.5, and 

10uM. The sensitivity to specific compound was measured as log2FoldChange at replicate level 

for data relative by negative-control wells (dimethyl sulfoxide, DMSO) from the same CCL on 

the same detection plate; replicate collapsed log2FoldChange values relative to DMSO were 

corrected for experimental confounders using ComBat. Additionally, dose-response curves 

were fit to the secondary replicate-level viability data with the measurement of the area under 

the dose response curve (AUC); lower log2FoldChange or AUC indicate increased sensitivity to 

treatment. Generally, we filtered out 24 CCLs with primary HCC (one HBs-antigen carrier [ACH-

000475]), namely, HCC cell lines (HCCLs). After sample match according to different analytic 

purpose, we obtained 22 HCCLs shared with expression profile, 20 HCCLs shared with CERES 

scores, 19 HCCLs shared with primary drug sensitivity, 14 HCCLs shared with secondary dose-

finding, and 17 HCCLs shared with dose response curves. 
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Development of a prognostic replication stress-related signature 

We retrieved 21 replication stress signatures from the literature 14. To develop robust 

prognostic signature in HBV-associated HCC, we preliminary screened prognostic replication 

stress-related genes in TCGA-LIHC training cohort via univariate Cox regression (P<0.01) and a 

bootstrap approach was leveraged to test the robustness of prognostic value. Specifically, 80% 

of samples were randomly extracted without replacement from the entire cohort and 

univariate analysis was performed to these subsets. Such bootstrap process was repeated 

1,000 times and genes that were incorporated in more than 800 times of the resampling were 

kept. We then applied random survival forest (RSF) by using R package “randomForestSRC” to 

further narrow down the prognostic gene list. In this analysis, 1,000 trees were built using a 

log-rank score splitting algorithm and features were selected by variable hunting procedure 

with variable importance. The RSF was independently repeated 1,000 times and genes 

combination with largest concordance index (C-index) were considered as optimal signature 

25. Consequently, 𝑃𝐼𝑅𝑆   was then calculated individually via a linear combination of the 

expression of selected genes, weighted by the corresponding Cox regression derived 

coefficients. Mathematically, let 𝑒𝑖𝑗  represents the expression of specific replication-stress 

related gene 𝑖 in sample 𝑗, and 𝛽𝑖  represents the regression coefficient for gene 𝑖; let 𝛸 =

(𝑥1, … , 𝑥𝑗)
T

 denotes the original 𝑃𝐼𝑅𝑆  as the following: 

𝛸 = [

𝑥1

⋮
𝑥𝑗

] = [

𝑒11 ⋯ 𝑒𝑖1

⋮ ⋱ ⋮
𝑒1𝑗 ⋯ 𝑒𝑖𝑗

] [
𝛽1

⋮
𝛽𝑖

] , 𝑖 = 1,… ,9, 𝑗 = 1,… , 𝑛 

Original 𝑃𝐼𝑅𝑆  was further min-max normalized and times 10 to ensure comparability among 

different cohorts as the following: 

𝑃𝐼𝑅𝑆 =
𝛸 − 𝑚𝑖𝑛{𝛸}

𝑚𝑎𝑥{𝛸} − 𝑚𝑖𝑛{𝛸}
× 10 

 

Existing prognostic signatures and classifications for comparison 

We retrospectively collected four published HCC prognostic signatures for comparison, 

including Li et al.’s three-gene signature 6, Yan et al.’s four-gene signature 7, Hu et al.’s five-

gene signature 8, and Chen et al.’s nine-gene-pair signature 9; genes in Hu et al.’s signature 
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failed to be fully matched in LIRI-JP or GSE14520 cohort. To assess the efficiency and 

robustness of 𝑃𝐼𝑅𝑆   in survival prediction, we randomly resampled 80% of the cases from 

TCGA-LIHC, CN-LIHC, LIRI-JP and GSE14520 cohorts for 10,000 times; prognostic indexes were 

calculating by multiplying gene expression values through their corresponding reported 

coefficients and summing these values, and the overall C-index was further calculated for 

comparison. Previously published molecular classifications of HCC, including Boyault’s 

classification 26, Chiang’s classification 27, Hoshida’s classification 28, and Désert’s classification 

29, were also predicted through nearest template prediction by using R package “CMScaller” 

30. 

 

Bioinformatics analyses 

Differential expression analyses were conducted using R package “limma” 22, and a meta-

analysis using random effect model (REM) was harnessed to obtain a comprehensive 

landscape of expression pattern across different cohorts 31.  

 

To gain biological understanding of 𝑃𝐼𝑅𝑆  , we conducted transcriptome-based pathway 

analysis (Pathifier) and proteome-based gene set enrichment analysis (GSEA) with background 

of hallmark gene sets (h.all.v7.4.symbols, https://www.gsea-msigdb.org/gsea/msigdb/) 32. 

Specifically, Pathifier was performed using R package “pathifier” with input of expression 

profiles from HBV-associated tumors and adjacent normal samples in TCGA-LIHC and CN-LIHC 

cohorts, and pathway deregulation score (PDS) which could exhibit the degree of deregulation 

of certain biological process was calculated. GSEA was performed on CN-LIHC cohort through 

R package “clusterProfiler” 33 (P<0.05 and FDR<0.25) where input genes were ranked in 

descending order according to the Pearson’s correlation coefficient values derived between 

gene-level proteomic profile and 𝑃𝐼𝑅𝑆.  

 

Differential methylation probes located at promoter CGIs were identified by R package 

“ChAMP” 34, and probes that were hypermethylated (β>0.2) in any adjacent normal tissues 

were removed beforehand.  
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Individual fraction of copy number-altered genome (FGA), including gained (FGG) and lost (FGL) 

for TCGA-LIHC cohort was calculated as follows: 

𝑅 = 𝑐𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 2⁄  

𝐹𝐺𝐴 = 𝐵𝑟 𝐵⁄  

FGA is the genome fraction with log2(copy number)>0.3 versus the genome with copy number 

profiled; 𝐵𝑟  represents the bases number in segments with absolute log2 𝑅 >0.3 and 𝐵 

denotes the bases number in all segments 35. 

 

As previously described in our study 36, the R package “RTN” was used to reconstruct 

transcriptional regulons based on 71 cancerous chromatin remodelling regulators 37. A 

compendium of gene list consisted of 364 genes representing 24 microenvironment cell types 

was also retrieved from our previous study. Additionally, we collected 46 metabolism-relevant 

gene signatures from the literature 38. Gene set variation analysis (GSVA) was harnessed to 

quantify enrichment level for these gene sets through R package “GSVA”. The mRNA 

expression-based stemness index (mRNAsi) was calculated by a trained stemness index model 

based on one-class logistic regression machine-learning approach from single-sample 

perspective 39. 

 

Connectivity Map analysis and therapeutic response estimation 

The Connectivity Map (CMap, https://clue.io/query) involves more than 7,000 gene 

expression profiles for approximate 1,300 compounds and assists discovering relationships 

between the diseases, cell physiology, and therapeutics 40. Therefore, potential therapeutic 

drugs for HBV-associated HCCs with high 𝑃𝐼𝑅𝑆  were considered for those compounds with 

scores less than -95 (a negative score suggests a potential therapeutic effect). To validate the 

clinical implication, we employed R package “pRRophetic” to estimate the chemotherapeutic 

response for each HBV-associated HCC based on the drug sensitivity and phenotype data from 

PRISM as training cohort, and expression profiles of clinical tumors as testing cohort; AUC of 

each clinical tumor treated with specific compound was predicted by ridge regression, and 10-

fold cross-validation was leveraged to evaluate predictive accuracy 41. 
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Statistical analyses 

All statistical analyses were conducted by R (Version: 4.0.2) using Fisher’s exact test for 

categorical data, Mann-Whitney U test for continuous data, and permutation test for the 

independence of two sets of variables measured on different scales. Correlation was measured 

via Pearson’s or Spearman’s coefficient under specified circumstances. Kaplan-Meier curves 

with log-rank tests were generated for survival rates comparison. Cox proportional hazard 

regression was used to estimate the hazard ratios (HRs) with 95% confidence intervals (95% 

CI). The prediction efficiency for 1-, 3- and 5-year survival was examined using receiver 

operating characteristic curve (ROC) by R package “survivalROC”. Model C-index was 

computed using R package “survcomp”. The restricted time survival (RMS) time ratio was 

estimated using R package “survRM2”. For all statistical analyses, a nominal P<0.05 was 

considered statistically significant. 

 

RESULTS 

Study design overview 

A total of 606 HBV-associated HCC cases from five clinical cohorts were included. Of these 

patients, 536 patients have complete clinical follow-up. Detailed information was summarized 

in Table S1, and the entire study design was delineate in Figure 1.  

 

Development of nine replication stress-related gene-based 𝑷𝑰𝑹𝑺 in HBV-associated HCCs 

Based on genes within 21 replication stress signatures, we preliminarily identified 302 

replication stress-related genes that were tightly associated with OS (P<0.01). To enhance 

prognostic robustness, bootstrap approach was conducted, resulting in 69 genes (P<0.01 in 

more than 80% resampling processes). Subsequently, RSF further narrowed down the list to a 

final panel of nine genes with the largest C-index (Figure S2, Table S2). A score of 𝑃𝐼𝑅𝑆  was 

then calculated individually, ranging from 0 to 10. We developed the R package “hccPIRS” to 

calculate 𝑃𝐼𝑅𝑆  from a single-sample perspective, which is documented and freely available at 

https://github.com/xlucpu/hccPIRS. 

 

Evaluation and validation of prognostic potentiality of 𝑷𝑰𝑹𝑺 
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We reasoned that the area under the ROC curves were eligible (Figure 2a-d) given the time-

dependent ROC at 1-, 3- and 5-year survival, the. Univariate and multivariate Cox regression 

were then conducted to assess the independent prognostic value of 𝑃𝐼𝑅𝑆. Specifically, 𝑃𝐼𝑅𝑆  

combined with those significant clinical variables and frequently mutated genes (i.e., TP53 and 

CTNNB1) in univariate analysis (P<0.05) were considered to construct a multivariate model 

(Figure 2e). In this manner, we found that 𝑃𝐼𝑅𝑆  remained an independent prognostic factor 

after adjusting for other variables in TCGA-LIHC (HR: 1.25, 95% CI: 1.01-1.48, P=0.01), CN-LIHC 

(HR: 1.23, 95% CI: 1.07-1.43, P=0.005), GSE14520 cohorts (HR: 1.14, 95% CI: 1.02-1.27, 

P=0.024), but did not reach significance in LIRI-JP cohort which probably due to a relative small 

sample size (HR: 1.16, P>0.05). Additionally, 𝑃𝐼𝑅𝑆  significantly stratified patients into low- and 

high-risk groups (𝑃𝐼𝐿𝑅𝑆  and 𝑃𝐼𝐻𝑅𝑆) according to the up-tertile cut-off in TCGA-LIHC (HR: 5.07, 

95% CI: 2.43-10.6, P<0.001; Figure 2f, Figure S3a), CN-LIHC (HR: 3.18, 95% CI: 1.87-5.38, 

P<0.001; Figure 2g, Figure S3b), LIRI-JP (HR: 3.96, 95% CI: 1.15-13.6, P=0.018; Figure 2h, Figure 

S3c) and GSE14520 (HR: 2.13, 95% CI: 1.38-3.3, P<0.001; Figure 2i, Figure S3d) cohorts; 

expression landscape of the nine genes was also validated in GSE121248 cohort (Figure S3e). 

The ratios of RMS ranging from 0.54 to 0.78 were observed in different cohorts (Table S3).  

 

To test the universal prognostic value of 𝑃𝐼𝑅𝑆, a general cut-off of 5.6 was determined using 

the up-tertile 𝑃𝐼𝑅𝑆  among 606 HBV-associated HCCs. Using this cut-off, four cohorts were re-

separated into 𝑃𝐼𝐿𝑅𝑆  * and 𝑃𝐼𝐻𝑅𝑆  * groups, and a strong association existed between the 

general cutoff-based new groups and cohort-specific cutoff-based groups (P<0.001; Figure 

S4a), implying the universal applicability of 𝑃𝐼𝑅𝑆   in different cohorts/sequencing platform 

(Figure S4b). Consistently, the 𝑃𝐼𝐻𝑅𝑆* groups presented with significantly poorer OS than the 

matched 𝑃𝐼𝐿𝑅𝑆* groups (all, P < 0.05; Figure S4c-f). 

 

We then compared 𝑃𝐼𝑅𝑆   with other prognostic signatures in HCC. After 10,000 times of 

resampling, 𝑃𝐼𝑅𝑆   showed comparable predictive performance as compared to other 

signatures in TCGA-LIHC cohort, while demonstrated comparable or superior performance in 

other HCC cohorts. Additionally, 𝑃𝐼𝑅𝑆   maintained stable predictive performance across 

different cohorts (all, C-index>0.6), while other signature lost power in at least one cohort 
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(Figure S5, Table S4).  

 

Association between 𝑷𝑰𝑹𝑺  and replication stress signatures and chromatin remodeling 

regulons 

We manifested that 𝑃𝐼𝐻𝑅𝑆   in TCGA-LIHC cohort showed significantly activated replication 

stress signatures at transcriptome-level (Figure S6). To further investigate transcriptomic 

differences, potential cancerous chromatin remodelling regulators were analyzed, reinforcing 

the biological pertinency of the up-tertile cutoff due to the remarkably shifted regulon activity 

pattern (Figure S6). Chromatin remodeling-associated regulon activity highlighted other 

possible differential regulatory schemas, suggesting that transcriptional networks driven by 

epigenome might be differentiators of great importance. Differential methylation analysis 

might further sustain the potential epigenetic differences between 𝑃𝐼𝐻𝑅𝑆   and 𝑃𝐼𝐿𝑅𝑆  

because 𝑃𝐼𝐻𝑅𝑆  harbored more hypermethylated promoters than 𝑃𝐼𝐿𝑅𝑆  (2,867 vs. 136, FDR 

< 0.05; Table S5). 

 

Investigation of 𝑷𝑰𝑹𝑺 associated clinical characteristics and biological processes 

Considering that both TCGA-LIHC and CN-LIHC cohorts provide detailed clinicopathological 

information, we therefore investigated the association between 𝑃𝐼𝑅𝑆  with clinical variables. 

Basically, higher 𝑃𝐼𝑅𝑆   was tightly associated with higher alpha-fetoprotein (AFP) level and 

more aggressive clinical stage systems, including pathological stage and Barcelona Clinic Liver 

Cancer (BCLC) staging systems (Figure 3a, Table S6-7). Interestingly, we observed a mild and 

negative correlation between expression of oncoproteins HBVgp2-S (R = -0.24, P=0.015) and 

HBVgp3X (R = -0.28, P=0.005) with 𝑃𝐼𝑅𝑆, as well as the 𝐻𝐵𝑉𝑝𝑐𝑎  in TCGA-LIHC cohort (R = -0.2, 

P=0.036; Figure S7). 

 

To investigate biological relevance of 𝑃𝐼𝑅𝑆  , we first quantified deregulation of cancer 

hallmarks through transcriptome-based Pathifier analysis based on TCGA-LIHC and CN-LICH 

cohorts considering their available normal samples. We found that almost all the hallmarks 

presented a significantly elevated degree of deregulation as 𝑃𝐼𝑅𝑆  increased (Figure 3). Given 

that Pathifier did not specify the deregulation direction, we then performed gene-level protein 
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abundance-based GSEA in CN-LIHC cohort; the results indicated that DDR-relevant and 

proliferation-related hallmarks were significantly upregulated as 𝑃𝐼𝑅𝑆   increased, including 

G2-M checkpoint, E2F and MYC targets (Figure 3). Moreover, several metabolism-related 

processes were significantly activated as 𝑃𝐼𝑅𝑆  decreased, including glycolysis and oxidative 

phosphorylation (Figure 3). To validate the 𝑃𝐼𝑅𝑆-relevant biological process across different 

cohorts, we conducted a REM meta-analysis based on differential expression between 𝑃𝐼𝐻𝑅𝑆  

and 𝑃𝐼𝐿𝑅𝑆  tumors in five cohorts (Figure S8a). We then performed transcriptome-based GSEA 

using pre-ranked gene list according to summary fold change, results of which verified the 

robustness of underlying biology of 𝑃𝐼𝑅𝑆  (Figure S8b). 

 

Lower 𝑷𝑰𝑹𝑺  tightly associated with activated immune/metabolism pathways and higher 

likelihood of responding to immunotherapy 

Among 606 cases, Désert’s ECM/STEM and Boyault’s G3 subtype showed significantly higher 

𝑃𝐼𝑅𝑆   comparing other subtypes (both, P<0.001), which consistently mirrored the frequent 

TP53 mutation as 𝑃𝐼𝑅𝑆  increased (P<0.001; Figure 4a-b). Additionally, Désert’s periportal and 

Hoshida’s S3 subtype presented with significantly lower 𝑃𝐼𝑅𝑆   as compared to other 

categories within the corresponding classification system (both, P<0.001; Figure 4b). 

 

Our previous study demonstrated that highly expressed human papillomavirus in cervical 

squamous cell carcinoma may stimulate the inflammatory/immune response of the host, 

leading to favorable prognosis 20; we therefore questioned whether this situation could be 

mirrored in HBV-associated HCC cases. We then quantified the infiltration level of 24 tumor 

microenvironment immune cells among 606 HCCs, and, strikingly, we found a globally 

activated immunocyte infiltration in 𝑃𝐼𝐿𝑅𝑆* group (Figure 4a, Figure S9a), which motivated us 

to investigate whether lower 𝑃𝐼𝑅𝑆   was associated with higher likelihood of responding to 

immunotherapy. Considering that immune checkpoint inhibitors are not yet approved for HCC 

management by regulatory agencies, we therefore estimated the TIDE prediction score which 

represents the potential of tumor immune invasion (higher value indicates less likely to benefit 

from anti-PD1/CTLA4). We revealed that 𝑃𝐼𝐿𝑅𝑆  * group contained a significant higher 

proportion of TIDE-predicted responder than 𝑃𝐼𝐻𝑅𝑆* group (P<0.001; Figure 4a). Additionally, 
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𝑃𝐼𝑅𝑆   showed significant and positive correlation with TIDE prediction score in all five HCC 

cohorts, (Figure 4c), suggesting that HBV-associated HCC patients with lower 𝑃𝐼𝑅𝑆   could 

possibly respond to immune checkpoint inhibitors.  

 

Additionally, the cancerous genomic landscape has been manifested being related to anti-

tumour immunity; for instance, presence of neoantigen triggers T-cell responses 42, whereas 

aneuploidy may cause immune evasion and attenuation of immunotherapy response 43. In this 

context, we investigated TCGA-LIHC cohort and found 𝑃𝐼𝑅𝑆   showed strong and negative 

correlation with the number of predicted neoantigen (R=-0.38, P=0.027; Figure S9b) while 

positively correlated with number of broad-level deletion (R=0.44, P<0.001; Figure S9c) and 

FGL (R=0.28, P=0.005; Figure S9d); no statistical significance was obervsed regarding FGG or 

broad-level amplification (both, P>0.25, not shown). 

 

Considering the inducement of the non-infiltrated phenotype in 𝑃𝐼𝐻𝑅𝑆* group, a recent study 

reported that the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) 

contributes to an “immune-cold” phenotype by inducing COX2/PGE2 and inhibiting the DNA-

sensing innate immune response 44; NRF2 also accumulated in the nucleus and formed foci at 

DNA damage sites, thus facilitating DDR and DNA repair 45. Therefore, we investigated the 

expression of NRF2 and COX2 of three cohorts (i.e., TCGA-LIHC, CN-LIHC, and GSE121248) in 

which both genes are matchable. We found that 𝑃𝐼𝐻𝑅𝑆  groups showed significantly higher 

expression of NRF2 and its downstream marker COX2 in TCGA-LIHC (P=0.009 for NRF2, P=0.001 

for COX2; Figure S9e) and CN-LIHC cohorts (P<0.001 for NRF2, P<0.001 for COX2; Figure S9f); 

we did not observe a statistical significance of NRF2 in GSE121248 cohort (P=0.15, not shown), 

COX2 was dramatically upregulated in 𝑃𝐼𝐻𝑅𝑆  group (P=0.042; Figure S9g), though. 

 

As we have already shown that metabolic pathways could be suppressed with increasing 𝑃𝐼𝑅𝑆, 

we then investigated the metabolic landscape among 606 HCCs. As expected, patients 

belonging to 𝑃𝐼𝐿𝑅𝑆* presented with significant activation of metabolism relevant signatures, 

including amino acid metabolism relevant signatures, lipid metabolism relevant signatures, 

and drug metabolism relevant signatures; while only several metabolic pathways were 
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enriched in 𝑃𝐼𝐻𝑅𝑆* group (Figure 4a, Figure S9h). The activation of metabolic pathways and 

enrichment of periportal HCC subtype indicated that HCC cases in 𝑃𝐼𝐿𝑅𝑆* group preserve the 

default metabolic program (e.g., gluconeogenesis, amino acid catabolism, and urea cycle) of 

normal liver and are well-differentiate and non-proliferative, which may synergistically 

contribute to a favorable prognosis. 

 

We verified the non-proliferative nature of tumors with lower 𝑃𝐼𝑅𝑆  due to their significant 

lower expression of the proliferation marker—Ki-67 (all, P<0.001; Figure S10a). Additionally, 

we found that 𝑃𝐼𝑅𝑆   showed strongly positive correlation with mRNAsi scores (R=0.45, 

P<0.001; Figure S10b-c), which indicated patients with high 𝑃𝐼𝑅𝑆   might resistant to 

conventional chemotherapy and radiation therapy 39, thereby emphasizing the essentiality of 

tailoring therapeutic strategies for patients with high risk. 

 

Identification of potential drug targets for HBV-associated HCCs with high 𝑷𝑰𝑹𝑺 

Proteins that are strongly positively correlated with high 𝑃𝐼𝑅𝑆  may hold potential therapeutic 

implications for a subset of HBV-associated HCCs under high mortality risk. Unfortunately, 

most human proteins currently lack active binding sites for small molecule compounds, which 

impedes them from becoming potent drug targets. Thus, using the target information of 

thousands of compounds 25, a total of 1,382 drug targets corresponding to 6,706 chemical 

compounds were screened through a two-step analysis (Table S8). Specifically, we first 

conducted Pearson’s correlation between the transcriptome expression of target (gene) and 

𝑃𝐼𝑅𝑆   in TCGA-LIHC and CN-LIHC cohorts, respectively. Totally 369 common genes with 

correlation coefficient >0.3 (P<0.05) was considered as 𝑃𝐼𝑅𝑆-related drug targets (Figure 5a, 

Table S9). Subsequently, 𝑃𝐼𝑅𝑆   was further calculated for each HCCL, and Spearman’s 

correlation analysis was performed between CERES and 𝑃𝐼𝑅𝑆  of HCCLs (Figure 5b, Table S10). 

Given that  a lower CERES score indicates a higher likelihood that the gene is essential in cell 

growth and survival, a 𝑃𝐼𝑅𝑆-related gene was considered as disease progression-dependent 

drug target if its correlation coefficient <-0.3 (P<0.05). In this manner, 11 genes were identified, 

containing TOP2A, PRMT1, EGLN3, CSF1, CSNK1D, MMP14, MAP3K9, PPIH, SPTLC2, UBE2N, 

and PRMT3. Of note, genes of EGLN3, MMP14, MAP3K9, and PRMT3 had averaged CERES 
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scores greater than zero (Figure 5b), suggesting their less fundamental nature in HCC 

development. We further investigated the remaining seven genes for their protein abundance 

using CN-LIHC cohort, and TOP2A (R=0.78), PRMT1 (R=0.45), CSNK1D (R=0.23), and PPIH 

(R=0.35) might be potentially druggable considering their significant and positive correlation 

with 𝑃𝐼𝑅𝑆   (all, P<0.05; Figure 5c). The strong and positive correlation between these 

potential gene targets and corresponding 𝑃𝐼𝑅𝑆   in other HBV-associated cohorts were also 

validated (Figure 5d-h).  

 

Therapeutic response prediction of targeted chemotherapy 

To screen potentially effective chemical compounds to HBV-associated HCCs with high 𝑃𝐼𝑅𝑆, 

we performed CMap analysis as a preliminary to investigate the therapeutic potential of 

candidate agents. To this end, 150 up-regulated and 150 down-regulated genes with the most 

significant fold changes in REM meta-analysis were submitted to CMap, which identified 85 

chemical compounds under pharmacologic CMap classes (Table S11); a total of 30 agents 

showed perturbagens with enrichment scores below -95, including topoisomerase inhibitors, 

CDK inhibitors, HDAC inhibitors, PI3K inhibitors, etc (Figure 6a). 

 

In order to enhance the credibility of these drug inferences, we searched these candidate 

agents in DepMap, leading to 20 matched compounds. Next, we calculated the Spearman’s 

correlation coefficient between primary drug response (measured as log2FoldChange) and 

𝑃𝐼𝑅𝑆  in 19 HCCLs, which yielded six drugs whose sensitivity significantly elevated with the 

increase of 𝑃𝐼𝑅𝑆   (all, R<-0.4, P<0.05; Figure 6b), including JNJ-7706621, teniposide, PHA-

793887, doxorubicin, epirubicin, and givinostat. Of note, teniposide, a Topoisomerase inhibitor, 

targets TOP2A which we have already considered potentially druggable, suggesting that our in 

silico strategy for drug screening could be reliable. Additionally, we investigated the association 

between 𝑃𝐼𝑅𝑆  of HCCLs and drug sensitivity of the most common chemotherapy for treating 

HCC, containing sorafenib, gemcitabine, oxaliplatin, cisplatin, 5-fluorouracil, capecitabine, 

leucovorin, and cyclophosphamide 46; while none of them showed significant correlation with 

𝑃𝐼𝑅𝑆  (all, P>0.05; Figure 6b), implying that these routine interventions might fail to pose a 

prognosis-dependent effect in HBV-associated HCC patients.  
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Notably, we also matched 3 out of 6 drugs (i.e., teniposide, JNJ-7706621, and givinostat) with 

second measurement for dose-finding in 14 HCCLs; as expected, as the dose increased, the 

responsiveness of HCCLs to the specific drug elevated (Figure 6c). Additionally, we found that 

the dose-dependent sensitivity (measured as slope 𝑘 of linear regression) of teniposide (R=-

0.43, P=0.06) and JNJ-7706621 (R=-0.52, P=0.03) is dramatically associated with 𝑃𝐼𝑅𝑆   in a 

negative manner, suggesting that high 𝑃𝐼𝑅𝑆   might synergistically promote the antitumor 

activity of these compounds (Figure 6c). 

 

We further validated the clinical implication of these 5 drugs (removal of givinostat) through a 

model-based strategy. Generally, in addition to the observation where correlation analysis 

between 𝑃𝐼𝑅𝑆   and predicted AUC demonstrated widely negative association in HBV-

associated HCCs, patients belonging to 𝑃𝐼𝐻𝑅𝑆   groups showed remarkably lower estimated 

AUC than those in 𝑃𝐼𝐿𝑅𝑆  groups (Figure 6d). 

 

DISCUSSION 

HCC, especially HBV-associated, remains the leading cause of cancer-related mortality 

worldwide. The genome instability caused by HBV integration might trigger malignancies to 

present chronic replication stress, thereby providing an exploitable therapeutic vulnerability 

for HCC 47. We herein aimed to develop an efficient approach of prognostic prediction for HBV-

associated HCC based on DNA replication stress signatures, and investigate tailored 

therapeutic strategy for patients with high mortality risk, which is of great significance to 

maximize benefit from precise medicine. In this context, we proposed 𝑃𝐼𝑅𝑆  , a machine-

learning trained prognostic predictor for HBV-associated HCC. Apart from being informative 

regarding prognosis, 𝑃𝐼𝑅𝑆  can be also leveraged for precise oncology, as a biomarker to guide 

targeted treatment. Specifically, four potential therapeutic targets (i.e., TOP2A, PRMT1, 

CSNK1D, and PPIH) and five agents including three topoisomerase inhibitors (i.e., teniposide, 

doxorubicin, and epirubicin) and two CDK inhibitors (i.e., JNJ-7706621 and PHA-793887) were 

identified for patients with high 𝑃𝐼𝑅𝑆. 
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Type II topoisomerases (TOP2) are pervasive enzymes that can alter DNA superhelicity and 

unlink replicating DNA 48. In HCC, Panvichian et al. revealed that TOP2A is significantly 

overexpressed in tumor tissues as compared to adjacent normal tissue, and another 

meaningful result is that high TOP2A expression is more observed in patients with the positive 

serum HBsAg test 49. The protein arginine methyltransferase 1 (PRMT1) may play a pivotal role 

in multiple cellular processes, including proliferation, transformation, invasiveness, and 

survival of malignancies through methylation of arginine residues that underlie these 

processes 50. PRMT1 can promote the tumorigenesis and progression of HCC through 

activating STAT3, TGF-β1/Smad and HNF4α pathways 51-53. Moreover, it has recently been 

reported that genetic knockdown and pharmacological inhibition of PRMT1 by DCPT1061, a 

novel potent inhibitor, drastically induced G1-phase cell cycle arrest and suppressed cell 

growth of clear cell renal cell carcinoma 54; another PRMT1 inhibitor (GSK3368715) was 

capable of impairing replication restart of pancreatic ductal adenocarcinoma, thus inhibiting 

tumor growth 55. The casein kinase 1 delta (CK1δ, CSNK1D) is a member of serine/threonine 

protein kinase family that comprises of six isoforms (i.e., α, δ, ε, γ1, γ2 and γ3) that were 

involved in several signaling pathways (e.g., Hedgehog, Wnt, and Hippo), and mediates 

numerous cellular processes (e.g., DNA replication, DDR, RNA metabolism, membrane 

trafficking, cytoskeleton maintenance, and circadian rhythm) 56. Rosenberg et al. revealed that 

silencing or inhibition of CSNK1D using SR-3029 provokes potent anti-tumor effects for breast 

cancer cells in vivo 57. As to PPIH, the protein encoded by which is a member of the peptidyl-

prolyl cis-trans isomerase (PPIase) family. Although limited evidence directly demonstrated 

anti-tumor effect of inhibiting PPIH, Uchida et al. revealed inhabitation of PIN1, the popular 

member of PPIase family impaired the growth of several cancer cell lines 58. Taken together, 

emerging evidences have shown that the four targets we identified all play special roles in 

malignant development and several inhibitors have demonstrated potent anti-tumor effect in 

specific cancer type, suggesting the feasibility of developing corresponding targeted therapies 

for high-risk HBV-associated HCC. 

 

The inhibition of TOP2 (topoisomerase inhibitor) is a therapeutic strategy for cancer treatment 

and have been applied to treat cancers for many years, such as etoposide and teniposide that 
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targets TOP2A. Several clinical trials are ongoing to evaluate the effectiveness of 

topoisomerase inhibitors in HCC (e.g., NCT00351195, NCT03533582, NCT03017326). 

Doxorubicin and epirubicin are traditional topoisomerase inhibitors, and has been widely used 

for the treatment of HCC. Even though they have never been recommended for systemic 

treatment of HCC, these two remain the main drugs used for transarterial chemoembolization 

(TACE) of HCC 59, 60. Unfortunately, a recent result from the phase III Alliance/CALGB 80802 trial 

failed to observe the benefit from the addition of doxorubicin treatment to sorafenib, and the 

safety concerns of doxorubicin raised the cautious attitude for its limited application, due to 

the presence of underlying cirrhosis, hematologic toxicity, and cardiac toxic events 61; such 

disappointing report inversely lays more emphasis on the desire of developing robust 

biomarkers for precision medicine, thus enhancing efficacy and reducing adverse reactions. 

Based on our findings, we revealed that HBV-associated HCC patients with high 𝑃𝐼𝑅𝑆   are 

more susceptible to topoisomerase inhibitors (i.e., teniposide, doxorubicin and epirubicin), 

which might guide relevant clinical trial designs in the future.  

 

JNJ-7706621, a potent CDK inhibitor targeting CDK1/2, blocks tumor progression through cell 

cycle, causing cells to accumulate in G2/M phase, preventing cells from entering mitosis and 

activating apoptosis, which could be useful for treating various cancers 62, 63. PHA-793887 is 

another kind of multiple CDK inhibitor with the activity against of CDK1/2/4/5/7/9, which is 

also revealed in our study as a potential drug for high-risk HBV-associated HCCs. Brasca et al. 

demonstrated that PHA-793887 had good efficacy in the human ovarian A2780, colon HCT-116 

and pancreatic BX-PC3 xenograft models and was well-tolerated via daily intravenous 

treatment, suggesting PHA-793887 is promising as a drug candidate for clinical evaluation 64. 

In fact, the inhibitors of CDK pathway have been widely reported with the function of inducing 

apoptosis and ongoing test in the clinical trials for HCC, including palbociclib (NCT01356628, 

CDK4/CDK6 inhibitor), flavopiridol (NCT00087282, CDK1/2/4/6/7 inhibitor) and milciclib 

(NCT03109886, CDK2/4/5/7 inhibitor). Additionally, Ehrlich et al. revealed that the 

combinational value of CDK5 inhibitor, roscovitine, with DNA-damage-inducing 

chemotherapeutics synergistically inhibited HCC tumor progression 65. Tourneau et al. also 

observed a partial response of selicicib, a CDK1/2/7/9 inhibitor, in one HCC patient from phase 
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I evaluation 66. Therefore, we reasoned that the pan-CDK inhibitor PHA-793887 might achieve 

better response for HBV-associated HCC cases with high 𝑃𝐼𝑅𝑆. 

 

We acknowledged several limitations. Foremost, the enrolled cohorts varied in size, 

composition, and sequencing technology. Besides, incomplete treatment records may bias the 

study design. Ultimately, bulk sequencing and microarray profiles are confounded by signals 

quantified from a mixed cell populations and are distinct from cell lines concerning expression 

and drug sensitivity; thus, combining our findings with multiplex immunohistochemistry to 

delve intrinsic cancer cell alterations and their crosstalk with the tumour microenvironment 

that dictate therapeutic response is warranted. 

 

CONCLUSIONS 

In summary, we developed 𝑃𝐼𝑅𝑆, a novel DNA replication stress signature, which serves as a 

single-sample survival predictor for HBV-associated HCC and may be readily translated to 

clinical practice to guide prognosis stratification and personalized therapeutic strategies. 

Specifically, physicians could adopt a low-toxicity therapeutic strategy to avert overtreatment 

for low 𝑃𝐼𝑅𝑆  patients who may also benefit from immunotherapies or metabolic therapies. 

To those patients with high 𝑃𝐼𝑅𝑆 , our study identified potential therapeutic targets and agents, 

which might improve their clinical outcomes in a more effective way. Overall, current work has 

not only shed new insight to prognostic stratification, but also provided a roadmap for the 

rational clinical development of personalized treatment. 
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KEY POINTS 

 This study highlights the genetic heterogeneity of HBV-associated hepatocellular 

carcinoma concerning prognostic DNA replication stress. 

 This study developed a tailored prognostic index that could improve the population-

based prognostication approach. 

 This study manifested that a prognostic index enables exploitable therapeutic 

vulnerabilities for patients with high mortality risk. 

 This study identified four therapeutic targets and five agents (three topoisomerase 

inhibitors and two CDK inhibitors) for HBV-associated hepatocellular carcinoma. 
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FIGURE LEGEND 

 

Figure 1. Design overview. This study enrolled a total of 606 HBV-associated HCC cases, and 

developed and validated a nine replication stress-related gene-based prognostic index (𝑃𝐼𝑅𝑆), 

which was further leveraged to predict potential therapeutic targets and agents. 
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Figure 2. Performance of prognostic prediction based on 𝑷𝑰𝑹𝑺 in four HBV-associated HCC 

cohorts. Time-dependent ROC curve analysis at 1-, 3-, and 5- survival for four different cohorts 

were shown in a) to d), respectively. e) Forestplot showing the hazard ratio (95% CI) in 

univariate Cox proportional hazards regression (above the dash line) and multivariate 

regression after adjusting for major clinicopathological features and the corresponding P 

values (below the dash line). Differentiate overall survival probability for patients stratified by 

𝑃𝐼𝑅𝑆   (𝑃𝐼𝐻𝑅𝑆   and 𝑃𝐼𝐿𝑅𝑆   groups) was represented by Kaplan-Meier curves from f) to i) for 

TCGA-LIHC, CN-LIHC, LIRI-JP, and GSE14520 cohorts, respectively.  
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Figure 3. Landscape of 𝑷𝑰𝑹𝑺 associated clinical characteristics and biological processes. The 

upper panel of the comprehensive heatmap shows the 𝑃𝐼𝑅𝑆  in both TCGA-LIHC (left) and CN-

LIHC (right) cohorts, and samples were arranged in an ascending sort. The middle panel of the 

heatmap displays the pathway deregulation scores of the cancer hallmarks that were 

quantified by “pathifier” algorithm at transcriptome level; the statistical P values and Pearson’s 

correlation coefficient between pathway deregulation scores and 𝑃𝐼𝑅𝑆  were annotated on 

the left and right sides of the heatmap. The bottom panel presented the clinical annotation of 

each sample from each cohort. The right panel demonstrated to deregulation direction and its 

statistical significance through protein abundance-based GSEA upon the CN-LIHC cohort; 

yellow points for upregulated pathways, green points for downregulated pathways, and grey 

indicates non-significance. Dereg. stands for deregulation; NES stands for normalized 

enrichment score. 
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Figure 4. Association between immune/metabolism pathways, molecular features and 

𝑷𝑰𝑹𝑺 . a) Heatmap showing the landscape of tumour immune microenvironment and 

metabolism pathways in 606 HBV-associated HCC cases from four independent cohorts. 

Samples were arranged in an ascending order according to the 𝑃𝐼𝑅𝑆  and corresponding TP53 

mutation status was annotated; TIDE prediction and other previous molecular classification of 

HCC were annotated at the top of the heatmap. b) Boxplot showing the distribution of 𝑃𝐼𝑅𝑆  

in four molecular classification of HCC. c) Scatter plot showing the correlation between 𝑃𝐼𝑅𝑆  

and TIDE prediction score in four HBV-associated HCC cohorts; higher value of TIDE prediction 

score indicates less likely to benefit from anti-PD1/CTLA4 therapy. 
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Figure 5. Identification of 𝑷𝑰𝑹𝑺 -related therapeutic targets. a) Volcano plot showing the  

correlation coefficient against statistical significance derived from Pearson’s correlation 

analysis between 𝑃𝐼𝑅𝑆   and therapeutic target expression at transcriptome-level in clinical 

tumors. Light-colored points represent potential targets that pass the threshold (R>0.3 and 

P<0.05), and dark-colored points represent targets that were also identified from CERES 

analysis; target name in grey color indicates potential disease progression independency. b) 

Volcano plot showing the correlation coefficient against significance derived from Spearman’s 

correlation between 𝑃𝐼𝑅𝑆  and CERES scores of drug targets in HCC cell lines. Light blue points 

represent potential targets that pass the threshold (R<-0.3 and P<0.05), and colored points are 

those shared with former correlation analysis in clinical samples. Distribution of CERES scores 

of identified target among HCC cell lines were positioned as boxplot at the top right corner; 

targets with averaged CERES scores of greater than 0 were colored in grey, and target marked 

with an asterisk indicated unmatchable in gene-level proteomic profile. c) Scatter plot showing 

the association between 𝑃𝐼𝑅𝑆  and gene-level protein abundance of drug target in CN-LIHC 

cohort. Scatter plots of the association between 𝑃𝐼𝑅𝑆  and target expression at transcriptome-

level for five cohorts were shown in d) to h), respectively. 
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Figure 6. Identification of candidate therapeutic agents with higher sensitivity in patients 

with high 𝑷𝑰𝑹𝑺. a) Pie chart showing the fraction of chemical compounds according to the 

under pharmacologic CMap classes. b) Heatmap showing the distribution of drug response in 

HCC cell lines ordered by 𝑃𝐼𝑅𝑆   in an ascending sort. The upper heatmap represents the 

compounds identified by CMap with scores less than -95 and the top six drugs are marked in 

yellow due to the statistical significance of correlation between drug sensitivity and 𝑃𝐼𝑅𝑆, and 

others were marked in blue; the bottom heatmap shows the drugs that commonly used for 

treating HCC. CMap scores were annotated at left, Spearman’s correlation coefficient and 

statistical P values were annotated at right. c) Broken line chart showing the drug sensitivity at 

eight dose points; each broken point was presented as mean ± standard deviation. The 

association between the slope 𝑘 (linear regression between dose and drug response) and 

𝑃𝐼𝑅𝑆  were shown as scatter plot at the bottom left corner. d) Boxplot showing the distribution 

of inferred sensitivity for five candidate therapeutic agents (represented by AUC) between 

𝑃𝐼𝐻𝑅𝑆  and 𝑃𝐼𝐿𝑅𝑆  groups in five HBV-associated HCC cohorts; coefficient and significance of 

Pearson’s correlation between predicted AUC and 𝑃𝐼𝑅𝑆  were annotated at the top of boxplot. 
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