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Abstract

Data-driven discovery of image-derived phenotypes (IDPs) from large-scale multimodal brain imaging data
has enormous potential for neuroscientific and clinical research by linking IDPs to subjects’ demographic, be-
havioural, clinical and cognitive measures (i.e., non-imaging derived phenotypes or nIDPs). However, current
approaches are primarily based on unsupervised approaches, without use of information in nIDPs. In this pa-
per, we proposed Supervised BigFLICA (SuperBigFLICA), a semi-supervised, multimodal, and multi-task fusion
approach for IDP discovery, which simultaneously integrates information from multiple imaging modalities as
well as multiple nIDPs. SuperBigFLICA is computationally efficient and largely bypasses the need for parame-
ter tuning. Using the UK Biobank brain imaging dataset with around 40,000 subjects and 47 modalities, along
with more than 17,000 nIDPs, we showed that SuperBigFLICA enhances the prediction power of nIDPs, bench-
marked against IDPs derived by conventional expert-knowledge and unsupervised-learning approaches (with
average nIDP prediction accuracy improvements of up to 46%). It also enables learning of generic imaging
features that can predict new nIDPs. Further empirical analysis of the SuperBigFLICA algorithm demonstrates
its robustness in different prediction tasks and the ability to derive biologically meaningful IDPs in predicting
health outcomes and cognitive nIDPs, such as fluid intelligence and hypertension scores.

Keywords: Multimodality, Brain imaging, UK Biobank, Imaging-derived phenotypes, Non-imaging derived
phenotypes.

1. Introduction1

Large-scale population neuroimaging datasets, such as the data from UK Biobank, provide high-quality2

multimodal magnetic resonance imaging (MRI) data, with the potential for generating markers of psychiatric3

and neurodegenerative diseases and uncovering the neural basis of cognition through linking across imaging4

features to behavioural or genetic data (Miller et al., 2016). However, such massive high-dimensional data make5

statistical modelling challenging due to their multimodal nature and cohort size. Therefore, instead of working6

directly from voxel-level spatial maps, it is becoming popular to reduce these maps into summary measures,7

sometimes referred to as ‘imaging-derived phenotypes (IDPs)’(Gong et al., 2021; Dadi et al., 2020; Elliott et al.,8

2018). IDPs can be spatial summary statistics such as global and regionally averaged tissue volumes, while9

other IDPs can be measures of functional and structural connectivity or tissue biology. Building statistical10

models from an informative set of IDPs can significantly reduce the computational burden and, compared to11

working from voxel-wise data, has a similar or even improved signal-to-noise ratio for use in associations with12

non-imaging variables and predictive analysis linking to, e.g., behaviour and genetics.13

Methods for deriving IDPs can be divided into two categories, one expert-knowledge-based and the other14

data-driven. The former approaches are typically concerned with extracting summary signals from pre-defined15

anatomy or functional brain atlases (Eickhoff et al., 2018). Although simple and efficient, this approach has a16

few limitations. First, the atlases may not be equally valid across different areas of the brain. For example, ex-17

isting atlases typically provide fine-grained delineations across sensory cortices and less detailed across mul-18

timodal association cortices. These differences may result in increased inter-individual differences across dif-19

ferent brain areas, potentially masking the signal of interest. Second, these regional characterisations are often20

derived from underlying features that may not appropriately map onto different data modalities. For example,21

atlases based on cytoarchitectonic features may differentially be suitable for IDPs reflecting regional cortical22

thickness but may be less suitable for summarising measures of functional connectivity. Furthermore, with23
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multimodal data, expert-knowledge-based approaches typically ignore cross-modal relationships and thus24

have limited ability to capture continuous modes of variations shared by different modalities. Data-driven ap-25

proaches for identifying IDPs, e.g., variants of unsupervised spatial dimensionality reduction techniques, may26

overcome the aforementioned limitations of expert-knowledge-based approaches. For example, independent27

component analysis (ICA) and dictionary learning (DicL) have been widely used to define “soft” brain parcel-28

lations in resting-state functional MRI analysis (Beckmann and Smith, 2004; Varoquaux et al., 2011). They are29

based on arguably objective criteria such as maximising non-Gaussianity or minimising data reconstruction30

errors and can, in theory, be applied to a wide variety of different modalities. In a multimodal setting, FMRIB’s31

Linked ICA (FLICA) (Groves et al., 2011) is one approach for identifying continuous spatial modes of individ-32

ual variations that are related to a range of behavioural phenotypes and diseases (e.g., lifespan development33

(Douaud et al., 2014) and attention deficit hyperactivity disorder (Ball et al., 2019)). In our previous work, we34

developed BigFLICA, extending the original computationally expensive FLICA to handle larger datasets such35

as UK Biobank (Gong et al., 2021). These data-driven approaches have the advantages of being objective and36

considering cross-modal relationships, thereby revealing patterns that are ignored by expert-knowledge-based37

approaches (Calhoun and Sui, 2016; Uludağ and Roebroeck, 2014).38

One of the primary applications of extracting imaging features as IDPs is predicting non-imaging derived39

phenotypes (nIDPs), including demographic, behavioural, clinical and cognitive measures from individuals.40

While the approaches listed above are designed to capture spatial modes of variation from the imaging data41

faithfully, they are not explicitly optimised for the latter prediction task. Incorporating the “target” nIDP in-42

formation into IDP discovery, therefore, may benefit IDP extraction. Various studies have proposed (semi-43

)supervised approaches for IDP discovery, e.g., Qi et al. (2017) developed a multimodal fusion with reference44

approach and applied it to find multimodal modes related to schizophrenia (Sui et al., 2018) and major de-45

pressive disorder (Qi et al., 2018). Another line of research focused on complex nonlinear approaches, such46

as multiple kernel learning (Zhang et al., 2012a; Zhou et al., 2020; Liu et al., 2020), graph-based transductive47

learning (Wang et al., 2017) and neural networks such as multilayer perceptrons (Lu et al., 2018; Lee et al.,48

2019), which proved successful in predicting neurological disorders such as Alzheimer’s disease. However, two49

caveats still exist in the above approaches. First, most of them do not scale well to big datasets due to expensive50

computational loads and high memory requirements. Second, nonlinear approaches heavily rely on param-51

eter tuning and therefore require additional (cross-)validation for setting appropriate values. Furthermore, it52

is often difficult to make meaningful interpretations of the“black-box” nonlinear approaches, as explanations53

for deep neural networks produced by existing methods largely remain elusive and are yet to be standardised54

(Adadi and Berrada, 2018; Gilpin et al., 2018). As a result, it remains difficult to interpret the neural system that55

each feature (or spatial summary statistic) represents.56

In this paper, to address these issues, we developed ‘Supervised BigFLICA’ (SuperBigFLICA), a semi-supervised,57

multimodal, and multi-task fusion approach for IDP discovery, which simultaneously integrates information58

from multiple imaging modalities as well as from multiple nIDPs. By incorporating nIDPs in the modelling,59

one can hope to achieve better nIDP prediction than by training on the imaging data alone, as this exploits the60

covariance structure inherent in the nIDP space in addition to the predictive power of the imaging data. In the61

model, we use one or more target nIDPs to help the model learn spatial features that are biologically important62

in that they are generically useful in prediction, rather than only taking the route of classical unsupervised ap-63

proaches of simply focusing on learning features for representing/reconstructing the image data with minimal64

loss. Further, using multiple nIDPs in training - a technique known as multi-task learning (Zhang and Yang,65

2017) - one can hope to refine the learned latent space better than when using single nIDPs, which are often66

noisy descriptions of the phenotype of interest (e.g., fluid intelligence). Compared with learning to predict each67

of the response variables individually, training across a range of noisy but related tasks simultaneously guides68

the model to characterise feature space shared across tasks, potentially leading to improved predictive power69

of the derived IDPs (Zhang and Yang, 2017; Rahim et al., 2017; Marquand et al., 2014). Additionally, the multi-70

task learning frameworks may still be useful even if one is interested in predicting unseen nIDPs (new tasks),71

because the latent space learned via a multi-task setting generically is more transferable and thus has higher72

predictive power.73

SuperBigFLICA decomposes the imaging data into common ‘subject modes’ across modalities, which char-74

acterise the inter-individual variation of a given underlying spatial component, along with modality-specific75

sparse spatial loadings and weightings (Groves et al., 2011; Gong et al., 2021). It minimises a composite loss76

function, consisting of both reconstruction errors of the imaging data (‘unsupervised learning’) and the predic-77

tion errors of nIDPs (‘supervised learning’), while additionally having constraints pushing for spatially sparse78

representations. Further, being built on a Bayesian framework, SuperBigFLICA can automatically balance the79

weights of different modalities and nIDPs, thereby aiming to largely bypass the need for parameter tuning.80

Optimised by a mini-batch stochastic gradient descent algorithm, SuperBigFLICA is computationally efficient81

and scalable to large datasets. In this study, we evaluate the performance of SuperBigFLICA across 39,770 UKB82

subjects, using 47 imaging modalities and 17,485 nIDPs. We show that SuperBigFLICA enhances the predic-83

tive power of the derived IDPs, benchmarked against those discovered by the conventional expert-knowledge84
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Figure 1: Overview of the proposed SuperBigFLICA approach for supervised multimodal fusion and phenotype discovery.

and unsupervised-learning approaches. Finally, we provide a comprehensive empirical analysis of the Super-85

BigFLICA algorithm and demonstrate its potential for predicting health outcomes and cognitive nIDPs.86

2. Methods87

2.1. SuperBigFLICA from an optimisation perspective.88

We assume our data is being derived from a group of N subjects with multiple imaging modalities. Each89

of these modalities has been processed to produce one or more voxel-wise maps (or network matrices). For90

example, a task fMRI scan may produce several task contrast maps through statistical parametric mapping91

(Penny et al., 2011), and a diffusion MRI analysis can produce maps such as fractional anisotropy (FA) and92

mean diffusivity (MD) per subject. We assume that we have a total of K modality maps per subject, and each93

modality k is represented by a matrix X(k) of size N ×Pk , where Pk is the number of feature values (e.g., voxels,94

tracts, areas, edges or vertices). We also assume that there are Q nIDPs per subject, summarised in a matrix Y95

of size N ×Q. We want to find an L-dimensional latent space across modalities, optimally predicting multiple96

nIDPs of interests in unseen subjects and representing the original imaging data. This latent space corresponds97

to the weights of continuous spatial modes representing inter-individual variations.98

Formalising this in terms of a generative model, we will assume each modality map is generated as the99

product of the shared latent space, modality-specific spatial loadings and weights plus some Gaussian residual100

noise:101

X(k) = Z H (k)W (k) +E (k), k = 1, . . . ,K (1)

Meanwhile, the nIDPs of interest are generated by the product of shared latent space and the prediction weights102

plus some Gaussian residual noise:103

Y = Z B +E . (2)

In the above two equations, W (k)
(L×Pk ) are the spatial loadings of the k-th modality map, which models the im-104

portance of each voxels to each latent dimension; H (k)
(L×L) is a positive and diagonal modality weighting matrix105

(with
∑K

k=1 H (k)
l l = 1), which reflects, for each component, the overall contribution of each modality; and Z(N×L)106

is the latent features, i.e., the subject course shared across modalities; B is an L×Q matrix of prediction weights,107

which reflects the contribution of each latent dimension for predicting each nIDP; and finally, E (k) and E are108

independent Gaussian random error terms. Fig. 1 shows an overview of the proposed approach.109

We have three assumptions for the model. First, the subject loading Z(N×L) is generated by:110

Z = 1

K

K∑
k=1

Z (k) = 1

K

K∑
k=1

X(k)(H (k)W (k))′, (3)

This shared subject loading is a weighted average of subject loadings per modality, in analogy to the original111

FLICA model (Groves et al., 2011). This quantity is useful when we want to estimate the contribution of different112

modalities to the final prediction.113
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Second, the spatial loadings W (k) are approximately row-wise uncorrelated. We used a reconstruction loss114

to achieve this, which has been used in reconstruction independent component analysis (Le et al., 2011):115

min
W,H

K∑
k=1

‖X(k) −Z (H (k)W (k))‖2
2 (4)

Note that the transpose of H (k)W (k) in Eq. (3) - due the soft orthogonality constraint for spatial loadings - will116

approximate the matrix inverse (Le et al., 2011). For example, when we have a single modality, the loss becomes117

minW,H ‖X − X W H H ′W ′‖2
2, which means W H H ′W ′ will approximate the identity matrix. A similar property118

holds when we have K modalities.119

Third, we assume sparsity in both spatial loadings and prediction weights - this we enforce through L1120

regularisation. The orthogonal and sparsity constraints on spatial loadings will drive the model to find spatial121

sparse and non-Gaussian sources, similar to independent component analysis.122

We combine the above model assumptions by means of the following objective function:123

min
W,H ,B

K∑
k=1

(λ(k)
1 ‖X(k) −Z (H (k)W (k))‖2

2 +λ(k)
2 |W (k)|)︸ ︷︷ ︸

data reconstruction loss

+
Q∑

i=1
(λ(i )

3 ‖Yi −Z Bi‖2
2 +λ(i )

4 |Bi |)︸ ︷︷ ︸
nIDP prediction loss

(5)

Where Yi is the i -th column of Y , and Bi is the i -th column of B .124

2.2. SuperBigFLICA in a Bayesian framework.125

Identification of the relative weighting parameters between the reconstruction loss, the prediction loss and126

the sparsity loss (i.e., the λ parameters) through cross-validation is prohibitively expensive. Instead, we take127

a Bayesian perspective to tune the parameters. We assume normally distributed residual errors for the re-128

construction and prediction terms and place Laplacian priors on the spatial loadings and prediction weights.129

Consequently, the λ parameters above will automatically become parameters in the distributions that can be130

jointly optimised with other model parameters.131

For each imaging modality X(k), the probabilistic model for the data reconstruction part is:132

P (X(k)|Z ,W (k), H (k),σ(k)) = N (Z H (k)W (k), (σ(k))2I ) (6)

Where σ(k) is the modality-specific noise term (where we have assumed the noise is shared across voxels as in133

FLICA(Groves et al., 2011)). We place a Laplacian prior on each element of spatial loadings (Park and Casella,134

2008):135

P (W (k)|b(k)) = 1

2b(k)
exp

(
−|W (k)|

b(k)

)
(7)

Further, we place a Gamma prior on each x = (σ(k))2 as P (x|α1,β1) = α
β1
1 xα1−1e−β1 x

Γ(α1) , and a non-informative136

scale-invariant marginal prior on x = (b(k))2 as P (x) = 1/x.137

The probabilistic model for the prediction part is:138

P (Yi |Z ,Bi ,γ2
i ) =N (Z Bi ,γ2

i I ), (8)

where γi is a task-specific noise term. We also place a Laplacian prior on prediction weights Bi (Park and139

Casella, 2008):140

P (Bi |ci ) = 1

2ci
exp

(
−|Bi |

ci

)
, (9)

and place a Gamma prior on each x = (γ(k))2 as P (x|α2,β2) = α
β2
2 xα2−1e−β2 x

Γ(α2) , together with a non-informative141

scale-invariant marginal prior on x = c2
i as P (x) = 1/x.142

The posterior distribution of model parameters θ = (W (k), H (k),Bi ,σ(k),b(k),γi ,ci ),k = 1, . . . ,K , i = 1, . . . ,Q,143

given the data D = (X(1), . . . ,X(K),Y) then becomes:144

logP (θ|D) ∝ logP (D|θ)P (θ) = logP (X(1), . . . ,X(K)|θ)P (Y|Z ,θ)P (θ) (10)

Note that the “auto” weights among imaging and nIDPs are proportional to the inverse of the residual predic-145

tion variance. But these two types of data usually have completely different properties, so that we don’t want146
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to treat them equally. We therefore add one tuning parameter λ ∈ [0,1] to balance the weights between recon-147

struction and prediction losses. Tuning this λ is shown to be useful in different kinds of prediction tasks in our148

experiments later. Thus, we get a modified posterior to be maximized:149

λ
K∑

k=1

(
logP (X(k)|θ)+ logP (σ(k),W (k),b(k))

)
+ (1−λ)

Q∑
i=1

(
logP (Yi|Z ,θ)+ logP (γi ,Bi ,ci )

)
=λ

K∑
k=1

[(
− 1

2(σ(k))2
‖X(k) −Z H (k)W (k)‖2

2 + (2α1 −3)log(σ(k))−β1(σ(k))2
)
+

(
−2log(b(k))− 1

b(k)
|W (k)|

)]
︸ ︷︷ ︸

data reconstruction loss

+ (1−λ)
Q∑

i=1

[(
− 1

2(γi )2 ‖Yi −Z Bi‖2
2 + (2α2 −3)log(γi )−β2(γi )2

)
+

(
−2log(ci )− 1

ci
|Bi |

)]
︸ ︷︷ ︸

nIDP prediction loss

+const

(11)

We can appreciate from Eq. (11) that, the λs in Eq. (5) have been replaced by learnable parameters in the prior150

distribution of spatial weights and prediction weights (e.g., Gaussian and Laplacian priors), and these learn-151

able parameters have their priors (i.e., Gamma or non-informative priors). The weights among modalities and152

nIDPs are proportional to the inverse of the residual prediction variance. This is analogous to a Bayesian linear153

regression with unknown residual variance (Bishop, 2006). The motivation is that the tasks (e.g., prediction154

or reconstruction) with larger error/uncertainty will be given lower weights (Kendall et al., 2018). We can also155

replace the Laplacian prior with other sparsity priors to achieve an equivalent sparsity effect. Such alternative156

priors include the automatic relevance determination (ARD) prior(Wipf and Nagarajan, 2008), the spike-and-157

slab prior (Mitchell and Beauchamp, 1988), and the Gaussian mixture model prior (used in our original FLICA158

work (Groves et al., 2011)).159

We may later be interested in the contribution of a modality within a latent component to prediction of a160

specific nIDP. This can be estimated by the correlation between a column of Z (k) in Eq. (3) and an nIDP. This161

is because Z (k) is the subject course generated by the k-th modality, which has been used to predict an nIDP162

linearly.163

2.3. Model parameter optimization.164

The SuperBigFLICA model is implemented using Pytorch which can be easily run on a CPU and can be165

adapted to GPU usage for a more efficient model training. We obtain the maximum-a-posterior (MAP) solu-166

tion of all parameters using a standard mini-batch stochastic gradient-descent (SGD) algorithms. Here, we167

have used the Adam optimizer (Kingma and Ba, 2014) for parameters W (k), H (k),Bi , and the RMSprop opti-168

mizer (Tieleman and Hinton, 2012) for parameters σ(k),b(k),γi ,ci , owing to empirical performance. The first169

order gradient-based algorithms were used because of their computational efficiency and low memory require-170

ment suitable for optimising high-dimensional parameter space. Below, we evaluate the proposed combined171

optimisers with other standard first-order methods such as SGD with momentum (Sutskever et al., 2013), Adam172

or RMSprop, and a quasi-Newton methods L-BFGS (Liu and Nocedal, 1989). We fixed the mini-batch size to173

512 subjects and chose the optimal learning rate from 0.0001,0.001,0.01, and the tuning parameters λ from174

1E −5 to 0.99999. Dropout regularization with p = 0.2 is used on input modalities X (k) and subject loading Z175

to decrease the chance of overfitting (Srivastava et al., 2014). Batch normalisation is used on Z in the training176

stage (Ioffe and Szegedy, 2015). The total number of epochs (number of times the full data passes through177

the model) is 50, the learning rate decreases by 1/2 every ten epochs. The model weights are initialised by178

Gaussian-distributed random numbers of mean 0 and variance 1.179

3. Experiments180

3.1. Brain imaging data.181

Voxel-wise neuroimaging data of 47 modalities from 39,770 subjects were used in this paper, including:182

(1) 25 “modalities” from the resting-state fMRI ICA dual-regression spatial maps after Z -score normalisation183

(Miller et al., 2016) ; (2) 6 modalities from the emotion task fMRI experiment: 3 contrast (shapes, faces, faces>shapes)184

of Z -statistics and 3 contrasts of parameter estimate maps (Miller et al., 2016) that reflect %BOLD signal change;185

(3) 10 diffusion MRI derived modalities (9 TBSS features, including FA, MD, MO, L1, L2, L3, OD, ICVF, ISOVF186

(Smith et al., 2006; Zhang et al., 2012b) and a summed tractography map of 27 tracts from AutoPtx in FSL187

(De Groot et al., 2013)); (4) 4 T1-MRI derived modalities (grey matter volume and Jacobian deformation map188

(which shows expansion/contraction generated by the nonlinear warp to standard space, and hence reflects189

local volume) in the volumetric space, and cortical area and thickness in the Freesurfer’s fsaverage surface190

space; (5) 1 susceptibility-weighted MRI map (T2-star); (6) 1 T2-FLAIR MRI derived modality (white matter191

hyperintensity map estimated by BIANCA (Griffanti et al., 2016)). The UK Biobank imaging data were mainly192
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Table 1: Non-imaging derived phenotypes used in this study.

Non-imaging derived phenotypes

Fluid intelligence
Hypertension
Handedness
Treatment/medication code (1140884600 - metformin)
Diabetes diagnosed by doctor
Non-cancer illness code, self-reported (1261 - multiple sclerosis)
Overall health rating
Age started wearing glasses or contact lenses
Number of treatments/medications taken
Mean time to correctly identify matches
Maximum digits remembered correctly
Number of self-reported non-cancer illnesses

preprocessed by FSL (Smith et al., 2004; Jenkinson et al., 2012) and FreeSurfer (Fischl, 2012) following an opti-193

mized processing pipeline(Alfaro-Almagro et al., 2018) (https://www.fmrib.ox.ac.uk/ukbiobank/). From194

the voxel-wise modality maps, we generate 3,913 IDPs, including global and local features from the six imaging195

modalities (T1, T2-FLAIR, swMRI, task fMRI, resting-state fMRI, and diffusion MRI) (Smith et al., 2020) further196

specified in the supplementary file.197

3.2. Non-imaging derived phenotypes.198

A total of 17,485 non-imaging derived phenotypes (nIDPs) were used in this paper. We mainly analyzed199

12 of them in the ‘physical’, ‘cognition’, and ‘health outcome’ domains, summarised in Table 1. These nIDPs200

were selected to allow for a direct comparison to our previous work, as they were the best predicted nIDPs in201

cognition and health outcome domains by our baseline approach BigFLICA (Gong et al., 2021). The direct com-202

parison of performance between SuperBigFLICA and BigFLICA approaches enables us to study the benefits of203

including the supervised loss terms.204

3.3. Confounding variables and missing values.205

Before carrying out nIDP prediction, a total of 597 confounding variables were regressed out from both206

voxelwise imaging data and nIDPs, using linear regression (Alfaro-Almagro et al., 2021). Missing modality data207

for a subject were imputed by the mean map of all other subjects. We did not impute missing nIDPs, and208

therefore, in the SuperBigFLICA model, only data-reconstruction-related losses play a role for subjects with209

missing nIDP data.210

3.4. Imaging data pre-reduction using dictionary learning.211

There are tens of thousands of voxels per modality, so a direct fitting of SuperBigFLICA using voxel-level212

data is computationally expensive and memory-consuming. Although we can perform mini-batch optimi-213

sation on the subjects, we need to keep K big voxel-by-component spatial maps as learnable parameters in214

memory. One possible solution is to use sparse dictionary learning for voxel space dimension reduction before215

running SuperBigFLICA. As shown in our previous work (Gong et al., 2021), for BigFLICA, sparse dictionary216

learning will reduce the computation load of the optimisation and may increase the modality-specific signal-217

to-noise ratio. This is because the overall model is linear, so that a pre-dimension reduction using a (linear)218

dictionary learning should not interfere with important information that can be captured by BigFLICA, but will219

potentially have the de-noising effect. Owing to the similar property of the models employed in BigFLICA and220

SuperBigFLICA, we expect sparse dictionary learning to perform similarly well. Here, we evaluate the effect221

of data reduction on the final prediction across the voxel-domain between 100 and 2,000 dictionary features222

per modality before running any subsequent algorithm, e.g., BigFLICA or SuperBigFLICA. Note that this pre-223

reduction can also be performed with nIDP information included. We therefore also tested applying a “single-224

modality” SuperBigFLICA to each single modality map (which is just a special case with K = 1) with all 17,485225

nIDPs as supervision before using SuperBigFLICA for multimodal analysis.226

3.5. Baseline: nIDP prediciton using hand-curated IDPs and modes of BigFLICA.227

In real data, we rely on the performance of predicting nIDPs as a surrogate criterion to evaluate different228

methods, given that “ground-truth” IDPs do not in general exist. As a baseline approach, we compare hand-229

curated IDPs and modes of BigFLICA. The pipeline for prediction follows our previous work (Gong et al., 2021).230

In brief, 3,913 IDPs and 1,000 modes of BigFLICA are extracted from UK Biobank imaging data. BigFLICA used231

a 3,500-dimensional MIGP approach (Gong et al., 2021) and a 2,000-dimensional dictionary learning approach232

as data preprocessing (Gong et al., 2021) before running the core FLICA variational Bayesian optimization.233
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Here, a high dimensional decomposition was chosen as in our previous work on BigFLICA, which achieved234

the best prediction accuracy for most nIDPs (Gong et al., 2021). Further, elastic-net regression, from the glmnet235

package (Zou and Hastie, 2005), was used to predict each of the 12 nIDPs separately (known as single-task236

learning) using IDPs or FLICA subject modes as model regressors (features). This approach is widely used and237

has been shown to achieve robust and state-of-the-art performance in many neuroimaging studies(Cui and238

Gong, 2018; Jollans et al., 2019).239

We randomly selected a subset of 25,000 subjects for model training, while the validation set contains 5,000240

different subjects, and the test set was formed from the remaining 9,770 subjects. All methods’ comparisons are241

using the same train-test split. For single-task learning, the prediction accuracy was quantified as the Pearson242

correlation between predicted and the true values of each nIDP in the test sets. For multi-task learning, the243

prediction accuracy was quantified as the sum of correlations with nIDPs larger than 0.1.244

3.6. Predicting nIDPs using single-task and multi-task SuperBigFLICA.245

In order to demonstrate how SuperBigFLICA with one or more target nIDPs in training can boost the per-246

formance compared to hand-curated IDPs and unsupervised BigFLICA, first, we trained single-task Super-247

BigFLICA with each of the 12 nIDPs as a supervision target. We then trained multi-task SuperBigFLICA by248

including each target and the top 24 or 99 most highly correlated (with the target) nIDPs from all 17,485 avail-249

able nIDPs from the UK Biobank dataset, in the training stage. In previous work, it was already established250

that the inclusion of correlated tasks as targets could boost the performance of single-task learning (Zhang and251

Yang, 2017; Rahim et al., 2017). Therefore, we performed 25- or 100-dimensional multi-task learning (sepa-252

rately) for each of the 12 nIDPs and evaluated the prediction performance. Note that while an additional 24 (or253

99) nIDPs (that are correlated to the target nIDP) are used to help in the training, they are not used in test data254

to help the prediction - only the imaging data from test subjects is used in predictions of nIDPs in test subjects.255

Finally, we trained SuperBigFLICA with all 17,485 nIDPs as supervision targets. For the tuning parameters, the256

number of latent components was chosen to be 25, 100, 250, 500, or 1,000, and the λ parameter is chosen from257

1E −5 to 0.99999. We evaluated the influence of λ, and different random model parameter initialisations on258

the final prediction performance.259

3.7. Evaluation of the generalisability of SuperBigFLICA modes on unseen nIDPs.260

One of the fundamental goals of phenotype discovery is to learn a low-dimensional latent space that is261

generalisable in that it can predict “unseen” nIDPs. In the above analyses, the nIDP to be predicted was always262

included in the training stage. Here, we evaluated whether SuperBigFLICA can generate a good representation263

for entirely new tasks, wherein in the training stage, we only use nIDPs that are not our targets. To do this,264

for a given nIDP that we want to predict (e.g., fluid intelligence), we first compute the correlations between265

this target nIDP and all other 17,485 nIDPs. We selectively include the 16,485 least correlated nIDPs for training266

SuperBigFLICA, ignoring the 1,000 most strongly covarying nIDPs in training. This means that, for example, the267

mean correlation of 16,485 nIDPs with the target variable fluid intelligence is 0.007, and nIDPs with correlation268

> 0.032 with fluid intelligence are removed in training. This experiment simulates a “bad” situation where269

almost no nIDPs are related to our target when generating the latent space. We then used elastic-net regression270

to predict our target nIDP using the resulting latent space, in order to evaluate the degree to which the inclusion271

of unrelated nIDPs constraints the learning towards IDP features that are more generally useful for prediction272

across a wide range of nIDPs, and thereby ultimately also improves prediction for specific nIDPs of interest.273

This may also relate to the concept of transfer learning, where we can use multiple nIDPs to learn a space that274

generically has high predictive power.275

4. Results276

4.1. Comparing SuperBigFLICA with hand-curated IDPs and modes of unsupervised BigFLICA.277

We first compared SuperBigFLICA with hand-curated IDPs and BigFLICA, and then compared different278

variants of SuperBigFLICA, in terms of prediction accuracy of nIDPs (Method sections 3.5, 3.6 and 3.7). Each279

subfigure of Fig.2 shows the overall prediction accuracy of different experimental approaches for 12 nIDPs. We280

report the results that use the dictionary dimension of 250 for each modality (detailed in the next section). The281

test accuracy is obtained using the best tuning parameters (λ and number of latent components ) selected in282

the validation set.283

The first two columns are the accuracy of elastic-net regression with hand-curated IDPs and modes of un-284

supervised BigFLICA as input features, while the third column is the accuracy of single-task SuperBigFLICA285

trained end-to-end. We can see that in almost all cases, the accuracy of semi-supervised training outper-286

forms hand-curated IDPs and unsupervised BigFLICA. The average percent improvement of single-task Su-287

perBigFLICA compared with hand-curated IDPs and BigFLICA are 46% and 25%.288
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Figure 2: Comparison of SuperBigFLICA with hand-curated IDPs and modes of unsupervised BigFLICA for the 12 nIDPs
listed in Table 1. Each figure shows - for a different nIDP - the predictive correlation of different approaches and differ-
ent parameter settings. The first and second column shows the ’baseline’ prediction accuracy of IDPs and BigFLICA. The
third column shows the accuracy of single-task SuperBigFLICA trained end-to-end. The fourth and fifth columns show
prediction accuracy of multi-task SuperBigFLICA, with 24 and 99 most correlated nIDPs as auxiliary tasks for supporting
the training of the main nIDP of interest. The sixth column shows the generalisability accuracy of SuperBigFLICA modes
on unseen nIDPs, where the main nIDP of interest is not included in the learning of latent space but only 16485 nIDPs that
are least correlated with it. The seventh column shows the prediction accuracy when we fuse all 47 modalities and use all
17,485 nIDPs to train a single model.

The fourth and fifth columns of each subfigure of Fig.2 show prediction accuracy of multi-task Super-289

BigFLICA, with 24 and 99 most correlated nIDPs as auxiliary tasks for supporting the training of the main nIDP290

of interests. We can see that multi-task learning usually further improves the prediction accuracy compared291

with single-task SuperBigFLICA. The average per cent improvement of two multi-task BigFLICA compared with292

single-task SuperBigFLICA are 9% and 7%.293

The sixth column of each subfigure of Fig.2 shows the generalisability of SuperBigFLICA modes on unseen294

nIDPs, where the main nIDP of interests is not included in learning the latent space (only nIDPs that are at best295

weakly correlated with the main nIDP of interests are involved). We then used elastic-net regression to predict296

the main nIDP based on the learned latent space as regressors. Overall, this is expected to perform worse than297

single-task and multi-task SuperBigFLICA because the target nIDP is not involved in the training. However, it298

still outperforms unsupervised BigFLICA plus elastic-net by 21%, and is slightly worse than single-task Super-299

BigFLICA. This experiment demonstrated that the inclusion of even irrelevant tasks in the “supervised” training300

could boost the predictive performance of the generated latent space.301

The seventh column of each subfigure of Fig.2 shows the prediction accuracy when we fuse all 47 modalities302

and 17,485 nIDPs to train one multi-task SuperBigFLICA model. We can see that the prediction accuracy is303

similar to single-task SuperBigFLICA for most of the nIDPs.304

4.2. Analysis of SuperBigFLICA algorithm.305

4.2.1. Relationship between prediction accuracy and hyper-parameters.306

We evaluated the influence of the relative weighting between reconstruction loss and prediction loss, i.e.,307

λ, and the number of latent components, on the final prediction performance. Fig.3A shows the mean pre-308

diction correlation of 12 nIDPs listed in Table 1 across different λ and latent components using single-task309

SuperBigFLICA. When the latent dimension is small, we need to choose a small λ (i.e., λ < 0.5, which means310

that the prediction loss has a higher weight than the reconstruction loss) to achieve optimal prediction. When311
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Figure 3: The relationship between the number of latent dimensions (y-axis) and weights between reconstruction and
prediction losses (x-axis) with the mean prediction accuracy across 12 nIDPs listed in Table 1. A. Single-task learning
setting. B. Multi-task learning setting with 24 auxiliary tasks. C. generalisability test.

the latent dimension is large, although a smaller λ also achieves the best prediction accuracy, the influence of312

λ becomes much smaller than using a smaller latent dimension. We can draw a similar conclusion from the re-313

sults shown in Fig.3B, which is the case of multi-task SuperBigFLICA with 24 most correlated nIDPs as auxiliary314

tasks. Conversely, for the generalisability test, Fig.3C shows that the prediction accuracy is low when the latent315

dimension is small. When the latent dimension is large, the prediction accuracy is highest when λ > 0.5, i.e.,316

the reconstruction loss has higher weight than the prediction loss. This analysis guides how to select hyper-317

parameters in different circumstances and demonstrates the usefulness of including both data reconstruction318

and prediction losses in the objective function.319

4.2.2. Influence of imaging space dimension reduction on prediction accuracy.320

We first tested whether the imaging space pre-dimension reduction with dictionary learning influenced321

the final prediction accuracy of nIDPs (Method section 3.4). Fig.4A shows that, for different nIDPs, the average322

accuracy of single-task SuperBigFLICA is similar (0.18 < r < 0.22) across different dictionary dimensions. The323

250-dimensional dictionary learning achieves slightly better performance.324

We further evaluated the use of SuperBigFLICA to perform imaging space dimension “pre-reduction” (250-325

dimension for each modality, the same with dictionary learning), with all 17,485 nIDPs as supervised targets.326

We did not see an improvement relative to using dictionary learning, e.g., for fluid intelligence, the best predic-327

tion correlation is only around r = 0.20, much lower than the result achieved by dictionary learning r = 0.33. A328

lower prediction correlation was also observed for other nIDPs and other SuperBigFLICA dimensions. A possi-329

ble reason is that using all nIDPs in the pre-dimension reduction stage discards information in the imaging data330

related to the target nIDP. Also, we find that using SuperBigFLICA in this situation is more memory intensive be-331

cause we need to keep a huge voxel-by-component spatial weight matrix in memory. In contrast, in dictionary332

learning, we only need to keep a smaller subject-by-component matrix in memory because it performs a mini-333

batch optimisation on the voxel dimension. Finally, another disadvantage of the two-stage supervised learning334

strategy is the need for two nested cross-validation loops for parameter selection, significantly increasing the335

computation cost.336

4.2.3. Influence of parameter initialisation on the prediction accuracy.337

We evaluated the influence of random model parameter initialisations on the final prediction accuracy. We338

tested whether two different random initialisations will result in different accuracy. Therefore, we performed339
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A B

C D

Figure 4: Evaluations of SuperBigFLICA model. A. The average prediction accuracy of 12 nIDPs using different dictionary
learning dimensions in the image data pre-reduction stage. B. The prediction accuracy of 17,485 nIDPs as a result of differ-
ent random parameter initializations. C. Comparing the prediction accuracy of single-task SuperBigFLICA vs. multi-task
SuperBigFLICA for predicting top 10 orthogonal principal components derived from all nIDPs. D. Comparing the predic-
tion accuracy of all 17,485 nIDPs of SuperBigFLICA optimized by different numerical optimizers.

two multi-task SuperBigFLICA experiments with all 17,485 nIDPs as targets. The only difference between these340

two experiments is the different seeds for parameter initialisation. Fig.4B shows the scatter plots of prediction341

correlations of the different nIDPs from two different initialisations. We can see that nIDP correlations < 0.1342

result in a roughly spherical point cloud, while correlations > 0.1 are highly correlated, i.e., different initialisa-343

tions lead to similar nIDP predictions.344

4.2.4. Influence of nIDP task covariance structure on the prediction accuracy.345

We further evaluated whether the increases in prediction accuracy of multi-task learning compared with346

single-task learning result from incorporating information about the task covariance structure into the estima-347

tion. We tested this hypothesis by predicting uncorrelated (orthogonal) nIDPs either using separate single-task348

SuperBigFLICA or jointly using multi-task SuperBigFLICA. To obtain these orthogonal nIDPs, we extracted the349

top 10 principal components from the subject-by-nIDP data matrix. We compared the accuracy when the350

model predicted them separately as single-task learning and jointly as multi-task learning. The result shows351

that the performance is almost the same for each of the 10 “orthogonal“ tasks (Fig.4C). This experiment shows352

that the covariance structure between the different nIDPs enables the multi-task model to improve over and353

above the single-task model.354

4.2.5. Influence of optimisation algorithms on the prediction accuracy.355

We finally evaluated the choice of numerical optimisation algorithms on the prediction accuracy. We took356

an example where we used SuperBigFLICA to fuse all 47 modalities and 17,485 nIDPs to discover a 1,000-357

dimensional latent space. The Adam, SGD, and RMSprop optimisers all perform worse than the combined358

optimisation algorithm in terms of the overall prediction accuracy of the 17,485 IDPs (Fig.4D). The overall ac-359

curacy is estimated by the sum of correlation of nIDPs larger than 0.1.360
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A B

C

Figure 5: Example results of predicting fluid intelligence with a 25-dimentional SuperBigFLICA. A. The prediction
weights of fluid intelligence in a 25-dimensional SuperBigFLICA analysis. B. The contribution of different modalities within
each of 25 SuperBigFLICA components for predicting fluid intelligence. C. The Z -score normalized 47 spatial maps of
modes with strongest contribution to the prediction of fluid intelligence in a 25-dimensional SuperBigFLICA decomposi-
tion, with fluid intelligence as the supervision target (component 2, MNI152 coordinate z=10).

4.3. Real data further qualitative analysis.361

4.3.1. Fluid intelligence prediction using a low-dimensional SuperBigFLICA.362

We first applied a 25-dimensional SuperBigFLICA to predict fluid intelligence scores using data from 47363

modalities. Fig.5A shows the weights of each of the 25 latent components on predicting fluid intelligence scores364

(B in Eq. (2)). Components 2, 4, 9, 11, 15, 17, 18, 20, 23 are selected to contribute to the prediction of fluid365

intelligence, while the remaining components were switched off by the Laplacian prior to only contribute to366

the reconstruction of imaging data. The overall prediction correlation is 0.30.367

Fig.5B shows the contribution of each component and each modality to the prediction of fluid intelligence368

(Method section 2.2)). The components selected for fluid intelligence prediction have higher overall contri-369

butions, which demonstrated the validity of the proposed way to estimate modality contribution. Across the370

different modalities, the components from task contrast maps have the highest contribution to the prediction371

of fluid intelligence, while the resting-state dual-regression spatial maps have a slightly lower contribution. The372

dMRI and sMRI derived modalities contribute least to the prediction.373

Fig. 5C shows the z-score spatial maps of component 2 for each modality, which was generated by regress-374

ing latent components back onto the original voxel-wise data. This component contributes most to the pre-375

diction of fluid intelligence scores. The task contrast maps and resting-state map 5 have the highest voxel-wise376

activations. The regions that show the highest contribution to the prediction of fluid intelligence are mainly lo-377

cated in the precuneus cortex, posterior cingulate gyrus, lateral occipital cortex, insular cortex, inferior frontal378
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gyrus, and frontal pole (Amodio and Frith, 2006). Among them, the insular cortex, inferior frontal gyrus, and379

frontal pole were found significant in task modalities in our previous BigFLICA approach (Gong et al., 2021),380

but with a much higher 750-dimensional decomposition. This reflects the fact that adding supervision to the381

model can help the model learn task-specific patterns easier. In addition, here, with the SuperBigFLICA ap-382

proach, we can observe a more comprehensive ‘multimodal’ effect, such as the changes in cortical surface area383

and thickness in these regions, and changes of tracts and white matter microstructures that connect these re-384

gions, which are also reported in literature (Menary et al., 2013; Chen et al., 2020). Moreover, we also observe385

the precuneus cortex and posterior cingulate gyrus in several resting-state maps, as part of the default mode386

network, involved in fluid intelligence prediction (Santarnecchi et al., 2017).387

4.3.2. Phenotype discovery using a high-dimensional SuperBigFLICA.388

We finally applied SuperBigFLICA to perform a 1,000-dimensional decomposition with all 17,485 nIDPs as389

supervision targets. This 1,000-dimensional latent space can serve as a set of new data-driven IDPs.390

Fig. A.6 shows the Z -score normalised spatial maps of the component that most strongly contributes to391

the prediction of hypertension scores. The prediction correlation is 0.24. The regions that show the highest392

contribution to the prediction of hypertension are mainly located in the precuneous cortex, visual cortex, mid-393

dle temporal gyrus, central opercular cortex, Heschel’s gyrus, inferior frontal gyrus and insular cortex, and also394

external capsule tracts. Again, the modes are more ’multimodal’, and several consistent findings have been395

reported in the literature (Li et al., 2015; Den Heijer et al., 2005; Hannawi et al., 2018).396

Likewise, Fig. A.7 shows the Z -score normalised spatial maps of the mode that contributes most strongly397

to the prediction of age started wearing glasses or contact lenses. The prediction correlation is 0.19. The re-398

gions that show the highest contribution to the prediction of hypertension are mainly located in visual areas,399

especially for resting-state dual regression spatial maps 5, which represents the visual network.400

5. Discussion401

In this paper, we propose SuperBigFLICA, a semi-supervised multimodal data fusion approach that simul-402

taneously reconstructs the original voxel-wise imaging data and best predicts non-imaging derived pheno-403

types. The approach is scalable to extreme high-dimensional data sets, e.g., UK Biobank scale neuroimaging404

datasets. SuperBigFLICA inherits the Bayesian framework from the previous FLICA model (Groves et al., 2011;405

Gong et al., 2021). Additionally, it incorporates an additional prediction term to enable supervised learning of406

the target variable of interests (i.e., multiple nIDPs). SuperBigFLICA can discover spatially sparse and orthog-407

onal modes that can serve as generic data-driven IDPs for future prediction of new nIDPs. The weighting of408

different modalities and nIDPs can be automatically inferred from the data, avoiding manual specification.409

Compared to previous linear approaches (e.g., (Qi et al., 2017)), the scalability of our approach to huge data410

sets is improved through the use of advanced stochastic optimisation algorithms. Our model can use multiple411

nIDPs as supervision targets and can predict unseen nIDPs. Compared to nonlinear approaches (e.g., (Zhang412

et al., 2012a; Zhou et al., 2020; Liu et al., 2020)), our approach can explicitly discover a low-dimensional linear413

latent space as new image-derived phenotypes. We performed a comprehensive comparison of SuperBigFLICA414

with the hand-curated IDPs currently being created by our group on behalf of UK Biobank, and modes of unsu-415

pervised BigFLICA, and found a significantly improved performance on predicting nIDPs. We also showed that416

by using the multi-task learning paradigm, SuperBigFLICA showed a further improvement than its single-task417

setting. We demonstrated SuperBigFLICA’s performance in learning a generalisable latent space by applying418

it to predict unseen nIDPs. These tests were performed using the largest neuroimaging dataset to date (UK419

Biobank), with 47 different modalities, 39,770 subjects, and 17,485 nIDPs, which illustrates the ability of Super-420

BigFLICA for analysing large-scale datasets. In real data examples, we demonstrated that SuperBigFLICA finds421

interpretable modes predictive of health outcome and cognitive nIDPs.422

There are multiple future directions for improving the current approach. First, we could further explore the423

possibility of improving prediction of unseen nIDPs by using advanced techniques in transfer learning (Pan and424

Yang, 2009). Second, a deeper understanding of the latent space, including the interpretation of spatial maps425

and the influence of dimensionality of latent space with prediction power, could be interesting. Third, another426

straightforward extension would be adding nonlinearity to SuperBigFLICA, which enables it to extract more427

complex nonlinear patterns from brain imaging data, with or without the supervision of nIDPs. Many options428

exist to achieve this by using either deep neural networks (Goodfellow et al., 2016) or traditional machine learn-429

ing approaches such as Gaussian process latent variable model (Lawrence, 2005) and multiple kernel learning430

(Gönen and Alpaydın, 2011). Nonlinear approaches such as deep convolutional neural networks have shown431

excellent age and sex prediction accuracy using structural MRI data (Peng et al., 2019) and in Alzheimer disease432

progression (Nguyen et al., 2020), but the usefulness of nonlinear models for neuroimaging data is still under433

debate (Schulz et al., 2020; He et al., 2020; Abrol et al., 2020) due to the increased complexity of evaluating434

and interpreting their performance. Therefore, besides developing a nonlinear model for improving predictive435

performance, deriving interpretable nonlinear features is also an important task.436
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In summary, all of the above will be explored in future improvements to our analysis approach. An easy-437

to-use version of this software will be integrated into an upcoming version of the FSL software package (Smith438

et al., 2004; Jenkinson et al., 2012). Results from applying SuperBigFLICA on UK Biobank will also be released439

via the UKB database as new data-driven IDPs (image features), further contributing to the richness of the440

sample and enabling neuroscientific research.441
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Table A.2: A description of 47 Modalities of UKB dataset used in this paper.

Abbreviation full description

rest k (k=1-25) Dual regression between IC k of 25 dimensional decomposition of rsfMRI and the whole brain
task z1 Z-statistics of emotion task contrast "shapes"
task z2 Z-statistics of emotion task contrast "face"
task z5 Z-statistics of emotion task contrast "faces>shapes"
task c1 Contrasts of parameter estimate of emotion task contrast "shapes"
task c2 Contrasts of parameter estimate of emotion task contrast "face"
task c5 Contrasts of parameter estimate of emotion task contrast "faces>shapes"
TBSS-FA Tract-Based Spatial Statistics - fractional anisotropy
TBSS-MD Tract-Based Spatial Statistics - mean diffusivity
TBSS-MO Tract-Based Spatial Statistics - tensor mode
TBSS-L1 Tract-Based Spatial Statistics - amount of diffusion along the principal directions 1
TBSS-L2 Tract-Based Spatial Statistics - amount of diffusion along the principal directions 2
TBSS-L3 Tract-Based Spatial Statistics - amount of diffusion along the principal directions 3
TBSS-OD Tract-Based Spatial Statistics - orientation dispersion index
TBSS-ICVF Tract-Based Spatial Statistics - intra-cellular volume fraction
TBSS-ISOVF Tract-Based Spatial Statistics - isotropic or free water volume fraction
tracts summed tractography map of 27 tracts from AutoPtx in FSL
VBM voxel-based morphometry
Area Cortical surface area from Freesurfer
Thickness Cortical surface thickness from Freesurfer
Jacobian Jacobian map of nonlinear registration of T1 image to MNI152 standard space
swMRI T2* image derived from swMRI
T2 lesion White matter hyperintensity map estimated by BIANCA
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Figure A.6: The Z -score normalized spatial maps of the strongest modes that contributing to the prediction of hypertension
in a 1,000-dimensional SuperBigFLICA, with all 17,485 nIDPs as supervision targets (MNI152 coordinate z=10).
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Figure A.7: The Z -score normalized spatial maps of the strongest modes that contributing to the prediction of age started
wearing glasses or contact lenses in a 1,000-dimensional SuperBigFLICA, with all 17,485 nIDPs as supervision targets
(MNI152 coordinate z=10).
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