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Type 1 diabetes (T1D) is a common autoimmune disorder characterized by the
destruction of insulin-secreting pancreatic β cells [1], in which polymorphism of the
human leukocyte antigen (HLA) class II region is the major genetic risk factor [2, 3, 4].
However, how variation in class II molecules alters T1D risk remains a longstanding
question. Here we show how T1D risk due to HLA class II haplotype combinations [5]
correlates with the frequency of negatively charged sequences in the CDR3β region of
CD4+ T cell receptor (TCR) repertoires purified from peripheral blood. These sequences
are known to be common in receptors that bind insulin B:9–23 [6], the primary autoanti-
gen in T1D. We also show the same effect in circulating activated CD4+ T cells from
newly-diagnosed T1D cases, and in islet-infiltrating T cells from patients with active
T1D. Furthermore, we demonstrate that the proportion of insulin-reactive CD4+ T cells
present in islets is predicted by the frequency of these negatively charged CDR3β amino
acid sequences. Our results suggest diagnostic uses of T cell repertoire profiling in early
detection of insulin autoimmunity, and inform ongoing efforts to improve tolerance
induction to insulin and prevention of T1D [7].

1 Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford,
United Kingdom. 2 Barbara Davis Center for Childhood Diabetes, University of Colorado School of
Medicine, Aurora, Colorado, United States. 3 Department of Immunology and Microbiology, Scripps
Research Institute, La Jolla, California, United States. 4 Deparment of Pediatrics, Medical University of
Warsaw, Warsaw, Poland. 5 Correspondence: {arc,jatodd,marcin}@well.ox.ac.uk.

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.458974doi: bioRxiv preprint 

mailto:{arc,jatodd,marcin}@well.ox.ac.uk
https://doi.org/10.1101/2021.09.06.458974
http://creativecommons.org/licenses/by-nc-nd/4.0/


Main text

The association between genetic variants in the human leukocyte antigen (HLA) region
and susceptibility to different infectious, autoimmune and neoplastic disorders emerged
more than half a century ago [8]. In case of type 1 diabetes (T1D), this association was
initially reported for HLA class I alleles [9, 10]. A stronger genetic signal linked to HLA
class II soon followed up [11, 12, 13], with a large portion of the risk mapped to the
amino acid at position 57 in the DQB1 molecule [2], in which the presence of aspartic
acid (D) correlates with protection against T1D [14].

The T1D associations with HLA class II DR and DQ alleles, individually, or combined
in their cis interaction effects on haplotypes and trans effects between haplotypes on
different chromosomes are complex [3, 4]. Therefore, here we use class II haplotype
combinations in diplotypes to take into account these interactions in our investigation
of a possible mechanism underlying their associations with T1D.

HLA variants are known to bias T cell receptor (TCR) repertoires by imposing
different interfacing constraints and exposing cells to alternative peptidomes during the
development of central and peripheral tolerance [15, 16, 17], which implies repertoire
differences may explain the susceptibility or protection conferred by HLA class II
haplotypes.

Previously, we assembled a cohort of T1D families, as part of the Diabetes-Genes,
Autoimmunity and Prevention Centre (D-GAP), and built a collection of peripheral
blood mononuclear cells (PBMCs) from blood samples from children with T1D and
their unaffected siblings in order to define the immune system before and during
T1D [18]. Using this resource, we investigated possible associations between HLA class
II and the TCR repertoire.

HLA class II haplotypes explain most of the variance in the CDR3 region of
CD4+ TCR repertoires

We purified circulating CD4+ T cells (n = 349623) from D-GAP participants (n = 48, me-
dian age = 11 years) with haplotypes across the susceptibility-protection continuum [5].
These cells were stimulated and loaded into a single-cell platform for preparing paired 5’
gene expression and TCR libraries [19]. After sequencing, gene expression data analysis
and repertoire assembly, we obtained 288903 cells with both a valid gene expression
profile and at least one productive TCR chain (Materials and Methods).

Using CD4+ T conventional cells (n = 276581), defined as those outside the regula-
tory T cell (Treg) cluster, we calculated the frequencies of all 2-mer sequences in the
complementarity-determining region 3 (CDR3) α and β grouped by donor. We excluded
an N-terminal prefix and a C-terminal suffix from each CDR3 to avoid the HLA binding
bias that constrains gene usage [16, 20]. We then considered the subset of donors with
susceptible or protected HLA class II haplotypes (Supplementary Tables S2 and S4). We
reduced the dimensionality of the resulting matrix (40 donors x 798 2-mers) by solving
a multidimensional scaling optimization problem with a given Jaccard distance metric.
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Donor repertoires clustered by HLA class II risk group in the resulting 2-dimensional
representation of CDR3 sequences (Figure 1), and differences between cluster centroids
were significant (p = 0.001). This demonstrates that despite age, sex and environmental
covariates, which are major factors in the development of T1D, HLA class II haplotypes
determine the epitope-binding properties of the CD4+ T cell repertoire.

CDR3β regions in CD4+ TCRs from genetically susceptible donors exhibit a
higher frequency of negatively charged residues

Next, we examined which specific differences on CDR3 selection pressure could be
explained by HLA class II risk using a multilevel model (Materials and Methods). This
model estimates differences in frequencies as a function of T1D risk due to HLA class
II haplotype interactions from the observed counts of each CDR3 k-mer, as well as
differences and fold changes across both extremes of the disease risk spectrum.

Irrespective of the selected k-mer size, we found sequences with one or more
negatively-charged residues (D or glutamic acid, E) were more likely to be present in β
chains belonging to donors who carried a susceptible HLA class II haplotype (Figures 2
and 3). For the special case k = 1, which reduces to single amino acid frequencies,
we used a linear model to estimate differences. Sorting CDR3β amino acids by their
average interaction free energy [21] revealed negatively charged residues D and E are
often replaced by high interaction potential ones (leucine L, isoleucine I and valine
V; Figure S1) as class II-associated disease risk decreases. False discovery rates (FDR)
for the regression slopes of D (FDR = 8e-9) and V (FDR = 1.45e-3) provide additional
support for non-zero effects (Figure 4).

The DQB1 57 association with T1D is conserved between humans and mice [2]. The
non-obese diabetic (NOD) mouse develops autoimmune diabetes spontaneously and
has S 57 in the β chain of the ortholog of DQ molecule, I-Ag7, compared to autoimmune
diabetes-resistant strains that have D 57. Our TCR results in humans show a remarkable
evolutionary conservation with the previous class II-TCR findings in NOD mice, in
which mutation of I-Ag7 chain at position 57 from S to D resulted in T1D protection,
and reduced D and E amino acids in the CDR3 sequences of insulin-specific CD4+ T
cells in the mutant strain compared to the wild-type NOD mice [6].

In case of Tregs, we observed the same trend as in conventional T cells (Figure 5),
which suggests this amino acid bias occurs during positive thymic selection. It is also
possible that the repertoires of Tregs induced during the development of peripheral
tolerance are affected by HLA class II polymorphisms [22].

In case of α chains, we also estimated systematic differences at low false discovery
rates (Figure S3). These seem to correspond to biases in the usage of particular Vα and Jα
genes, which are carried onto the CDR3α region due to its low recombination diversity.
In particular, top estimated differences in k-mers match fragments of SGTYK, which is a
sequence encoded in the TRAJ40 gene whose usage is upregulated in individuals who
carry susceptible HLA class II haplotypes.
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HLA class II susceptible donors are more likely to select CD4+ TCRs that
recognize insulin B:9–23

We then investigated whether these observed repertoire differences correlate with an
immune response against the primary epitope in T1D, insulin B:9–23 [23, 24, 25]. We
sorted activated circulating CD4+ T cells (n = 19969), defined as HLA-DR+ CD38+,
from a cohort of newly diagnosed children (n = 8) carrying susceptible HLA class II
haplotypes. We also sourced CD4+ T cell receptor clonotypes (n = 1428) isolated from
the islets of individuals (n = 5) in the Network of Pancreatic Organ Donors (nPOD) [26]
who had active T1D and also carried susceptible haplotypes. We compared these
against all the individuals with maximum susceptibility (n = 23) in our original cohort
(Supplementary Table S1), and therefore a D frequency distribution with the highest
mean (Figure 4). Both CDR3β sequences from islets and circulating activated cells had
a significantly higher frequency of aspartic acid (p = 0.0097 and 0.0034, respectively;
Figure 6).

Finally, we analyzed clonotypes (n = 159) from nPOD donors (n = 5) where reactivity
against preproinsulin had been tested [27] to validate our hypothesis that negative
charges correlate with the presence of insulin-reactive TCRs. The slope of a linear model
provided strong evidence of an association between both variables (p = 0.0008). Alter-
natively, a binomial regression model was also consistent with these results (Figure 7;
p = 0.0843).

Discussion

Autoimmune diseases have long been hypothesized to be, essentially, diseases of the
receptor repertoire [28, 29]. Large observational studies employing bulk RNA and
TCR sequencing have uncovered broad associations such as gene usage biases [16] or
pathogen-specific receptor sequences [17] linked to certain HLA alleles. Disease-specific
efforts related to T1D have not been able to include this fundamental covariate in their
experimental design, and have mostly drawn inconclusive results [30, 31, 32].

Our study offers a mechanistic explanation of T1D risk due to HLA class II hap-
lotypes in terms of CDR3β sequence biases. Susceptibility to T1D correlates with the
frequency of negatively-charged sequences in the peptide epitope-binding region of
TCR β chains. These negative charges are common in receptors that bind insulin B:9–23,
the primary autoantigen in T1D, as demonstrated in a recent mouse model [6]. Thus,
higher genetic susceptibility is associated with a larger proportion of insulin-reactive
CD4+ T cells. As predicted by the Miyazawa-Jerningan contact energies model [21], fa-
vorable interactions with a D residue are those occurring with phenylalanine, isoleucine
and valine, which match the sequences we observed to be enriched in class II-protected
individuals, and depleted from susceptible ones.
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Understanding what aspects of TCR repertoires play a role in the onset of au-
toimmunity could contribute to the development of better biomarkers and effective
immunotherapies. The inclusion of biomarkers derived from immune repertoires, which
capture risk from both environmental factors [33] and their interactions with host ge-
netics, might add to the predictive value of T1D genetic risk scores and autoantibody
testing.

A fundamental and related open question is to determine what events precipitate
insulin autoimmunity. Functional repertoire differences observed in susceptible HLA
backgrounds can also influence recognition of insulin B:9–23 epitope mimics expressed
in the microbiome. We have previously demonstrated the presence of insulin B:9–
23 mimotopes within the transketolase (TKT) superfamily of enzymes, which are
highly upregulated during infant weaning, at the same age as the peak of anti-insulin
autoimmunity [34]. Notwithstanding the peripheral presentation of TKT to T cells,
TKT-expressing microbes can also be transported into the thymus by the subset of
specialized dendritic cells causing dysbiosis-dependent development of TKT-specific
autoreactive T cells [35]. These considerations warrant further investigation into the
immunological and phenotypic effects of bacterial probiotic supplementation at the
molecular level in the context of primary prevention of autoimmunity and allergy, as
well as host genetic susceptibility and resistance.
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Figure 1: Multidimensional scaling (MDS) of genetically protected and
susceptible donor repertoires using combined CDR3α and CDR3β 2-mer
frequencies from CD4+ conventional T cells.
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Figure 2: Estimated CDR3β 2-mer frequency differences and fold changes
across HLA class II risk extremes (Table S1) in CD4+ conventional T cells.
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Figure 3: Estimated CDR3β 3-mer frequency differences across HLA class
II risk extremes (Table S1) in CD4+ conventional T cells.
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Figure 4: Observed CDR3β amino acid frequencies for aspartic acid (D)
and valine (V) in CD4+ conventional T cells regressed against T1D log
odds risk due to HLA class II interactions (Table S1).
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Figure 5: Estimated CDR3β 2-mer log fold changes across HLA class II
risk extremes (Table S1) in CD4+ regulatory T cells.
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Figure 6: CDR3β aspartic acid (D) frequency measured in CD4+ T cells
infiltrating islets, circulating CD4+ T cells from susceptible HLA class II
donors and activated circulating CD4+ T cells from recently diagnosed
T1D donors.
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Figure 7: Proportion of preproinsulin-reactive CD4+ T cell clones present
in islets as a function of CDR3β aspartic acid (D) frequency in CD4+ T
cells infiltrating islets.
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Materials and methods

Donor selection

Donors (Table S1) were obtained from the Diabetes Genes, Autoimmunity and Pre-
vention (D-GAP) cohort which comprised T1D cases and unaffected siblings (REC
Ref: 08/H072025) [18]. This cohort provided PBMCs and genomic DNA samples. Ge-
nomic DNA was prepared from PBMCs or whole blood using QiaAmp DNA Blood kit
(Qiagen), or phenol/chloroform extraction.

Initially, we selected two groups with an equal number of donors in the two extremes
of the T1D susceptibility-protection axis, namely DR3/4 or susceptible (Table S2) and
DR15 or protected (Table S4). This choice was performed using data from Taqman
sequencing (Applied Biosystems) of four SNPs (rs2187668, rs660895, rs9271366 and
rs7454108) and RELI SSO (DYNAL Biotech) classical HLA typing.

Due to the limited number of DR15 homozygotes, we also included DR15 heterozy-
gotes with a neutral haplotype—a residue other than the susceptible Ala (A) at DQB1
position 57. For example, some of those DR15 heterozygotes had protective Asp (D)
along with a neutral Val (V) or Ser (S).

In each batch loaded on a single-cell Chromium V(D)J cassette (10x Genomics),
wherever possible, we matched individuals for age (< 20 years old) and homozygosity
for DQB1 position 57. For example, in each batch all susceptible DR3/4 individuals were
homozygotes for DQB1 Ala (A) 57, and the protected DR15 were an equal proportion
of homozygotes and heterozygotes of DQB1 Asp (D) 57.

We also included two batches of DR3/DR4 T1D patients and two batches of
DR4/DQ8 vs DR4/DQ7 or low risk (Table S3) homozygotes controlled focusing on
DQB1 position 57. HLA types were further confirmed with ImmunoArray-24 BeadChip
v2.0 (Infinium) or HumanImmuno BeadChip v1.0 (Illumina) and HLA imputation [36],
along with further SSP classical HLA typing (MC Diagnostics and Oxford Transplant
Centre).

Next-generation sequencing

We washed CD4+ T cells in PBS with 0.04% BSA and re-suspended them at a concentra-
tion of ~800–1200 cells/µl, before capturing single cells in droplets using the Chromium
platform (10x Genomics). Generation of paired gene expression and T-cell receptor
libraries was performed using the Chromium Single Cell V(D)J Reagent Kits v1 and
v1.1b. We quantified cDNA using Qubit dsDNA HS Assay Kit (Life Technologies) and
High Sensitivity D5000 ScreenTape (Agilent). Quantification of libraries was carried out
using Qubit dsDNA HS Assay Kit (Life Technologies) and D1000 ScreenTape (Agilent).

Libraries were sequenced on HiSeq 4000 and NovaSeq 6000 (Illumina) to achieve an
average of 20000 reads per cell for gene expression libraries and 5000 read pairs per
cell for TCR libraries.
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Single-cell data processing

We preprocessed all single cell RNA and TCR sequence libraries separately using Cell
Ranger v4.0.0 (10x Genomics) to obtain gene counts and receptor assemblies for each
donor. These were then merged into a single gene expression matrix and a single TCR
database, which mapped gene counts or TCR chains to cells and donors.

Subsequently, we called cells from read counts with a minimum of 300 genes
expressed. We also removed genes not present in at least 50 cells to keep the expression
matrix tractable. Furthermore, we applied batch-dependent cutoffs to remove outliers
suspected to be cell doublets or multiplets. We also filtered cells with more than 15% of
mitochondrial expression to discard those undergoing apoptosis. After data cleanup,
we normalized all expression values to 104 reads per cell and applied a logarithmic
transformation. Next, we discarded all but the top 5000 most variable genes, and
regressed out differences due to sequencing depth and mitochondrial expression.

Lastly, we aligned cells from each sample using batch-balanced nearest neigh-
bors [37], reduced the dimensionality [38], called clusters [39], and performed a multi-
variate differential expression [40] to find population markers. The initial run yielded
two low-frequency clusters with non-CD4+ contaminants. We discarded cells mapping
to these, reran all data processing steps, found another cluster with contaminants, and
iterated through the same process one last time to remove another non-CD4+ cluster.
This lead to 12 different cell subpopulations (Figures S6 and S7), with a distinct FOXP3+

CTLA4+ regulatory T cell cluster (Figure S8).
We filtered TCRs called by Cell Ranger to retain consensus assemblies with produc-

tive rearrangements only. Finally, we performed an inner join between gene expression
and receptor assembly data using cell barcodes to obtain TCR chains paired with gene
expression cluster information.

Estimation of TCR repertoire differences

We used an overdispersed beta-binomial model (Equation 1) to regress k-mer counts
as a function of T1D risk due to HLA class II haplotypes, while accounting for a
significant variability in the number of observed TCR chains per donor and in the
observed frequencies across donors with similar risk.

The model assumes that counts observed for each k-mer and each donor kij follow a
binomial distribution, which has been sampled from a latent donor-specific beta random
variable θij. In turn, all donor-specific betas are generated by a linear model whose
output is transformed by a complementary log-log inverse link function. The particular
objective of inference is to estimate the latent probability µi, as well as the derived
variables that represent difference and fold changes, δi and ρi, which are calculated
using susceptible and protective risk extremes (Table S1).

It is important to note we used a reparametrization of beta distributions in terms
of mean and sample size or pseudo-dispersion, which makes the generative process
easier to express.
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µij = 1− exp(−exp(αi + βi · rij))

aij = νij ∗ µij

bij = νij ∗ (1− µij)

θij ∼ Beta(aij, bij)

kij ∼ Binomial(θij, nij)

δi = µs − µp

ρi = µs/µp

(1)

We initialized αi = µ′i, the generation probability of each k-mer estimated by a
thymic recombination model [41], and maximized the likelihood implicitly defined by
the generative process described above. p-values were derived from a likelihood ratio
test against a null model defined as a linear model without a slope term.
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Supplementary material

Haplotype 1 Haplotype 2

n DQA1 DQB1 DQA1 DQB1 DQB157 OR Group

23 03:01 03:02 05:01 02:01 AA 63.17 Susceptible
8 03:01 03:02 03:01 03:02 AA 32.30 Susceptible
1 03:01 03:01 06:01 03:01 DD 3.88 Low risk
5 03:02 03:01 03:02 03:01 DD 3.80 Low risk
1 03:03 03:01 05:05 03:01 DD 1.22 Low risk
1 03:01 03:01 05:05 03:01 DD 1.22 Low risk
2 01:02 06:02 05:05 03:01 DD 0.13 Protected
2 01:02 06:02 01:02 06:02 DD 0.11 Protected
2 01:02 06:02 05:05 06:03 DD 0.05 Protected
2 01:02 06:02 01:02 05:02 DS 0.05 Protected
1 01:02 06:02 01:02 06:04 DV 0.05 Protected

Table S1: Sample selection and HLA class II haplotype interactions. T1D
odds ratios (OR) for DQ-DR haplotype interactions were obtained from UK
Biobank [5]. Estimates for the maximum (63.17) and minimum (0.05) OR
are used to calculate differences and fold changes, with estimates for the
maximum OR serving as baseline (Materials and Methods).
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Haplotype 1 Haplotype 2

DRB1 DQA1 DQB1 DRB1 DQA1 DQB1 AA1 AA2 Age Sex

04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 10 F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 10 M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 11 F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 11 F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 11 F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 11 M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 12 F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 12 F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 12 M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 14 M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 16 F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 16 F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 19 M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 19 M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 22 M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 6 F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK 9 F
04:01 03:01 03:02 04:01 03:01 03:02 AHK AHK 10 M
04:01 03:01 03:02 04:01 03:01 03:02 AHK AHK 10 M
04:01 03:01 03:02 04:01 03:01 03:02 AHK AHK 12 F
04:01 03:01 03:02 04:01 03:01 03:02 AHK AHK 18 M
04:01 03:01 03:02 04:01 03:01 03:02 AHK AHK 7 F
04:02 03:01 03:02 03:01 05:01 02:01 AHE ASK 13 M
04:03 03:01 03:02 03:01 05:01 02:01 AHR ASK 11 M
04:04 03:01 03:02 03:01 05:01 02:01 AHR ASK 10 F
04:04 03:01 03:02 03:01 05:01 02:01 AHR ASK 13 M
04:04 03:01 03:02 03:01 05:01 02:01 AHR ASK 6 F
04:04 03:01 03:02 03:01 05:01 02:01 AHR ASK 9 F
04:04 03:01 03:02 04:01 03:01 03:02 AHR AHK 16 M
04:04 03:01 03:02 04:04 03:01 03:02 AHR AHR 10 M
04:04 03:01 03:02 04:04 03:01 03:02 AHR AHR 9 M

Table S2: Genetically susceptible group. The strings AA1 and AA2 encode
amino acids at HLA DQB1 57, DRB1 13 and 71 [3], respectively.
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Haplotype 1 Haplotype 2

DRB1 DQA1 DQB1 DRB1 DQA1 DQB1 AA1 AA2 Age Sex

04:01 03:01 03:01 11:03 05:05 03:01 DHK DSE 20 M
04:01 03:01 03:01 12:02 06:01 03:01 DHK DGR 17 F
04:01 03:02 03:01 04:01 03:02 03:01 DHK DHK 11 M
04:01 03:02 03:01 04:01 03:02 03:01 DHK DHK 5 M
04:01 03:02 03:01 04:01 03:02 03:01 DHK DHK 8 M
04:01 03:02 03:01 04:01 03:02 03:01 DHK DHK 8 M
04:01 03:02 03:01 04:01 03:02 03:01 DHK DHK 9 F
04:07 03:03 03:01 01:03 05:05 03:01 DHR DFE 10 M

Table S3: Low genetic risk group. The strings AA1 and AA2 encode amino
acids at HLA DQB1 57, DRB1 13 and 71 [3], respectively. The DQA1 03:02
haplotype is actually unresolved to 03:02 or 03:03.

Haplotype 1 Haplotype 2

DRB1 DQA1 DQB1 DRB1 DQA1 DQB1 AA1 AA2 Age Sex

15:01 01:02 06:02 11:04 05:05 03:01 DRA DSR 20 M
15:01 01:02 06:02 11:04 05:05 06:03 DRA DSR 18 M
15:01 01:02 06:02 11:04 05:05 06:03 DRA DSR 19 F
15:01 01:02 06:02 12:01 05:05 03:01 DRA DGR 18 F
15:01 01:02 06:02 13:02 01:02 06:04 DRA VSE 19 F
15:01 01:02 06:02 15:01 01:02 06:02 DRA DRA 6 M
15:01 01:02 06:02 15:01 01:02 06:02 DRA DRA 7 M
15:01 01:02 06:02 16:01 01:02 05:02 DRA SRR 12 M
15:01 01:02 06:02 16:01 01:02 05:02 DRA SRR 15 F

Table S4: Genetically protected group. The strings AA1 and AA2 encode
amino acids at HLA DQB1 57, DRB1 13 and 71 [3], respectively.

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.458974doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.458974
http://creativecommons.org/licenses/by-nc-nd/4.0/


CDR3β amino acid

L F I V M W C Y H A T G P R Q S N D E K

0.0

1.0

0.5

FDR

-0.003

-0.002

-0.001

0.000

0.001

0.002

E
ff

e
ct

 s
iz

e

Figure S1: Estimated effects on CDR3β amino acid frequencies from CD4+

conventional T cells explained by HLA class II log odds risk. Effects
correspond to changes in amino acid frequency with an increase in one
log(OR) unit.

22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.458974doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.458974
http://creativecommons.org/licenses/by-nc-nd/4.0/


CDR3β 3-mer

K
N
I

T
G
V

FN
E

ID
R

LV
P

R
N
R

P
R
N

H
S
P

W
S
S

Y
V
G

D
G
F

LV
F

LK
R

E
A
Q

M
M
N

K
K
N

V
W
S

T
D
H

K
H
E

V
W
L

K
S
E

N
E
R

Y
IS

Q
Q
T

A
E
E

E
G
E

G
Q
D

LR
D

P
G
D

E
G
S

G
S
A

R
D
Y

D
R
D

LA
E

D
S
Y

S
S
Q

D
N
E

G
D
N

D
T
E

0.00

0.01

0.02

0.05

0.04

0.03

FDR

-0.00050

-0.00025

0.00000

0.00025

0.00050

F
re

q
u

e
n

cy
 d

iff
e
re

n
ce

CDR3β 3-mer

M
M
N

K
K
N

V
W
L

K
H
E

T
D
H

V
W
S

D
G
F

E
A
Q

LK
R

LV
F

W
S
S

ID
R

H
S
P

Y
V
G

R
N
R

P
R
N

FN
E

LV
P

T
G
V

K
N
I

D
N
E

D
R
D

E
G
E

D
S
Y

D
T
E

S
S
Q

LR
D

P
G
D

E
G
S

G
S
A

G
Q
D

R
D
Y

LA
E

G
D
N

K
S
E

A
E
E

Q
Q
T

N
E
R

Y
IS

0.00

0.01

0.02

0.05

0.04

0.03

FDR

10
-2

10
-1

10
0

10
1

10
2

F
o
ld

 c
h

a
n

g
e

Figure S2: Estimated CDR3β 3-mer frequency differences and fold
changes in CD4+ conventional T cells across HLA class II risk extremes.
Extremes are defined as the maximum and minimum OR (Table S1), re-
spectively. Differences and fold changes are calculated using the estimated
frequency for maximum OR as baseline.
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Figure S3: Estimated CDR3α 3-mer frequency differences in CD4+ con-
ventional T cells across HLA class II risk extremes. Extremes are defined
as the maximum and minimum OR (Table S1), respectively. Differences and
fold changes are calculated using the estimated frequency for maximum
OR as baseline.
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Figure S4: Estimated CDR3α 3-mer fold changes across HLA class II
risk extremes. Extremes are defined as the maximum and minimum OR
(Table S1), respectively. Differences and fold changes are calculated using
the estimated frequency for maximum OR as baseline.
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Figure S5: Estimated CDR3β 3-mer fold changes in CD4+ conventional
T cells across HLA class II risk extremes. Extremes are defined as the
maximum and minimum OR (Table S1), respectively. Differences and fold
changes are calculated using the estimated frequency for maximum OR as
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Figure S6: Single-cell RNA clusters. Marker genes for all 12 clusters are
depicted next (Figure S7).
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Figure S7: Single-cell RNA marker genes per cluster. Each panel represents
a signature consisting of 30 genes that best discriminates [40] a given cluster
(Figure S6). Genes are ranked by their score or importance for optimal
discrimination.
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(a) FOXP3

(b) CTLA4

Figure S8: Single-cell RNA regulatory T cell marker expression. Joint
expression of classical CD4+ Treg markers FOXP3 and CTLA4 maps to
predicted Treg cluster (Figures S6 and S7).

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.458974doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.458974
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Main text
	HLA class II haplotypes explain most of the variance in the CDR3 region of CD4+ TCR repertoires
	CDR3β regions in CD4+ TCRs from genetically susceptible donors exhibit a higher frequency of negatively charged residues
	HLA class II susceptible donors are more likely to select CD4+ TCRs that recognize insulin B:9–23

	Discussion
	Materials and methods
	Donor selection
	Next-generation sequencing
	Single-cell data processing
	Estimation of TCR repertoire differences

	Supplementary material

