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Abstract

Predictability is a fundamental requirement in biological engineering. As we move to building

coordinated multicellular systems, the potential for such systems to display chaotic behaviour

becomes a concern. Therefore understanding which systems show chaos is an important de-

sign consideration. We developed a methodology to explore the potential for chaotic dynamics

in small microbial communities governed by resource competition, intercellular communication

and competitive bacteriocin interactions. We show that we can expect to find chaotic states in

relatively small synthetic microbial systems, understand the governing dynamics and provide in-

sights into how to control such systems. This work is the first to query the existence of chaotic

behaviour in synthetic microbial communities and has important ramifications for the fields of

biotechnology, bioprocessing and synthetic biology.

1 Introduction

Chaos can be defined as deterministic behaviour that displays aperiodic orbits and sensitivity to

initial conditions [1]. Infinitesimally small differences in initial conditions of a chaotic system will

become amplified over time, making forecasting and prediction of behaviour impossible [2]. Despite

being deterministic, chaotic systems possess an inherent uncertainty due fact that we can never

describe the initial conditions of a system in sufficient detail. Building systems which behave in a

predictable and repeatable manner is essential across fields invested in engineering biology and
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its applications. Evidence from studies of neural networks suggests the increasing probability of

chaotic behaviour as the number of dimensions in the network grow [3, 4, 5]. Therefore we might

expect opportunities for unpredictable behaviour to become more probable as we try and implement

larger synthetic communities, or edit existing networks such as the human gut microbiome. Steps to

date have not been taken to investigate the existence of chaos in small synthetic microbial networks.

A long-term goal of engineering biology is to create truly scalable and robust synthetic microbial

communities [6, 7]. Therefore understanding and evaluating the possibility of chaotic behaviour in a

system becomes an important consideration.

Observations of chaotic behaviour in biological systems have been reported. A three species

system containing one predator and two prey species has been demonstrated to produce chaotic

behaviour, with dilution rate a key parameter in enabling aperiodic behaviours [8]. An eight year

study of a planktonic food web measured chaotic behaviours, resulting in subpopulation abundance

predictability being limited to 15-30 days, despite constant external conditions [9]. These experimen-

tal examples demonstrate that a low number of species are capable of producing chaotic behaviour

and are therefore unpredictable.

In order to predict chaotic behaviour in synthetic microbial communities, we need to develop

models that capture interactions between different community species. Generalised competitive

Lotka-Volterra equations (gLV) have previously been used to model pair-wise interactions and infer

inter-species relationships [10]. However in other circumstances, gLV models provide an incomplete

description of interactions we expect to find in microbial communities. They are unable to capture

the existence of chaos in three species networks [11]. Furthermore, gLV models have failed to

predict community formation from pairwise interactions in microbial communities [12]. gLV models

lack dynamics that occur with the accumulation and depletion of extracellular species, which can be

important for predicting the true dynamics of a community [13]. Modified Lotka-Volterra equations

produce chaotic behaviour in predator-prey systems by including time-delayed feedback [14, 13],

or in one predator two prey systems, by adding dampening effects [15]. While these abstractions

are suitable in some circumstances, using them to inform gene regulation networks and community

design can be difficult. By modelling the intermediates involved in competitive interactions we can in-

clude experimentally measurable mechanisms and parameters. In previous work, we have modelled

quorum sensing (QS) to regulate bacteriocin expression and engineer inter-population interactions.
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These methods allowed us to tune experimental parameters of an existing two strain system [16],

and predict the most promising topologies for producing stability in two and three strain systems

[17].

The existence of chaos in dynamical models and identification of chaotic parameter space can be

identified using various optimisation techniques. The unscented Kalman filter has previously been

used to investigate chaos in electrical circuits and biological systems, obtaining parameters yielding

chaos [18]. Simulated annealing has been applied to finding chaotic parameters in four species

standard Lotka Volterra models [19]. Evidence also suggests that perturbation of system parameters

can be used to drive systems towards or away from chaotic attractors [20]. The possibility of chaos

in synthetic microbial communities, to our knowledge, has not been previously considered.

2 Results

2.1 Searching for chaos in microbial community models

In previous work we developed a model framework to describe QS regulated bacteriocin interactions

in a three strain model space, and predicted topologies that form stable communities [17]. Here we

use this same model space to investigate the existence of chaos in three strain synthetic microbial

communities.

Figure 1a shows the pipeline we developed to search for chaos in synthetic three strain sys-

tems. The initial model space describes an enumeration of possible combinations of bacteriocin

and QS systems. Prior parameter distributions describe the range of characteristics for the different

parts (Table 1). We expected the existence of chaos to be sparse in this three strain model space,

and therefore computationally expensive to explore. Approximate Bayesian Computation Sequential

Monte Carlo (ABC SMC) is a method that can be used for model selection and parameter inference

in dynamical systems [21]. The definitions we use to classify oscillatory and chaotic behaviours are

described in Methods. We also define an extinction threshold of 10−5, if a strain population falls

below this it is classified as extinct. In order to narrow down the search, we first performed ABC

SMC for an oscillations objective. Oscillations are a known route to chaos [1]. Although this is not

an exhaustive search, we assumed it to be sufficient for prioritising in our search for chaos. We

identified 117 models capable of producing oscillations, these models were then considered for the
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chaos objective (Figure 1a).

The chaos objective is defined by calculating the maximal Lyapunov exponent (λ1). We calculate

λ1 by initialising two nearby orbits and measuring their divergence or convergence over the course

of a simulation (Methods). λ1 < 0 corresponds to linear stability, λ0 = 0 corresponds to periodic

oscillations, and λ1 > 0 corresponds to chaos. Due to the limited time frame from which calculate the

Lyapunov exponent, oscillations are unlikely to give rise to precisely λ1 = 0. By running ABC SMC

for an objective of λ > 0 and manually inspecting the trajectories in this population we determined

a threshold of λ1 > 0.003, above which we are confident only chaotic behaviour exists, and below

which only periodic oscillatory behaviour exists. Performing ABC SMC for the chaotic objective (λ >

0.003), we identified 25 models that produced chaotic behaviour. The posterior probabilities of the

models are shown in Figure 1b. Figure 1c shows a representative chaotic trajectory, demonstrating

aperiodic non-repeating behaviour, satisfying the qualitative features of chaos.

2.2 Properties of chaotic models

We next explored some of the properties of chaotic topologies we identified using ABC SMC. Fig-

ure 2a shows the top performing models when subsetting for complexity, based on the number of

parts expressed. m850 contains four expressed parts and possess the highest posterior probability

for chaotic behaviour. Systems containing fewer parts all had a posterior probability of zero. As com-

plexity increases to five and six parts (m3177 and m2547), the posterior probability decreases. The

classic debate on the complexity-stability relationship in theoretical ecology is likely highly depen-

dent on the nature of the biological interactions involved [22, 23], but here we see some evidence

for a peak in the probability of chaotic behaviour at four parts. This is in contrast to our previous

findings, where system stability increased with the number of parts [17].

Figure 2b provides summaries of how different parts contribute to chaotic behaviour in the three

strain models. We can see that one QS system and positive regulation of bacteriocin is strongly

favoured for producing chaos. This ensures all system bacteriocins are regulated in tandem. Ex-

pression rates are all dependent upon the same QS, resulting in stronger negative or positive cor-

relations defined by the mode of regulation. Two bacteriocin systems also dominate the model

posterior. Bacteriocin interactions can be categorised as either self-limiting (SL), whereby the strain

is inhibited by the bacteriocin it produces, or other-limiting (OL) where a strain is inhibited by a bac-
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Figure 1: Overview of the pipeline for identifying chaotic topologies a By combining engineering
options in different combinations, we generate 4182 models that form our initial model space. We
then perform ABC SMC for an oscillatory objective which yielded 117 models that were capable of
producing oscillations. These form the prior model space for the chaos objective. b The barchart
shows the probability of models for the chaotic objective. The error bars represent the standard
deviation. c An example time series representative of the dataset; it shows sustained, nonrepetitive
oscillatory behaviour for the three species community.
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Figure 2: Topologies and properties associated with chaotic behaviour a Shows the models with
highest posterior probability when subsetted for number of parts expressed, in order of increasing
complexity (4, 5 and 6 expressed parts). The bar chart shows the mean model posterior probability
across three experiments, represented by the scatter points, the error bars indicate the standard
deviation. b Comparison between average posterior probabilities with different properties. In order
from left to right, the barcharts compare: The number of QS systems used, the modes by which QS
regulates bacteriocin expression (positive, negative or both), the number of bacteriocins used, and
systems containing self-limiting (SL), other-limiting (OL) or SL and OL interactions.
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teriocin produced by a different strain. Both SL only and a combination of SL and OL interactions

are associated with producing chaotic behaviour. These observations are interesting in comparison

to other work on ecological systems. Cooperative interactions were previously found to give rise

to unstable systems, whereas competition was more indicative of stability [24]. The same effect

might occur here in systems with one QS, rather than two, as the system would be expected to

have increased correlation. While chaotic behaviour appears to be very different from linear stability,

both behaviours share the necessity for coexistence. This may explain why we see tendencies for

topologies to share a mixture of stability associated SL interactions, and instability associated OL

interactions. We also find models with three bacteriocins, and hence higher suppression of growth,

have a low posterior probability for chaos.

2.3 Parameter importance for chaos

The model with the highest posterior probability for chaotic behaviour was m850, the topology is

shown in Figure 3a. It consists of a single QS system, produced by N1, that positively regulates two

bacteriocins. B1 is produced by N1 and N2 but it inhibits the growth of N1 only. B2 is produced by N3

and inhibits the growth of N3 only. The system in total consists of four expressed parts. m850 also

ranked highly for the oscillatory objective, ranking 3rd out of the initial 4182 models. This presents

an interesting problem whereby a model that has promising use as an oscillator also has a high

potential to produce chaos, relative to other candidate models. Identifying the parameters and initial

conditions important for differentiating between chaotic and oscillatory behaviour gives us insight

into how to control this behaviour when constructing genetic circuits or selecting chemostat settings.

As a first step, we analyzed the model to quantify the possible steady states and basins of attrac-

tion. Our analysis gave analytical conditions for the existence and stability for complete extinction

and for single strain survival (See Methods). For three-strain co-existence, we find the following

necessary conditions:

max{DK + S0
S0

,µ1max

D

D + ωmax
,µ3max

D

D + ωmax
} < µ2max < min{µ1max ,µ3max}

This shows that for three-strain co-existence, the maximal growth rate of N2 has to lie between

certain upper and lower bounds. In particular, it has to be smaller than the maximal growth rate of
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N1 or N3. We can see from the topology of m850 (Figure 3a) that the growth of N2 is not limited by

any bacteriocin, therefore the only limitation on growth comes through resource competition. If N2

had a higher growth rate than N1 or N3, it would out compete these strains and cause an extinction

event.

We then wanted to explore the most important parameters that separate oscillatory and chaotic

behaviours in m850 only. We refer to a set of parameters and initial conditions as an input vector. Us-

ing ABC SMC, we performed parameter inference on m850 for the chaotic and oscillatory objectives,

generating 3750 input vectors for each objective. We can use this dataset of labelled input vectors

to understand the importance of individual parameters, initial conditions and nearby steady states.

Figure 3b shows multivariate parameter distributions for the oscillator and chaotic objectives for

the experimentally accessible parameters. The dilution rate (D) is a directly controllable parameter

of the chemostat. The production rate of A1 (kA1) can be tuned by using an inducible promoter to

control expression of the AHL synthase species. Strain maximal growth rates (µmax1, µmax2, µmax3)

can be controlled by using different base strains or through the combined use of auxotrophic strains

and defined media. Finally, the initial population densities (N1, N2, N3) can easily be set when inoc-

ulating the initial culture. Divergence between two parameter distributions indicates its importance

in differentiating between the two objectives. We can see that the oscillatory objective distributions

for D, N1 and µmax2 are all constrained towards lower values relative to the prior. However, for all

these distributions we can see that the chaotic and oscillatory regions overlap. This again implies

that chaotic and oscillatory behaviour exist close to one another in parameter space, and highlights

the multidimensional nature that determines the behaviour.

To further investigate the importance of parameters and initial conditions we trained a random

forest classifier model using the input vectors as features. This classifier model was able to classify

the test set with a ~90% accuracy (Methods, Figure 6). Figure 3c shows the average information

gain across all decision tree classifiers in the forest for all free parameters. This can be used as

an indicator of feature importance in correctly classifying an input vector. KA1B1 and KA1B2 describe

the concentration of A1 required to produce half-maximal repression of bacteriocins B1 and B2

respectively. While the feature importance indicates these parameters are the most important, they

are more difficult to tune compared with other parameters in this system. The error bars indicate

the variability in the importance of a feature across all trees in the forest. Large error bars suggest
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single features are not essential for classification, and that redundancy exists between the features

used [25].

From the set of chaotic input vectors, we used numerical methods to identify nearby steady states

by changing the initial state of the system. Figure 3d shows the sensitivity analysis of a chaotic input

vector, with a nearby three-strain stable steady state shown in green. Starting from the stable steady

state (green), we perturbed the initial species values of either N1, B1 or B2 individually. The plots

show how changing these initial states yields different Lyapounv exponents, highlighting the chaotic

region in red. The range of Lyapunov exponents shown in Figure 3d suggest that by changing the

initial conditions only we are able to produce a range of different behaviours. Perturbing N2, N3 or

A1 did not produce chaotic behaviour. It is interesting that the initial state of N1 as the A1 producing

strain appears to more important whereas the initial concentration of A1 itself is not.

2.4 Exploring the parameters in the transition to chaos

Being able to move a system from a chaotic state to a fixed point could be important in a biopro-

cess control scenario so we explored this in more detail. Previous studies have frequently identified

the bioreactor dilution rate as an important parameter for transitioning between different population

dynamics [26, 27, 28]. Figures 3b strongly indicated D to be important for defining chaotic be-

haviour. We previously identified the QS production rate, kA1 and the dilution rate, D, as important

parameters for transitioning between co-existence and extinction states [16]. We hypothesised that

the antagonistic effect of kA1 to D would make it also make it a useful parameter for controlling

population behaviour.

First, we took an input vector known to produce chaotic behaviour and randomly sampled new

values for kA1 and D from the prior and calculated the Lyapunov exponent of the new input vector.

Figure 4a shows the results where filled colour indicates the maximal Lyapunov exponent calculated

at each grid reference. The grid outline indicates the classification range and the red grid region of

Figure 4a shows the chaotic region. As can clearly be seen, changing D and kA1 affects the Lya-

punov exponent. The bifurcation diagrams in Figure 4b and c for kA1 and D respectively, illustrate

the antagonistic transitions in behaviour that occur when changing the two parameters. Figure 4a

and b show transitions through one strain extinctions (Nx < 10−5, stable steady state, oscillations

and chaotic behaviour. Figure 4a and c both show that increasing kA1 results in transitions from
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Figure 3: Examining chaos in m850. a Topology of m850 with key parameters labelled. kA1 is the rate
of QS molecule production, KBmax1 and KBmax2 are the maximal expression rates of bacteriocins
B1 and B2 respectively. b Posterior parameter distributions of m850 for chaos (red) and oscillatory
(blue) objectives for key parameters in system design. The borders show 1D posterior distributions
for each parameter and the off-diagonal element the 2D posterior marginals. c Feature importance
calculated using random forest regression. The information gain (bits) is calculated as an average
of the reduction in entropy across all trees in the forest (2000 trees). The error bars indicate the
standard deviation of the entropy for each feature across all trees. d Sensitivity analysis of a chaotic
input vector with chaotic region in red. Green dots refer to the identified stable steady state. The
fixed parameter values are shown in Table 2
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stable co-existence, through oscillations and then to chaos, followed abruptly by an extinction event.

Figure 4b and c both show that low a lower dilution rate is associated with chaos; increasing the di-

lution rate reduces instability to produce oscillations, which abruptly transitions to a stable extinction

state.

In a bioreactor control scenario it is interesting to understand if a community could be switched

between states in real time. Figures 4d and e show how this is possible by modifying kA1 and D

respectively. The red arrows on Figure 4a indicate the position of the single start point and two end

points in these real-time transitions. It’s important to note that when ramping up the dilution rate in

real-time, we reach stable steady state in a region that would not be obtainable with a fixed dilution

rate.

3 Discussion/Conclusions

We developed a novel methodology to explore parameter regions that give rise to chaotic dynamics.

We applied it to the exploration of chaotic dynamics in synthetic microbial communities and found a

high prevalence of such dynamics in these systems. This work is the first to query the existence of

chaotic behaviour in synthetic microbial communities. We show that we can expect to find chaotic

states in relatively small synthetic microbial systems, which has important ramifications for the field.

We expect it will become increasingly important to consider the location of chaotic attractors

in parameter space as the microbial communities we build or interact with become more complex.

These methods can easily be applied to parametrise different models. It would be interesting to

compare the existence of chaotic attractors in systems that use toxin-antitoxin systems [29], com-

bination of cooperative and competitive interactions [30], or mutualistic only interactions [31]. Full

scale metabolic models contain a large number of linear reactions [32], they can be combined to

describe microbial communities and used to model industrial bioprocesses [33, 34]. Given the high

dimensional nature of metabolic networks, it would be interesting to investigate whether these mod-

els yield chaotic behaviour in small community networks.

To conclude, we have developed methods for identifying chaotic parameter regions using ABC

SMC. Although chaotic attractors are generally thought to be sparse in low dimensional systems,

we have shown their existence in realistic synthetic microbial systems. They may also exist in close
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proximity to stable steady state regions. This work demonstrates that deterministic chaos will be an

important factor in microbial community design and should be studied in much more detail.

4 Methods

4.1 Model space

Models are generated from a set of parts, which are expressed by different strains in the system. We

represent an expression configuration through a set of options. We define the options for expression

of A in each strain, where the options are not expressed, expression of A1, and expression of A2

(0, 1 and 2). We define the options for expression of bacteriocin, which for the two strain model space

includes no expression, expression of B1 or expression of B2 (0, 1, and 2). For the three strain model

space, this includes includes no expression, expression of B1, expression of B2 or expression of B3

(0, 1, 2 and 3 respectively). Lastly we define the mode of regulation for the bacteriocin, which can be

either induced or repressed (0 and 1). This is redundant if a bacteriocin is not expressed.

Two strain model space:

A = {0, 1, 2}

B = {0, 1, 2}

R = {0, 1}

Three strain model space:

A = {0, 1, 2}

B = {0, 1, 2, 3}

R = {0, 1}

This enables us to build possible part combinations that can be expressed by a population. Let Pc

be a family of sets, where each set is a unique combination of parts.

PC = A× B × R

13

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459097doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459097
http://creativecommons.org/licenses/by/4.0/


Each strain in a system can be sensitive to up to one bacteriocin. Let I represent the options

for strain sensitivity. In the two strain model space, the options are insensitive, sensitive to B1 or

sensitive to B2 (0, 1 and 2 respectively). In the three strain model space, where the options are

insensitive, sensitive to B1, sensitive to B2 or sensitive to B3 (0, 1, 2 and 3 respectively).

Two strain model space:

I = {0, 1, 2}

Three strain model space:

I = {0, 1, 2, 3}

Each strain is defined by it’s sensitivities, and expression of parts. Let PE be all unique engineered

strains:

PE = I × PC

Which can be combined to form a model, yielding unique combinations in two strains and three

strains:

Two strain model space:

PM = PE × PE

Three strain model space:

PM = PE × PE × PE

Finally, we use a series of rules to remove redundant models. A system is removed if:

1. Two or more strains are identical, concerning bacteriocin sensitivity and combination of ex-

pressed parts.

2. The QS regulating a bacteriocin is not present in the system.
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3. A strain is sensitive to a bacteriocin that does not exist in the system.

4. A bacteriocin exists that no strain is sensitive to.

This cleanup yields the options which are used to generate ODE equations for a system.

4.2 System equations

State variables in each system are rescaled to improve speed of obtaining numerical approximations.

NX describes the concentration of a strain, Bz describes the concentration of a bacteriocin and Ay

describes the concentration of a quorum molecule. CN , CB and CA are scaling factors:

N ′x = NxCN

B ′z = BzCB

A′y = AyCA

Each model is represented as sets where N defines the number of strains, B defines the set of

bacteriocins and A defines the set of QS systems. The following differential equations are used to

represent each model.

dNx

dt
= Nxµx(S)− Nx

B∑
z=1

ω(B ′z)− NxD

dS

dt
= D(S0 − S)−

N∑
x=1

µxN
′
x

γ

dBz

dt
=

N∑
x=1

(kBx ,zN
′
x)

CB
− DBz

dAy

dt
=

N∑
x=1

kAx ,yN
′
x

CA
− DAy

Growth modelled by Monod’s equation for growth limiting nutrient, S . muxmax defines the maximal

growth rate of the strain and KX defines the concentration of substrate required for half-maximal
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growth.

µx(S) =
µxmaxS

KX + S

Killing by bacteriocin is defined by ω(B ′z), where ωmax defines the maximal killing rate which is set

to 0 if the strain is insensitive. Kω defines the concentration at which half-maximal killing occurs.

ω(B ′z) = ωmax
B ′nωz

Knω
ω + B ′nωz

Induction or repression of bacteriocin expression by QS, is defined by kB(z , y), where z defines the

bacteriocin being expressed and y defines the quorum molecule regulating its expression. KBmaxz

is the maximal expression rate of the bacteriocin and KBz is the concentration of quorum molecule

at which bacteriocin is half-maximal. nz defines the cooperativity of the AHL binding.

kB(z , y) = KBmaxz
A′nzy

Knz
Bz

+ A′nzy

kB(z , y) = KBmaxz
Knz
Bz

Knz
Bz

+ A′nzy

4.3 Software packages and simulation settings

The ABC SMC model selection algorithm was written in python using Numpy [35], Pandas and

Scipy [36]. ODE simulations were conducted in C++ with a Rosenbrock 4 stepper from the Boost

library [37]. All simulations use an absolute error tolerance of 1e−9, and relative error tolerance

of 1e − 4. Non negative matrix factorisation was conducted using Scikit-learn [38]. Simulations

were conducted for 5000hrs, and were stopped early if the population of any strain fell below 1e − 5

(extinction event). Simulations with an extinction event have distances set to maximum in order to

prevent excessive time spent simulating collapsed populations.

4.4 Oscillatory population dynamic objective

We define the oscillatory population dynamic using three summary statistics for each strain. First,

we use Fourier transform of the population signal to find the maximum frequency, f , and convert this
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d1

d0
d0

d1

d0

d1

dt 2dt 3dt0

...

Figure 5: Illustration of dual-orbit algorithm used to calculate the λ1. Two orbits with an initial state
separation of d0 are followed. After each time step measure the separation, d1, is measured. The
perturbed orbit (red) is readjusted to prevent excess separation. The average rate of separation
between the two orbits corresponds with the λ1.

to the period, T.

T = 1/f

We set a minimum period of t/2 where t is the simulation time, giving us do1 . do1 . Any simulations in

which T < t/2, do1 is set to 0, this distance ensures that all we have frequencies of oscillations that

are on a scale relevant to the time period being measured. It was found that using the signal fre-

quency alone resulted in acceptance of many simulations with very small oscillations, or simulations

that rapidly dampen. We therefore generated two additional distances that account for oscillation

amplitudes to select for sustained oscillations only. We can define the number of expected peaks in

the simulation, p.

p =
t

T

Peaks in the trajectory are identified by changes from a positive gradient to a negative gradient, and

troughs via changes from negative gradient to positive gradient. The peak-to-peak amplitudes are

calculated by differences between consecutive peaks and troughs. AK is the number of amplitudes
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above the threshold, K = 0.05. do2 is the difference between the number of expected oscillations

in the simulation, and the count of above threshold oscillations. Because incomplete oscillations at

the time the simulation ends can impact the distance measurement, we set a lenient final distance

threshold for do2 . do3 compares the final amplitude AF in the simulation to the threshold. We set

do3 = 0 if do3 > K . If any strain falls below an OD of 10−5, the population is deemed extinct and the

particle rejected.

do1 = |T − t/2|

do2 = |AK − p|

do3 = |AF − K |

εO = {2.0, 2.5, 20.0}

4.5 Maximal Lyapunov exponent calculation

Lyapunov exponents can be used to measure chaotic behaviour; they describe the average expo-

nential rate of divergence between two near trajectories of a dynamical system. The maximal Lya-

punov exponent, λ1, can be used as determinant of chaotic behaviour. Using a method described

by Sprott et al. [39], We evolve two nearby orbits and measure their average rate of separation.

This directly investigates whether small changes to an initial state will produce a disproportionate

separation. By periodically readjusting the distance of divergence after each time step we measure

separation across a period of time, preventing a single event dominating subsequent states (Fig-

ure 5). The method is described in full by Algorithm 1. For all simulations we generate nearby orbits

by perturbing one of the strain initial strain densities by d0 = 10−10. All simulations use a transient

time equivalent to the first 10% of the time series.
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4.6 Chaos population dynamic objective

dC1 is the only distance for the chaotic objective. If dC1 < 0, the particle is rejected. The final

distance threshold, εC , is equivalent to all λ1 > 0.003.

dC1 = 1/(1 + λ1)

εC = {0.997}

For each sampled particle a prescreening process was performed to minimise time spent conducting

the more computationally time consuming dual-orbit method. Simulations in which an strain fell

below 1e-5 were rejected. The number of oscillations with an amplitude greater than 0.05 was

counted for each strain signal. If any strain showed less than 2 oscillations the particle was rejected.

ABC SMC was conducted with population sizes of 10, repeated 255 times yielding a combined final

population of 2550 particles.

4.7 Random forest classifier model

Using the sci-kit learn (sklearn) python package [38], a random forest classifier was trained using

2000 estimators. The data used consisted of 3750 oscillatory input vectors, and 3750 chaotic input

vectors. Training and test datasets were generated with a ratio of 0.5 by random sampling. Figure 6

shows the performance of the classifier model on the test data.
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True 
negative

False
negative

False
positive

True
positive

0.47 0.02

0.07 0.43

Figure 6: Confusion matrix showing accuracy of random forest classifier on test data

Algorithm 1: Description of dual-orbit method, demonstrated with two-dimensional system

1 Set S = 0.0
2 Set parameters and initial state θi = (xi , yi ) for orbit, f (θi )
3 Simulate f (θi ) for transient time, tt , yielding state, θa0
4 Set initial state of nearby orbit, f (θb0), where, θb0 = θa0 + d0
5 Set t = 0
6 Advance f (θa0) and f (θb0) by one step, dt, yielding states θa1 and θb1 respectively
7 Set t = t + dt
8 Calculate separation between the state variables of the two orbits,

d1 = [(xa1 − xb1)
2 + (ya1 − yb1)

2]1/2

9 S = S + log2(|d1/d0|)
10 Readjust θb1 to align directionally with θa1 , xb0 = xa1 + d0(xb1 − xa1)/d1 and

yb0 = ya1 + d0(yb1 − ya1)/d1
11 Set xa0 = xa1 and xb0 = xb1
12 Repeat lines 6 to 11 for n iterations
13 Calculate maximal Lyapunov exponent as an average of the separation values, λ1 = S/n
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4.8 Analysis of m850

m850 is described by the following equations

dN1

dt
= N1

µ1maxS

K + S
− ωmax

N1B
′nω
1

Knω
ω + B ′nω1

− N1D (1a)

dN2

dt
= N2

µ2maxS

K + S
− N2D (1b)

dN3

dt
= N3

µ3maxS

K + S
− ωmax

N3B
′nω
2

Knω
ω + B ′nω2

− N3D (1c)

dS

dt
= D(S0 − S)− µ1N

′
1

γ
− µ2N

′
2

γ
− µ3N

′
3

γ
(1d)

dB1

dt
=

kB1,1N
′
1

CB
− DB1 (1e)

dB2

dt
=

kB2,1N
′
3

CB
− DB2 (1f)

dA1

dt
=

kA1,1N
′
1

CA
− DA1 (1g)

N ′x = NxCN

B ′z = BzCB

A′y = AyCA

kBz,y = KBmaxz
A′nzy

Knz
Bz

+ A′nzy

By setting the right hand side of (1) to 0 we find a number of steady states P = (N1,N2,N3,S ,B1,B2,A1).

The trivial steady state.

P0 = (0, 0, 0, S0, 0, 0, 0). The Jacobian of the linearisation has eigenvalues

−D, −
(
D − µ1max

S0
S0 + K

)
, −

(
D − µ2max

S0
S0 + K

)
, −

(
D − µ3max

S0
S0 + K

)
.
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Consequently the trivial steady state always exists and is linearly stable for

D >
S0

S0 + K
max{µ1max ,µ2max ,µ3max}.

This shows that if the dilution rate is high enough, no strain can survive.

One strain only steady states

There are three steady states where only one strain survives, P1, P2, P3. While P2, and P3 can be

calculated explicitly, P1 is given implicitly (see below).

We start with P2:

P2 = (0,N2, 0,S , 0, 0, 0) , where

N2 =
γ

CN

S0µ2max − D(S0 + K )

µ2max − D
, S =

DK

µ2max − D
.

We see that P2 exists provided

D <
µ2maxS0
S0 + K

.

The linearisation at P2 has eigenvalues

− D, −D
(
1− µ1max

µ2max

)
,−D

(
1− µ3max

µ2max

)
, − 1

Kµ2max

(µ2max − D) (µ2maxS0 − D(S0 + K )) .

This shows that P2 exists and is linearly stable if

D <
µ2maxS0
S0 + K

, and µ2max > max{µ1max ,µ3max}.

The situation for P3 is very similar:

P3 = (0, 0,N3,S , 0, 0, 0) , where

N3 =
γ

CN

S0µ3max − D(S0 + K )

µ3max − D
, S =

DK

µ3max − D
.
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We see that P3 exists provided

D <
µ3maxS0
S0 + K

.

The linearisation at P3 has eigenvalues

− D, −D
(
1− µ2max

µ3max

)
,−D

(
1− µ1max

µ3max

)
, − 1

Kµ3max

(µ3max − D) (µ3maxS0 − D(S0 + K )) .

This shows that P3 exists and is linearly stable if

D <
µ3maxS0
S0 + K

, and µ3max > max{µ1max ,µ2max}.

The steady state P1 = (N1, 0, 0, S ,B1, 0,A1) is more complicated and can not be expressed explic-

itly. Instead it is given as follows: Assume there exists a solution S to the following equation

µ1max

S

K + S
− D = ωmax

(B1(S)CB)
nω

Knω
ω1 + (B1(S)CB)nω

, (2)

where

B1(S) =
KBmax1

kA1

(A1(S)CB)
n1+1

Kn1
AB1

+ (A1(S)CB)n1
, and A1(S) =

kA1γ

CBµ1max

(S0 − S)(K + S)

S
.

If such a solution S exists then B1 = B1(S), A1 = A1(S) and N1 =
DCB
kA1CN

A1.

Lemma 1 There exists a unique steady state P1 if and only if

D < µ1max

S0
K + S0

.

Proof: We need the solution to (2) to fulfil S < S0 in order for A1 to be positive. We interpret the

right and left-hand-sides of (2) as a functions of S , denoting them by R(S) and L(S) respectively.

It is easy to see that A1(S) is a decreasing function of S , B1(S) increases as a function of A1 and

R(S) is an increasing function of B1. Consequently the R(S) is a decreasing function of S . We also

see that R(0) = ωmax > 0 and R(S0) = 0. Further L(0) = −D and L(S0) = µ1max
S0

K+S0
− D and

L(S) increases as function of S . This proves the statement. �.
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To summarise, the single-strain survival steady state requires the corresponding maximal growth

rate to be large compared to other parameters.

The three-strain co-existence steady state. P123 = (N1,N2,N3, S ,B1,B2,A1).

From the equation for N2 we obtain that

S =
DK

µ2max − D
.

µ2max < min{µ1max ,µ3max}, D < min{µ2max

S0
K + S0

,ωmax
µ2max

µ1max − µ2max

,ωmax
µ2max

µ3max − µ2max

}

Stability. Solved numerically using MATLAB. For each of the 3750 chaotic input vectors we used

numerical root finding to calculate P123, and determined its stability by numerically determining the

eigenvalues of the Jacobian. We found P123 existed for all 3750 input vectors and was stable for

7.8% of them.
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Parameter /
State vari-
able

Description Prior
(min)

Prior
(max)

Units Citation

Parameters
CN OD to cell number scaling factor 1e9 1e9 None N/A
CB Microcin scaling factor 1e−9 1e−9 None N/A
CA QS scaling factor 1e−9 1e−9 None N/A
D Dilution rate 0.01 0.5 h−1 N/A
KAyBz Half maximal QS promoter activa-

tion/repression from Ay to Bz

1e−9 1e−6 M [40]

K Monod’s half saturation constant 3.9e−5 3.9e−5 M [41]
Kω Half saturation killing constant 1e−7 1e−6 M [42, 43]
S0 Substrate concentration of input media

(0.4% glucose)
0.02 0.02 M M9 media

γ E. coli substrate yield 1e11 1e11 cell M−1 [44]
kAy Production rate of AHL per cell 1e−22 1e−15 M h−1 [45]
KBmaxz Maximal expression rate of microcin 1e−22 1e−15 M h−1 [46]
µxmax Maximum growth rate 0.4 3 h−1 [47, 48]
nz Hill coefficient AHL induced expression 1 2 M [40]
nω Hill coefficient for killing 1 2 M [40]
ωmax Maximum rate of bacteriocin killing 0.5 2.0 M−1 h−1 [49, 42,

43]
Initial state variable

N OD of strain 0.01 0.5 OD N/A
S 0.4% glucose concentration 0.02 0.02 M N/A
B Microcin concentration 1e−81 1e−81 M CB N/A
A QS concentration 1e−10 1e−10 M CA N/A

Table 1: Prior distributions for both two and three strain systems are sampled uniformly between the
min and max values listed below. Constant parameters have the same min and max value
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Parameter/State
variable

value

Parameters
CN 1e9
CB 1e−9
CA 1e−9
D 0.167
KA1B1 3.37e−9
KA1B1 4.26e−8
K 3.9e−5
Kω 1.6e−7
S0 0.02
γ 1e11
kAy 3.5e−17
KBmax1 3.58e−17
KBmax2 8.89e−16
µ1max 2.61
µ2max 1.17
µ3max 1.48
n1 1.2
n2 1.43
nω 1.87
ωmax 0.79

Initial state variable
N1 0.24
N2 0.25
N3 0.27
S 0.02
B1 1e − 71
B2 1e − 71
A1 1e − 10

Table 2: Fixed parameters used in Figures 3d and Figures 4.
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Algorithm 2: Algorithm for model selection with ABC SMC

1 Set population indicator, t = 0
2 Set initial epsilon, εt = inf
3 Set final epsilon, εF = [x , y , z ]
4 Set particle indicator, i = 0
5 if t = 0 then
6 Sample m∗ from π(m)
7 Sample θ∗∗ from π(θ(m∗))

8 else if t > 0 then
9 Sample particle θ∗ from previous population {θ(m∗)it−1} with weights w(m∗)t−1

10 Perturb θ∗ to obtain θ∗∗ ∼ Kt(θ|θ∗)
11 if π(θ∗∗) = 0 then
12 go to 5
13

14 Simulate, x∗ ∼ f (x |θ∗∗,m∗)
15 if d(x∗, x0) > εt then
16 go to 5
17

18 Set mi
t = m∗

19 Set θit = θ∗∗

20 Calculate particle weight, w i
t

21 if t = 0 then
22 w i

t = 1
23 else
24 w i

t =
π(θ∗∗)∑N

j=1 w
j
t−1Kt(θit−1|θ∗∗)

25 if i < N then
26 Set i = i + 1
27 go to 5
28

29 Normalise weights for every m.
30 if εt 6= εT then
31 Update population number, t = t + 1
32 Update ε according to accepted particle distances, εt = fε()
33 go to 5
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