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The burden of fungal infections for humans, animals and
plants is widely underestimated and comprises deadly infec-
tions as well as great economic costs. Despite that, antifun-
gal drugs are scarce and emergence of resistance in fungal
strains contributes to a high mortality. To overcome this
shortage, we propose toxic intermediates and their control-
ling enzymes in metabolic pathways as a resource for new
targets and provide a web-service, FunTox-Networks to ex-
plore the landscape of toxic intermediates in themetabolic
networks of fungal pathogens. The toxicity of metabolites
is predicted by a new random forest regressionmodel and
is available for over one hundred fungal species. Further,
for major fungal pathogens, metabolic networks from the
KEGGdatabasewereenrichedwithdataof toxicity and regu-
latory effort for each enzyme to support identification of tar-
gets. We determined several toxic intermediates in fungal-
specific pathways like amino acid synthesis, nitrogen and
sulfur assimilation, and the glyoxylate bypass. For the latter,
we show experimentally that growth of the pathogen Can-
dida albicans is inhibitedwhen the detoxifying enzymesMls1
and Hbr2 are deleted and toxic glyoxylate accumulates in
the cell. Thus, toxic pathway intermediates and their control-
ling enzymes represent an untapped resource of antifungal
targets.
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1 | INTRODUCTION1

Fungi represent important human pathogens which cause a wide range of diseases from harmless superficial infections2

of skin and nails, affecting roughly a quarter of the worldwide population [1], to life-threatening infections with millions3

of patients per year. Despite lower incidence rates globally of invasive fungal infections than e.g. tuberculosis, Brown et4

al. [2] estimates a comparable number of deaths (around 1.5millions) due to the very highmortality rates of invasive5

fungal infections. For example, in France the total burden of serious fungal infections is estimated to affect more than6

1%of the population each year [3] and the current COVID-19 pandemic is accompanied by life-threatening secondary7

fungal infections, predominately by SARS-CoV-2–associated pulmonary aspergillosis (CAPA) [4] or mucormycosis [5].8

The increasing incidence of invasive fungal infections is linked to advances inmedical care that can save lives of9

immunocompromised patients, which however are at high risk of fungal infections [6, 7]. While most immunocompe-10

tent hosts are able to clear or control fungal infections, immunocompromised patients can suffer from blood-borne11

disseminating infections with often very high mortality rates of more than 50 % [2]. However, there is only a very12

limited number of antifungal agents. This is mostly due to themuch closer phylogenetic relationship between fungi and13

humans compared to bacterial pathogens, which constrains the options for agents that do not harm the human host14

[8]. Furthermore, resistance to the widely used azole antifungals is increasingly reported [9] and polyenes antifungals15

are only cautiously used due to their toxicity to mammalian cells [9]. Due to these difficulties, novel approaches for16

speeding up the discovery of antifungal drugs and their targets are urgently needed [10, 11].17

Themetabolic flexibility of pathogenic fungi is a cornerstone of their virulence [12] and, additionally, enzymes of18

fungal-specific pathways in central metabolism such as ergosterol biosynthesis are key targets for antifungal drugs19

[10, 11, 13]. Hence, themetabolism of pathogenic fungi has come under scrutiny to establish novel antifungal targets20

and develop highly efficient new antimycotics [14, 15]. Since the metabolism of fungi is highly dynamic during host21

interactions [12, 16], modeling of metabolic regulation by dynamic optimization is of high relevance to unveil optimal22

regulatory strategies in fungal pathways as well as to elucidate key enzymes regulating pathway flux [17]. In recent23

years, we and others have uncovered optimality principles behind fast pathway activation strategies and efficient24

pathway regulation across a wide range of bacteria [18–24], which are in principle transferable to eukaryotes such as25

fungi, too. To combat pathogens, our previous observation that enzymes upstream of toxic intermediates are tightly26

regulated is of special interest, since we hypothesized that an upregulation (downregulation) of key enzymes regulating27

flux before (after) a toxic intermediate can lead to self-poisoning [23]. Further, as shown across prokaryotes [23], the28

inference of metabolic hubs and key regulated enzymes by estimators like the promoter length can be used in a reverse29

approach to identify highly regulated enzymes and to support target identification for potential antimicrobials. This30

reasoning provides a new avenue for the identification of drug targets using endogenously produced cytotoxins. While31

metabolic networks have recently been investigated extensively to find key enzymes for virulence using the concept of32

elementarymodes [25], there has been, to our knowledge, no systematic screen for toxic intermediates inmetabolic33

networks of fungal pathogens so far. However, the importance of toxic intermediates has been recognized in the fields34

of pathway evolution [26] and metabolic engineering [27]. Similarly, an anti-cancer therapy using endogenous toxic35

metabolites to stop cell growthwas recently proposed [28].36

For a large-scale prediction of toxicity across multiple organisms, quantitative structure - activity relationship37

(QSAR) models have proven to be valuable in in silico screening of inhibitors [29, 30], in improving yield by identification38

of toxic intermediates [31, 32] and in risk assessment [33, 34]. Thesemachine learning approaches can help to fill the39

gap between empirical measured toxicity data in databases like ChEMBL [35] and pathway intermediates which have40

unknown toxicity. For fungi, Prado-Prado et al. [36] developed amulti-target spectral moment QSAR to classify drugs41

with activity against several species. However, to take advantage of novel machine learning approaches as well as42
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much larger toxicity assays stored in the ChEMBl-database, we here used a random forest regressionmodel to predict43

the toxicity of intermediates in fungal metabolism based on chemical features. Using a multi-output model [37, 38],44

we were able to include data from all fungi with toxicity measurements as well as different types of measurement45

of toxicity to train a single regression model for different fungal species and additional models for host organisms.46

Moreover, we integrated our predictions with data on the degree of regulation of individual enzymes in metabolic47

networks derived from KEGG [39]. To this end intra-species protein-protein interactions networks were inferred48

using the newly developed FungiWeb database (https://fungiweb.bioapps.biozentrum.uni-wuerzburg.de) and49

used here to overcome the lack of regulatory data like large-scale transcription factor networks in fungal species.50

The enriched networks together with a cytotoxicity prediction can be displayed in a web-service FunTox-Networks51

(http://funtox.bioinf.uni-jena.de).52

As proof-of-principle for the use of our tool to identify targets for the enrichment of antifungal intermediates, we53

used FunTox-Networks to identify several toxic intermediates in fungal-specific pathways. As promising targets, we54

identified toxic intermediates and their controlling enzymes inpathwaysof nitrogenand sulfur assimilation, in aminoacid55

synthesis, and in the catabolism of fatty acids as alternative carbon sources. Especially for the latter, where glyoxylate is56

a toxic intermediate, we show that detoxifying enzymes like malate synthase (Mls1) and an aminotransferase (Hbr2) are57

potential targets for novel antifungal drugs.58

2 | RESULTS59

2.1 | Prediction ofmetabolite toxicity with a random forest regressionmodel60

Based on the toxicity assay data in the ChEMBL database, we trained separate QSAR regression models for the61

prediction of metabolite toxicity in fungal species and their human as well as murine host (see section 4.1 for details).62

After carefully filtering wrong annotations and removal of outliers the data set for fungal species included 122,47463

data points for 112 fungal species, 653,035 data points for human cells and 10,703 data points for mice (see section 4.164

for details). Due to the best performance among other regressionmodels on a subset of the data, the random forest65

regression approach was chosen to build theQSARmodels (see Supp. 6). The final random forest regressionmodel for66

fungal species obtained a reasonable coefficient of determination of R 2 = 0.64, which is slightly lower for themodels67

of human (R 2 = 0.57) and murine (R 2 = 0.59) cells. The model quality is underlined by low root mean squared error68

(RMSE) values between 0.30 (fungi), 0.30 (human), and 0.32 (mice). For our fungal model we fulfill the recommended69

criteria [40] of a high R 2 > 0.6 and a low RMSE, which should be lower than 10% of the range of predicted toxicity70

values (between -1.73 and 4.59 in training data). Other QSAR toxicity regression models achieve higher predictive71

power but lack universality by considering only a single species like Escherichia coli [32] or by focusing on a certain group72

of substances with evenmore precise predictions [41].73

While our random forest regressionmodels show good performances on test and training data, we further used74

annotated compounds from the KEGG database to validate the predictions of ourmodels. To this end, we predicted75

the toxicity of compounds with biological roles like antibiotics or carbohydrates in important fungal species and host76

organisms (see Fig. 1A). As expected, antifungal compounds were predicted to be significantly more toxic than non-77

antibiotic compounds in fungal species (Wilcoxon rank-sum test P < 1−16). The regressionmodel clearly discriminates78

antifungals also from other antibiotics like antibacterials (Wilcoxon P < 1−16). One should note that toxicity of79

antibiotics is relatively high even in hosts, which is reasonable sincemany antibiotics cause side effects harming human80

cells and therefore are often not applied in high concentrations [42, 43]. Ourmodel predicts carbohydrates as the least81

toxic compound group in fungi and other organismwhich is in line with their common biological functions and their high82
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F IGURE 1 A Toxicity prediction of KEGG compounds and their categories in fungi and host organisms. Distribution
of toxic concentration are depicted in yellow for antibiotics and in blue for commonmetabolites. BApplicability Domain
of theQSARmodel based on a PCA ofmolecular descriptors (descriptor space) with the exemplarymetabolites (red):
ATP (1), glyoxylate (2), amphotericin B (3), fluconazole (4). The density of learning data in descriptor space is depicted
from dark blue to yellow. CDistribution of metabolites fromKEGG based in the same descriptor space as in A and
toxicity in C. albicans indicated in gradient from yellow (toxic) to black (non-toxic).

abundance in standard growthmedia and diet. From these results we conclude that our QSARmodel is able to estimate83

the toxicity of metabolites across a wide range of compound classes and organisms.84

Amain goal behind ourQSARmodel is that it is accessible for all researchers andwe therefore provide theweb-85

service FunTox-Networks. In addition to the toxicity prediction of KEGGmetabolites, the web-service can be queried to86

predict toxicity for other or novel compounds via their SimplifiedMolecular Input Line Entry Specification (SMILES)87

or International Chemical Identifier (InChI) representation [44, 45]. Furthermore, we provide, as recommended by88

the Organisation for Economic Co-operation and Development (OECD) [46], information about the confidence of89

predictions as an applicability domain of our random forest regressionmodel. Firstly, we provide the standard deviation90

across predictions of all trees as additional output, which has been shown to reflect the accuracy of predictions [47].91

Secondly, a principal component analysis of trainedmetabolites and their molecular descriptor values was performed to92

visualize the descriptor space of training data (see Fig. 1B). Using this presentation we see that training data covers not93

only the known toxic antifungals like fluconazole or amphotericin Bwell, but is also nearly identical to the descriptor94

space obtained from all metabolites of pathways in KEGG (see Fig. 1C).95

Importantly, although the toxicity prediction is mainly based onmolecular descriptors, we did not observe distinct96
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regions or clusters in the principal component analysis ofmolecular descriptors for toxic and non-toxicmetabolites. This97

observation indicates that toxic metabolites are uniformly distributed across the entire chemical space (see Fig. 1C).98

Moreover, this demonstrates that our random forest regressionmodel is able to recognize small structural differences99

that are associated with toxicity. An example is the well known toxic byproduct methylglyoxal (C3H4O2) formed during100

glycolysis [48]. Ourmodel correctly predicts a high toxicity ofmethylglyoxal e.g. in the common fungal pathogenCandida101

albicans (Zt ox = −0.177) and no toxicity of the structurally highly similar metabolite pyruvate (C3H4O3, Zt ox = 0.007).102

2.2 | Integration of intermediate toxicity and enzyme regulation in pathwaymaps103

Since we demonstrated a close relationship between toxicity of pathway intermediates and optimal points of pathway104

regulation in our previous work [23], we integratedmetabolite toxicity and regulatory effort on KEGG pathwaymaps to105

identify suitable targets of deregulation to accumulate self-poisoning intermediates in pathogenic fungi (see section106

4.2 and Fig. 5B for details). Thus, we provide enriched KEGG pathwaymaps of sevenmajor fungal pathogens or model107

organisms and their hosts (human cells andmice, see Tab. 2). To infer key regulated enzymes with toxic intermediates,108

we used the number of transcription factors controlling an enzyme and, for pathogenic fungi, a score representing the109

connectivity of an enzymewithin its intraspecies protein-protein interaction (PPI) network. In those networks each110

interaction is further characterized by its confidence, e.g. experimental validation (see section 4.2). Interestingly, yeast111

data show that this measure correlates with the number of interactions as well as with the number of post-translational112

modification (PTM) sites of a gene (ρ = 0.52 and ρ = 0.24, respectively; Spearman correlationwith each P < 1−16, see113

also Supp. 8). Since PPI networks have not been reconstructed for all fungi, we used the promoter length as easily114

calculable (intergenic distance) estimator to infer transcriptional regulation in the case of Arthroderma benhamiae and115

Aspergillus flavus (see section 4.2).116

In addition to enriched KEGG pathwaymaps, FunTox-Networks provides tables containing all pathways and com-117

pounds that can be searched and sorted by key features. These overview tables also show that very diverse compound118

groups within the KEGG pathway maps are predicted to be highly toxic. Examples in C. albicans include heme-like119

compounds (siroheme, precorrin), activated fatty acids (acyl-CoA) and highly reactive acids like acetic acid, which all120

are known to be cytotoxic [49–51]. These data further emphasize the predictive quality of our model. Examples of121

KEGGpathwayswhich containmany toxic intermediates are fatty acidmetabolism (map01040, map00062, map00071),122

propanoatemetabolism (map00640), glyoxylatemetabolism (map00630), and porphyrin metabolism (map00860).123

Because we can predict toxicity in fungal species as well as for their potential hosts, our web-service additionally124

provides an interactive plot to compare the toxicity of KEGGmetabolites in two species. This enables the identification125

of metabolites which are more toxic to the pathogen than to host cells or vice versa (see Fig. 2). While the former126

metabolites are interesting antifungals that are tolerable by the host, the latter can comprise potential small-molecule127

virulence factors of pathogens. Due to the advent of large-scale transcriptomics able to generate measurements128

during host-pathogen interaction (e.g. dual-species RNA-Seq of host and pathogen in parallel), this plot of species-129

specific toxicity can be enrichedwith previously published expression data for genes coding for the adjacent enzymes130

[16, 52, 53].131

Fig. 2 depicts how this view of data can be used to get insights intomolecular host-pathogen interactions. Firstly,132

a distinct group of acyl-CoA compounds is predicted to be toxic in the pathogens C. albicans (Fig. 2A) and C. glabrata133

(Fig. 2B) aswell as in the human host. However, the adjacent enzyme coding genes, which aremainly related to fatty-acid134

oxidation, are upregulated in C. glabrata, but not in C. albicans after 1h of co-incubation with human blood. In contrast,135

genes encoding the enzymes of the glyoxylate bypass are strongly upregulated in C. albicans and not in C. glabrata.136

Further, toxicity of glyoxylate is primarily predicted in fungal cells and not in host cells. Interestingly, despite the137
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F IGURE 2 Integration of enzyme gene expression andmetabolite toxicity in pathogenic fungi upon interaction with
human blood cells [16]. Each dot represents the predicted toxicity of KEGGmetabolites in the human host (x-axis) and
in the fungal pathogen C. albicans (subpanelA) or C. glabrata (subpanelB). The color shows the up- or downregulation
(green to pink) of adjacent enzyme coding genes (producing or consuming themetabolite) after 1h incubation with
human blood for each Candida species as measured by Kämmer et al. [16].

upregulation of genes encoding the enzymes of the glyoxylate bypass in C. albicans, which indicates glucose starvation, a138

groupof non-toxic hexoses are connected to upregulated enzyme coding genes or transporter genes in sugarmetabolism139

(see Fig. 2A).140

To summarize, our toxicity prediction andweb-service FunTox-Networks offers not only the prediction of toxicity for141

pathway intermediates, but also a detailed integrationwith the pathway topology in KEGGmaps, regulation of enzymes,142

respectively the expression of their genes during host-pathogen interactions. This allows to identify new potential143

targets for antifungals by searching for toxic pathway intermediates and the identification of key regulated enzymes144

controlling the intermediate’s accumulation.145

2.3 | Toxic intermediates in fungal specificmetabolic pathways146

To prove its usefulness, we employed FunTox-Networks to search for enzymes which are suitable targets for antifungal147

interventions. We limited our search to metabolic pathways which are specific to fungi and enzymes which have no148

homolog in humans. Since fungal species are able to grow in a great variety of conditions, many fungal specificmetabolic149

pathways with toxic intermediates are related to resource acquisition, such as carbon, nitrogen, and sulfur assimilation150

(see Fig. 3). We found known and new targets in the synthesis of amino acids and in fatty acid metabolism, as well as in151

ergosterol synthesis, which is a main target for the antifungal class of azoles.152

Ergosterol synthesis is especially suitable for antifungal intervention in our sense, as azoles are not only inhibiting153

the synthesis by blocking the Lanosterol-14α-demethylase, but also lead to the accumulation of toxic 14-methyl sterol154

intermediates like 14α-methyl-3,6-diol [54].155

To harbor suitable antifungal targets a pathway needs to be active during host invasion and is ideally essential for156

virulence. Because pathogenic fungi have different strategies to invade the host and conquer different host niches like157
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F IGURE 3 Schematic overview of target pathways with selected toxic intermediates (yellow) in a fungal cell (dark
green).

the lung, gut or skin [55, 56], the importance of metabolic pathways for virulence varies across fungal species. For the158

target pathways shown in Fig. 3 we found that the aspartate as well as themethionine-branch of amino acid synthesis is159

linked to virulence [57] and especially homocysteine is known to accumulate to toxic levels if themethionine synthase160

gene (MET6) is deleted in C. albicans [58]. In contrast, the importance of lysine and histidine biosynthesis for fungal161

virulence is unclear due to contradictory results in common fungal pathogens [57]. Interestingly, the acquisition of162

inorganic nitrogen and sulfur sources is not required for full virulence and assimilation of these elements is possible163

via multiple organic and inorganic substrates in pathogenic fungi like A. fumigatus or C. albicans [59–61]. However, a164

recent study shows that sulfite detoxification is actively controlled and enhances growth in C. albicans suggesting that165

the involved enzymes and regulators are suitable targets for antifungal interventions [62].166

In thesemetabolic pathways we considered the toxic intermediate glyoxylate with its consuming enzymemalate167

synthase to be themost promising target. Firstly, glyoxylate is known to be highly reactive, and eukaryotic cells isolate168

the glyoxylate cycle, like other pathways producing reactive species, in special compartments (peroxisomes) [63].169

Additionally, the use of fatty acids as carbon sources and the use of the glyoxylate cycle as a variant of the tricarbolic acid170

cycle (TCA), which also allows gluconeogenesis, is a known virulence factor in C. albicans [64]. It has also been shown171

earlier that the enzymes unique to the glyoxylate cycle, isocitrate lyase (Icl1) andmalate synthase (Mls1), are highly172

abundant during both, confrontation with macrophages and blood infections [16, 52, 65]. As a final line of evidence,173

the deletion of the malate synthase (gene glcB) inMycobacterium tuberculosis is much more efficient in impeding the174

growth than deletion of the isocitrate lyase (genes icl1 and icl2) due to glyoxylate toxicity [66]. This means that the175

glyoxylate bypass catalyzed by Icl1 (upstream of glyoxylate) andMls1 (downstream, see Fig. 4A) can be deactivated176

by the inhibition of both enzymes, but themore effective antibacterial, potentially also antifungal, intervention is the177
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inhibition ofMls1 since the toxic intermediate glyoxylate is accumulated.178

2.4 | The glyoxylate bypass as primary example for toxic intermediates and drug target179

search180

To verify the potential of toxic intermediates as antifungal drug targets, we experimentally investigated the glyoxylate181

bypass in C. albicans. In addition to the two key enzymes Icl1 andMls1, the genome annotation as well as metabolic182

databases like KEGG suggest two additional enzymeswhich can detoxify glyoxylate (see Fig. 4A).We therefore analyzed183

the transcriptional response ofC. albicans to various organic acids [67]. In addition to ICL1 orMLS1, we created a deletion184

strain lacking the putative alanine glyoxylate aminotransferase gene (HBR2), because it shows a strong coregulation185

with the glyoxylate bypass enzymes (see Fig. 4B) and its homolog in baker’s yeast codes for an enzyme that is able to186

detoxify glyoxylate to pyruvate [68]. In contrast to this, the glyoxylate reductase gene (GOR1) is coregulatedwith the187

isocitrate dehydrogenase gene IDP2 of the TCA cycle (see Fig. 4A and B). Hence, we excluded Gor1 as candidate for the188

control of glyoxylate accumulation when glyoxylate bypass enzymes are active.189

To study the importance of glyoxylate and their detoxifying enzymes, we performed growth experiments in glucose-190

rich medium at a low pH to ensure membrane-permeability of externally supplemented glyoxylate (cf. section 4.3).191

While externally added glyoxylate leads only tominor growth inhibition of thewild-typeC. albicans strain, single deletion192

strains ofMLS1 or HBR2 show intermediate, and a double deletion mutant (mls1∆/∆ hbr2∆/∆) a significant growth193

inhibition (see Fig. 4C). This supports the view that glyoxylate detoxification is ensured by both, Mls1 andHbr2.194

C. albicans faces a glucose-poor environment during phagocytosis and relies on the glyoxylate bypass for survival.195

Having shown that C. albicans depends onMls1 and Hbr2 for glyoxylate detoxification, we performed additional ex-196

periments where glyoxylate is produced intracellularly. To this end, we tested growthwith ethanol as the only carbon197

source. As expected, the wild-type and hbr 2∆/∆ strains grew slowly on ethanol, and the glyoxylate bypass mutants198

were unable to grow. In addition to growth inhibition, we observed that strains lacking the glyoxylate detoxification199

enzymes (mls1∆/∆ andmls1∆/∆ hbr2∆/∆) die off earlier when ethanol is the sole carbon source than the non-glyoxylate200

producing strain i cl 1∆/∆, which otherwise is similarly unable to grow (see Fig. 4D).201

202

Lastly, we confirmed glyoxylate accumulation in ourmutant strains by gas chromatography–mass spectrometry203

(GC-MS) after growth in glucose-rich medium. We found that glyoxylate accumulated inmls1∆/∆ and reached even204

higher concentrations in the double mutantmls1∆/∆ hbr2∆/∆. This is accompanied by the enrichment of the TCA cycle205

intermediates citrate andmalate. Interestingly, in the single mutantmls1∆/∆ glycine accumulated which supports our206

hypothesis that glyoxylate is detoxified by Hbr2 via the conversion of alanine to glycine (see Fig. 4A).207

From the above experimentswe can conclude that glyoxylate accumulation cannot be achieved inC. albicansby inhibition208

of only the malate synthase, as it has been shown forM. tuberculosis [66]. Moreover, we discovered that the so-far209

uncharacterized aminotransferase Hbr2 is part of the more complex glyoxylate detoxification in C. albicans, which210

provides new avenues for drug target search. Overall, we show that toxic intermediates are an untapped resource211

for the development of antifungal drugs by the characterization of enzymes as well as the underlying transcriptional212

regulation, which control accumulation of pathway intermediates during host-pathogen interactions.213
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F IGURE 4 Investigation of glyoxylate detoxifying enzymes in C. albicans. AOverview of glyoxylate bypass as well as
relatedmetabolites and enzymes. BCorrelationmatrix of transcription for glyoxylate bypass genes (ICL1,MLS1), genes
for potential detoxifying enzymes (HBR2,GOR1) and for the decarboxylation of isocitrate (IDP2) in response to various
organic acids [67]. CGrowth curve of C. albicans and deletion strains in glucose (2%)media with addition of varying
amounts of glyoxylate. Themean of the absorbance at 600nm of three biological replicates is shown for each glyoxylate
concentration. D Long term survival assays of C. albicans strains in SDmedium and ethanol as sole carbon source.
Surviving yeast cells were determined on YPD agar plates after the indicated incubation times. EMeasurement of
metabolites by gas chromatography–mass spectrometry (GC-MS) of C. albicans strains grown in YNB broth without
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(T-tests) is shown for selected comparisons between strains with values *p < 0.05, **p < 0.01, ***p < 0.001. In all figures
WT refers to the wild-type strain BWP17+CIp30.

3 | CONCLUSION AND OUTLOOK214

In summary, wewere able to build a newQSARmodel for the prediction ofmetabolite toxicity for fungal species and also215

for their hosts during infection. Based on a specialized normalization scheme, our random forest regressionmodels show216

a good performance in predicting the toxicity of different compound categories such as toxic antifungals or non-toxic217

carbohydrates. Since it was our goal to support antifungal drug target identification, we interleavedmetabolite toxicity218

prediction withmetabolic pathwaymaps for main fungal pathogens and their hosts and provide it as theweb-service219

FunTox-Networks. To test our approachwith a real-life application, we used this new resource and identifiedmultiple220

potential toxic intermediates in fungal-specificmetabolic pathways. We found a very promising target in themalate221

synthase and the aminotransferase Hbr2 of C. albicanswhich synergistically control the detoxification of glyoxylate.222

This can become important when fatty acids are used as a carbon source by C. albicans e.g. during the confrontation223

with phagocytic immune cells [69]. In our experiments we observed a growth defect of deletion strains related to the224

accumulation of toxic glyoxylate. Therefore we conclude that antifungal drugs inhibiting malate synthase and the225
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aminotransferase Hbr2 would bemore effective than inhibitors of the isocitrate lyase which are currently being tested226

[70]. Moreover, it reveals that a comprehensive study of the regulatory circuits controlling pathway intermediate227

accumulation provides an untapped resource for the discovery of novel types of antifungals.228

While we focused here on fungal pathogens of humans, fungi that infect plants and animals are a significant concern229

in agriculture and biodiversity, leading not only to high economic costs but also affecting human health, since they230

can cause crop failures and famine [71]. The principle of toxic intermediates as guides to valuable antifungal drug231

targets can also be applied to fungal plant pathogens. Toxicity prediction via FunTox-Networks can therefore become a232

valuable resource for research and drug development in this field, too. Beyond the use for antifungal target selection,233

the prediction of intermediate toxicity can also be of advantage in industrial processes involving yeasts, which try234

to optimize yield and efficiency by reducing the accumulation of toxic intermediates [72]. Especially in metabolic235

engineering or synthetic biology, where foreign or redesigned metabolic pathways are incorporated into yeast, the236

knowledge of potential toxic intermediates and their control can be of great importance [73]. Interestingly, a rewiring of237

the glyoxylate bypass regulation was necessary to improve the titer reached in production of glycolic acid which is an238

important chemical compound and can be produced in yeasts by glyoxylate reduction [74, 75]. However, production is239

hampered by the tight repression of the isocitrate lyase when glucose is present and glyoxylate accumulation is avoided240

rigorously which underlines the importance of our findings.241

Taken together, knowledge about toxicity of pathway intermediates as well as their regulation enables various242

applications in antifungal drug target search or industrial use of fungal species.243

4 | MODEL AND METHODS244

4.1 | Toxicity prediction245

To train the regressionmodel for predicting the toxicity of metabolites in fungi as well as their hosts (humans, mice), we246

retrieved the corresponding taxonomy-based activity data listed in the ChEMBL database [35] (Release 27, January247

2021). The three data sets for fungi, human andmice were then filtered and checked for the correct taxonomy, target248

type (only ’organism’ or ’cell’ and not ’protein inhibition’ etc.), non-valid data, only precise toxicity measurements (’=’249

relation) and uniform direction of toxicity standard types (lower value indicating higher toxicity). To learn the regression250

model, we used a cut-off of at least 50 activity data measurements for each standard type (type of toxicity measure) and251

at least 100measurements for each organism. Using these filtering steps, we obtained 122,474 activity measurements252

for fungi and 653,035 for humans and as well as 10,703 for mice, respectively, which were used as input for the253

machine learning approach (see Fig. 5). This machine learning pipeline and data is also documented and stored in a open254

repository (http://doi.org/10.5281/zenodo.3529162).255

To extract structural features to train a QSAR, we retrieved the SimplifiedMolecular Input Line Entry Specification256

(SMILES) [44] for all compounds from the above described data set. Using the python package Mordred [76], we257

calculatedmolecular descriptors of several properties such as size, polarity and topology (see Tab. 1). To rule out that258

descriptor choice weakens prediction performance, multiple sets of descriptors withminimal correlation to each other259

were tested. However, prediction performance was similar based on this set and we therefore conclude, that our260

selection of descriptors is sufficient to represent the chemical space.261

In contrast to other QSARmodels, we built a multi-output model to train themodel on all fungal species as well as262

on different toxicity measurements (standard types) using a normalization scheme as described previously [37, 38].263

Hence, the activity data (t ox ) is standardized by Z-normalization with themean (avg ) and standard deviation (sd ) of all264
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TABLE 1 Overview of usedmolecular descriptors.
Molecular Descriptor (m) Category
Number of rings (nRing) Constitutional descriptor
Balaban index (BalabanJ) Topological descriptor

Number of multiple bonds (nBondsM) Molecular property
Number of hydrogen bond acceptors (nHBAcc) Molecular property

Partition coefficient (SLogP) Molecular property
Wiener Index (WPath) Molecular property

Topological polarity surface area (TopoPSA) Molecular property
Molecular weight (MW) Constitutional descriptor
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activity data under the same standard type (s ):265

Zt ox =
t oxs − avgs

sds
(1)

The normalized activity data (Zt ox ) is estimated through a regression by structural features (molecular descriptors),266

which are Z-normalized for fields (f ) describing the influence of assay characteristics (organism fo , standard type fs , cell267

type fc and data curation level fd ). Together with the average Z-normalized toxicity for the combination of organism as268

well as standard type (Zexp ) and the eight molecular descriptors (see Tab. 1) this results in 33 features describing the269

relationship of toxicity, assay characteristics andmolecular structure:270

Zt ox = Zexp + Zmd (fo ,mR ) + ... + Zmd (fd ,mR )︸                                       ︷︷                                       ︸
Rings

+... + Zmd (fo ,mMW ) + ... + Zmd (fd ,mMW )︸                                              ︷︷                                              ︸
Molecular weight

(2)

After removal of outliers (e.g. extreme values in ChEMBL for (non-)toxic compounds) based on a simple linear271

model (upper and lower 5% residuals), a 10% randomly chosen subset of the resulting data was used to identify the272

best method for regression by applying the rRegr package [77] comparing several machine learning approaches (see273

Supp. 6). The decision tree-based random forest regression method [78] performed best in terms of deviation and274

correlation and therefore random forests were trained on the full data set using the R package ’ranger’ [79]. As optimal275

parameters for themachine learning approach, we used five randomly selected features at each split (mt r y ) and one276

hundred trees (nt r ee), which has proven to be a good trade-off between performance and computational costs in277

previousmachine learning approaches [80] and in for ourmodel (cf. our analysis documented in http://doi.org/10.278

5281/zenodo.3529162).279

Furthermore, cross-validation was performed by splitting the data set in 4 splits with each run using 75% of the full280

data set as training and 25% as test data set to calculate the cross-validated R 2
CV
(orQ 2) [81]. Since values of R 2

CV
were281

close to the coefficient of determination R 2, we did not observe overfitting of ourmodel for all splits (cf. our analysis282

documented in http://doi.org/10.5281/zenodo.3529162) and using all features described in equation 2. Therefore283

all features were used to train the final random forest models for fungal species, human andmice on the full data set.284

ForQSARmodels it is advised to provide information about the certainty of a prediction, called applicability domain285

[46]. The robustness of toxicity prediction can be inferred by analyzing the chemical space of compounds used for286

learning and by the confidence of predictions made by the random forest regression. To this end, the standard deviation287

across all trees of the random forest, which is an indicator of prediction accuracy [47], is given as additional output.288

Furthermore, we performed a principle component analysis (PCA) of themolecular descriptor space of all compounds289

used to train the random forest regression to visualize similarity of queried to trained compounds [82]. Both is provided290

in the web-service of our toxicity prediction.291

4.2 | Integration of intermediate toxicity andmetabolic networks292

For the identification of possible drug targets in metabolic networks, pathways of themajor fungal pathogens and their293

hosts were enrichedwith the predicted toxicity of metabolites and regulatory data of enzymes (see Tab. 2). Pathway294

maps were retrieved using the R package KEGGREST in the KEGG Markup Language (KGML) format [39, 83] for295

the organisms listed in Tab. 2. Toxicity of KEGG compoundswas predictedwith our random forest regressionmodel296

with MIC (minimal inhibitory concentration) in fungal species as standard type and IC50 (half maximal inhibitory297

concentration) for human cells respectively LD50 (median lethal dose) formice, since thesewere the preferred standard298
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types in the data set for training.299

TABLE 2 Organismswith toxicity prediction, metabolic networks fromKEGG and estimated regulatory effort of
enzymes.

Organism KEGG ID Description Regulatory data
Arthroderma benhamiae abe Dermatophyte Promoter length
Aspergillus fumigatus afm Saprophyte, (invasive) aspergillosis PPI score
Aspergillus flavus afv Saprophyte and crop pathogen

(invasive) aspergillosis
Promoter length

Candida albicans cal Commensal, (invasive) candidiasis PPI score
Candida glabrata cgr Commensal, (invasive) candidiasis PPI score

Cryptococcus neoformans cnb Saprophyte, (invasive) cryptococcosis PPI score
Homo sapiens hsa Host Transcription factor
Musmusculus mmu Host Transcription factor

Saccharomyces cerevisae sce Important fungal model organism
rare opportunistic pathogen

PPI score

We used three different approaches to infer the strength of regulation of individual enzymes referred to as300

regulatory effort controlling an enzyme. Intuitively, the number of transcription factors controlling an enzyme is a direct301

measurement of regulatory effort and is used for human andmurine enzymes, where genome-wide data is available302

from the RegNetwork database [84].303

For fungi with only scarce knowledge of gene regulatory interactions, we used information that were obtained from304

the FungiWeb-Database (https://fungiweb.bioapps.biozentrum.uni-wuerzburg.de). Since no experimentally305

validated large-scale protein-protein networks on a genome-scale for these species exists we used an interolog-based306

method to infer these networks from the established and validated human and yeast protein-protein networks (seeRem-307

mele et al. 2015 [85]). For this approach we obtained the intraspecies networks fromHomo sapiens and Saccharomyces308

cerevisiae from the 14 active partners of the InternationalMolecular Exchange (IMEx) consortium [86] and the protein309

orthology information from Inparanoid8 [87], CandidaGenomeDatabase (CGD) [88] and AspergillusGenomeDatabase310

(AspGD) [89] via an automated pipeline. Based on the experimental evidence, size of the experiment and number of311

publication that support a source interaction we calculated for each edge of these networks a modified version of312

theMINT-Score (Molecular INTeraction database [90]) as ameasurement of the interaction reliability. From the PPI313

networks of A. fumigatus (176,584 interactions, 4,086 interactors), C. albicans (97,614 interactions , 1,984 interactors),314

C. glabrata (297,419 interactions, 4,604 interactors) and C. neoformans (191,274 interactions, 3,203 interactors) we315

estimated the regulatory effort of an enzyme by the connectivity (vertex degree) in the network of the species and316

weighted each edge by their evidence according to the reliability score. The resulting PPI score provides a good estimate317

of regulation and interaction on post-translational level, which we could confirm for yeast (see supplement 8).318

For organismswhere neither transcription factors nor a PPI score are available (see Tab. 2), the promoter length319

determined as the intergenic distance was used as in previous studies for prokaryotes [21, 23]. Promoter lengths have320

proven to be good proxies of regulatory effort due to the reduced genome sizes of fungi compared to higher eukaryotes321
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whichmakes a loss of non-functional sequences more likely [91]. In consequence, the length of promoter regions should322

reflect the number of functional elements such as transcription factor binding sites contained in them. In agreement323

with this hypothesis, we found for the well-studied regulatory network of yeast that promoter length correlates with324

the number of transcription factors (see Supp. 8).325

Weenriched pathwaysmaps with color-coded information on regulatory effort and toxicity information in KGML326

files. We used Cytoscape [92] with the extension KEGGScape [93] to convert KGML formats to JavaScript Object327

Notation (JSON), which can be used in a javascript-based network viewer provided by Cytoscape. The collection of328

pathway maps is embedded in the R Shiny [94] application FunTox-Networks and accessible as a web-service (http:329

//funtox.bioinf.uni-jena.de). Moreover, pathway maps and compounds are summarized in tables that can be330

searched, filtered and downloaded to facilitate the search of toxic intermediates and the controlling enzymes to identify331

drug targets.332

4.3 | Investigation of glyoxylate detoxifying enzymes in C. albicans333

Identification and co-regulation of enzymes334

Weusedmetabolic information of Saccharomyces cerevisiae fromMetaCyc [95] to identify additional enzymeswhich335

degrade glyoxylate. In addition to themalate synthase (EC: 2.3.3.9) this includes the glyoxylate reductase (EC: 1.1.1.79)336

and the alanine-glyoxylate transaminase (EC: 2.6.1.44). Based on sequence homology to yeast counterparts we deter-337

minedGOR1 (orf19.2989), respectivelyHBR2 (orf19.1078) and calculated the Spearman’s rank correlation of their gene338

expression in a published data set of the response in C. albicans’ transcription to organic acids [67].339

Strains andmutant generation340

All C. albicans strains were stored as glycerol stocks at−80◦C and streaked on YPD plates for growth at 30◦C before use.341

Mutants were generated by standard heat shock transformation procedures (PCR-amplified pFA plasmids with≈ 100bp342

homology regions [96]) using the BWP17 strain (lackingURA3,HIS1 and ARG4 [97]). Uridine prototrophy was restored343

with CIp10, and BWP17 +CIp30 (restored for all threemarkers) was used as an isogenic control. For additional deletion344

ofHBR2, the dominant SAT flippermethodwas employed as described previously [98], using pSFS5 and the In-Fusion345

cloning system (Takara Biotech) for creation of a deletion cassette with SacI and KpnI restriction sites. The final mutant346

was cured of the SAT1 cassette and contained only the FRT site in place ofHBR2. All primers are listed in supplementary347

table 3, and all mutants are listed in supplementary table 4.348

Growth assays and inhibition by glyoxylate349

The C. albicans deletionmutants (mls1∆/∆, hbr 2∆/∆,mls1∆/∆ hbr2∆/∆) or wild type (SC5314) were grown over night350

in yeast extract peptone dextrose (YPD)medium at 30◦C , 180 rpm and thenwashed three times with distilled water.351

For the assay, 10µL of the cell suspension in phosphate-buffered saline (PBS) wasmixed (in 96well plates) with 190µL352

buffered Synthetic Defined (SD) medium (1×YNB, w/o amino acids/ammonium sulfate; 5 g/L ammonium sulfate; 2g/L353

glucose; 100mM phosphate buffer, pH = 3). The medium also contained glyoxylate, in a 1:2 dilution series from354

500mM down to 7.8mM , plus a control without any glyoxylate. The strains were grown in triplicates in each glyoxylate355

concentration for 50 hours at 30◦C in a Tecan Infinite 200microplate reader. The absorption at 600nm wasmeasured356

every 15minutes after 10s of orbital shaking.357
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Long term survival assays358

The C. albicans deletion mutants (icl1∆/∆,mls1∆/∆, hbr 2∆/∆,mls1∆/∆ hbr2∆/∆) or wild type (SC5314) were grown359

for long periods in SDmediumwithout carbon source or with 2g/L of a C2 compound (ethanol). For this, overnight360

YPD cultures of C. albicans (30◦C , 180 rpm) were washed three times with PBS. The cells were counted in a Neubauer361

chamber, and 20mL of each SDmediumwas inoculated at a concentration of 105 cel l s/ml . The strains were grown at362

30◦C for 8 days, and samples (1mL) taken every 48 hours for cell number quantification with a Neubauer chamber. A363

serial 1:10 dilution (down to 106 cel l s/ml ) in PBS was used to assess the number of living cells in the sample: Three364

10µL spots of each dilutions were pipetted on YPD agar plates and incubated for 48 hours at 30◦C for counting of living365

cells. The plates were then incubated for further 48 hours at 30◦C to allow growth of smaller colonies from lagging cells,366

which were added to the count.367

Measurement of glyoxylate in Candida albicans strains368

Overnight pre-cultures of C. albicanswild type (SC5314) and deletionmutantsmls1∆/∆ andmls1∆/∆ hbr2∆/∆were369

used to inoculate the correspondingmain cultureswith anOD600of 0.1. After a cultivation over a period of 12h in 50mL370

YNB brothwithout amino acids and 2% glucose as carbon source at 30◦C , samples were harvested in triplicates and371

intracellular metabolites extracted. For this purpose, the cells were centrifuged at 4◦C and 4000g for 5min , followed by372

threewashing steps with 20mL cold 0.9%N aC l solution. The pelleted cells were resuspended in ethanol supplemented373

with 2.5µg/mL [U-13C5]-ribitol or [2,2,3,3,4,4-D6]-glutaric acid as internal standard. Resuspended cells were set out by374

ultrasonic treatment at 70◦C for 15min for cell lysis. The suspensions were incubated for 2min on ice followed by the375

addition of 0.75m H2O . Metabolites were extracted by addition of 1mL chloroform followed by harshlymixing for 1min376

and centrifugation for 5min at 4000g and 4◦C . 0.8mL of the resulting upper polar phase was sampled and triplicates377

were dried in a vacuum concentrator over night at 4◦C . Polar dried metabolites were automatically derivatized in a378

two step procedure; first, 15µL of 2%methoxyamine hydrochloride in pyridine was added and samples were incubated379

at 55◦C for 90min under shaking. Second,MTBSTFA (N-methyl-N[tert]-butyldimethylsilyl trifluoroacetamidew/1%380

tert-butyldimethylchlorosilane) was added in an equal amount and samples were incubated for 60min at 55◦C . Gas-381

chromatography coupled tomass-spectrometry (GC-MS) measurements were performed using an Agilent 7890BGC /382

AgilentMSD 5977B instrument. Derivatizedmetabolites were separated by a capillary column (Phenomenex ZB 35,383

30m length, 0.25mm in diameter, 0.25µm film thickness) and a SSL Liner Agilent 5190-3171: 900 µL (splitless, single384

taper, wool, Ultra ). Carrier gas was Heliumwith a flow rate of 1.0mL/min . The temperature in the GC ovenwas 2min385

at 100◦C with increased steps of 10◦C per minute up to 300◦C . Total run time of 26min per sample. Electron impact386

ionization at 70eV were operated by an AgilentMSD 5977Bwith an extractor source and the transferline temperature387

at 280◦C . The mass spectometry was held at 230◦C and the quadrupol at 150◦C . The detection of metabolites were388

done in scan and simmode. To aquire the full mass spectra scanning from 70mz to 800mz at a scan rate of 4 scanss . SIM389

data for glyoxylate was perfomedwith themz of 160, 161, 162, 202, 203, 204 each a dwell time of 15ms . Data was390

processedwith theMetaboliteDetector software. Statistical analyses were performed. Standard errors of mean (SEM)391

were shown. Students T-tests were performed and p values are calculatedwith twoway analysis. Significance values392

were considered as significant with values *p < 0.05, **p < 0.01, ***p < 0.001.393
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SUPPORT ING INFORMAT ION605

Data and scripts of machine learning pipeline are documented and stored here: http://doi.org/10.5281/zenodo.606

3529162.607

| Details of machine learning procedure608
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F IGURE 6 Training results of different regressionmodels measured by the root mean squared error (RMSE) and
the coefficient of determination (R 2). Models: Multiple Linear regression (LM), Generalized LinearModel with Stepwise
Feature Selection (GLM), Partial Least Squares Regression (PLS), Lasso regression (LASSO), Elastic Net regression
(ENET), Support vector machine using radial functions (SVRM), Neural Networks regression (NN), Random Forest (RF).
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F IGURE 7 Additional plots including third principle component for applicability domain (left) and toxicity
distribution (right) of metabolites as shown in
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| Regulatory effort estimates in yeast609

F IGURE 8 Correlation of promoter length, number of transcription factors (TF) from Yeastract [99], number of
regulators as well as interactions listed in YeastMine [100], number of PTM sites from dbPTM [101] and the PPI score
for each gene in yeast.
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| Primer andmutant list610

TABLE 3 List of primers
Primer name Sequence
ICL1-fwd TTTTTAATACCCTTTTTCTTTTTCTTTTTTCCTTCTTTCCTCTATACTTATACCTTT

TATTCTAATATAAATTAAAGAATAAACATTAATAATATCTACCGAAGCTTCGTA
CGCTGCAGGTC

ICL1-rev TTACTAGACAGATCATCTCAAATGAATACCGTCTTTTGTTTTTTGTTTATATTAT
AAGTTCTGTTTCTTTACTAATTTACACTTCTATCCCTCAAAATTATCTGATATCA
TCGATGAATTCGAG

MLS1-fwd TAAGTTTGAATTCTCTTTTCCTTTTTCTTATTATTTTACTTTTACATTTATATATA
TAAATATTCACACAGCTTTGTATATATATTAACCAAGTTACATAGAAGCTTCGT
ACGCTGCAGGTC

MLS1-rev ATATTTCATGAATAAACATAAACAAAACTAATAAAAAAAAGCTACTTTCATACT
ATTTAAATTACAAATTGAAAACGTTTCCCGAACATTTCTTTTTTTATCTGATATC
ATCGATGAATTCGAG

HBR2-upstream-fwd TATAGGGCGAATTGGAGCTCCAAGTGGTAGTGGTGGTGGT
HBR2-upstream-rev CCGCCACCGCGGTGGTCAAAAGAATAAAAATAAAAAGTAA
HBR2-downstream-fwd TCGAGGGGGGGCCCGGCAATTTAGTAATTGAATTTAGGTC
HBR2-downstream-rev GGGAACAAAAGCTGGGTACCGTGTGGCATCCTATTCGGTC
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TABLE 4 List of strains andmutants
Identifier Name Parent Genotype
C55 SC5314 - (Wild type)
M2251 BWP17+CIp30 BWP17 URA3::imm434/URA3::imm434 HI S1::hisG/HI S1::hisG

ARG4::hisG/ARG4::hisG RP S1::(URA3HI S1ARG4)/RP S1
M2577 i cl 1∆/∆ BWP17 URA3::imm434/URA3::imm434 HI S1::hisG/HI S1::hisG

ARG4::hisG/ARG4::hisG I CL1::HI S1/I CL1::ARG4
RP S1::URA3/RP S1

M2582 mls1∆/∆ BWP17 URA3::imm434/URA3::imm434 HI S1::hisG/HI S1::hisG
ARG4::hisG/ARG4::hisG MLS1::HI S1/MLS1::ARG4
RP S1::URA3/RP S1

M2692 hbr 2∆/∆ BWP17+CIp30 URA3::imm434/URA3::imm434 HI S1::hisG/HI S1::hisG
ARG4::hisG/ARG4::hisG HBR2::FRT/HBR2::FRT
RP S1::(URA3HI S1ARG4)/RP S1

M2696 mls1∆/∆/hbr 2∆/∆ M2582 URA3::imm434/URA3::imm434 HI S1::hisG/HI S1::hisG
ARG4::hisG/ARG4::hisG MLS1::HI S1/MLS1::ARG4
HBR2::FRT/HBR2::FRT


