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13 Abstract
14 LULC changes are caused by natural and human alterations of the landscape that could 

15 largely affect forest biodiversity and the environment. The aim of the study was to analyzed 

16 LULC change dynamics in the western escarpment of the rift valley of the Gamo Zone, 

17 Southern Ethiopia. Digital satellite images downloaded from USGS were analyzed using 

18 ERDAS Imagine (14) and Arc GIS 10.2 software and supervised image classification was 

19 used to generate LULC classification, accuracy assessment and Normalized Difference 

20 Vegetation Index (NDVI). Drivers of LULC change were identified and analyzed.  Four land 

21 classes were identified such as forest, farmland, settlement and water-wetland. Settlement and 

22 farmlands have increased by 7.83% and 5.88%, respectively. On the other hand, both forest 

23 and water bodies and wetland decreased by aerial coverage of 11.03% and 2.68%, 

24 respectively. The overall accuracy of the study area was 92.86%, 94.22% and 94.3% with a 

25 kappa value of 0.902, 0.92 and 0.922, respectively. NDVI values ranged between -0.42 to 

26 0.73. Agricultural expansion (31.4%), expansion of settlement (25.7%) and Fuelwood 

27 collection and Charcoal production (22.9%) were the main driving forces that jeopardize 

28 forest biodiversity of the study area. Integrated land use and policy to protect biodiversity 

29 loss, forest degradation and climate changes are deemed necessary.  
30 Keywords: Landsat images, Land use/land cover, Change detection, Rift valley 
31
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36 1. INTRODUCTION

37 Land use land cover change (LULCC) is a major issue of concern with regards to change in a 

38 global environment [1]; changes are so pervasive such that, when aggregated globally, they 

39 significantly affect key aspects of Earth System functioning[2,3]. This directly impacts 

40 biodiversity throughout the world [4]; contribute to local and regional climate change [5] as 

41 well as to global climate warming [6]; are the primary sources of soil degradation [7]; and, by 

42 altering ecosystem services, affect the ability of biological systems supporting human needs 

43 [8]. Such changes also determine, in part, the vulnerability of places and people to climatic, 

44 economic, or socio-political perturbations [9].

45 The land is the major natural resource in which economic, social, infrastructure and other 

46 human activities are undertaken [10]. Thus, changes in land use that has occurred at all times 

47 in the past, currently on-going, and is likely to continue in the future [11, 12]. These changes 

48 have beneficial or detrimental impacts, the latter being the principal causes of global concern 

49 as they impact human well-being and safety [13; 3]. LULC changes are widespread, 

50 accelerating, and the trade-offs offset human livelihood [14]. The rapid growth and expansion 

51 of urban centers, population pressure, scarcity of land, changing technologies are among the 

52 many drivers of LULC in the world today [15].  

53 [16] Stated that land cover change occurs through conversion and intensification by human 

54 intervention, altering the balance of an ecosystem, generating a response expressed as system 

55 changes. For centuries, humans have been altering the earth's surface to produce food through 

56 agricultural activities [17]. In the past few decades, the conversion of grasslands, woodlands, 

57 and forests into croplands and pastures has risen dramatically, especially in developing 

58 countries where a large proportion of the human population depends on natural resources for 

59 their livelihoods [17, 18, and 19]. The increasing demand for land and related resources often 

60 results in changes in land use/cover [16] and it has local, national, regional and global causes 

61 and implications [20].  

62 In Africa, forests cover about (21.4%) of the land area which corresponds to 674 million 

63 hectares and in Eastern Africa alone approximately 13% of the land area is under forests and 
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64 woodlands [21]. [22] noted that close to 40% of Ethiopia might have been covered by high 

65 forests and that about 16% of the land area was covered by high forests in the early 1950s 

66 (EFAP 1994). In the early 1980s the high forest cover of Ethiopia declined to 3.6% and 

67 further declined to 2.7 % in 1989 [23]. The recent estimate of the land cover of Ethiopia that 

68 could qualify as 'forests' which includes high forests, woodlands, plantations, and bamboo 

69 forests adds up to 15% [24]. 

70 Land cover change occurs naturally in a progressive manner but, could sometimes be rapid 

71 and abrupt due to anthropogenic activities [25]. Vegetation cover change is a process in 

72 which the level of diversity and the density of individual species that makes up the natural 

73 vegetation structure are altered as a result of natural and human-induced pressure [26; 27]. 

74 Vegetation change mapping and monitoring are useful when changes in the vegetation 

75 attributes of interest result in detectable changes in image radiance, emittance, or microwave 

76 backscatter values [28]. Many research results in Ethiopia indicate some of the critical threats 

77 to forests that need to be seriously addressed. One of these is land use/ cover changes [29, 30 

78 and 31]. There is a dearth of LULC change detection studies in the study area and hence, the 

79 present study aims to evaluate and analyze LULC change detection at the southwest 

80 escarpment of the rift valley of Gamo Zone, Southern Ethiopia. 

81 2. MATERIALS and METHODS

82 2.1 Description of the Study Area
83 The study was carried out in the western escarpment of the rift valley of the Gamo Zone, 

84 Southern Ethiopia. Gamo Zone is bordered by  Dirashe Special Woreda in the South,  Gofa 

85 Zone in the NW, Dawro and Wolayita Zones in the north, Lake Abaya and Chamo in the NE, 

86 South Omo in the South and Amaro Special Woreda in the SE (Figure 1).  Araba Minch town 

87 is the administrative center of Gamo Zone.
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88

89 Figure 1: Location map for the study area (A = Ethio-Region, B = Gamo Zone, C =Study area 

90 (surrounded Zone, Lake Abaya and Chamo, Rivers and Roads all weathered)) (Source: Arc GIS 10.2 

91 and CSA)

92 The study area consists of plains and hillsides of the Gamo mountain ridge between 6°05´N 

93 to 6°12´N and 37°33´E to 37°39´E. The elevation of the area ranging from 1168 m to 2535 m 

94 a.s.l and the slope of the forest ranges between 0 to 32 degrees (Figure 2). The total 

95 population in the study area is estimated to be 195,858 in the 2019 projection population (CSA, 

96 2019) (Table 1). Drainage in the study area is seasonal and many streams from the mountain 

97 chains merge to form the Kulfo and Hara rivers which eventually join the western escarpment 

98 of the Central Rift Valley to Lakes (Chamo and Abaya).    

Figure 2: Elevation and Slope Map
99

100  Population 

101 The total population of the study area was increased in the three successive periods (1999, 

102 2009 and 2019) (Table 1) (CSA, 2019).
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103 Table 1: Total Population of the study area from 1999-2019 (CSA, 2019)

Arba Minch Zuria

Year M F Total

1999 58,062 55,468 113,530

2009 82,751 82,929 165,680

2019 97,905 97,953 195,858 projection population

104

105 Geology and soil

106 The geology of the Rift-valley escarpment is mainly quaternary volcanic alluvial deposits and 

107 lacustrine clay. Forest and the state farm are composed of three main types: Fluvisols, 

108 Gleysols and Vertisols. Fluvisols consist of soil materials developed in alluvial deposits and 

109 flood plains [32]. The Rift valley floor near Lake Abaya and Chamo is filled with alluvial 

110 sediments. The bedrock in the region consists of basalt, trachyte, rhyolite, and ignimbrite and 

111 the western edges of Lake Abaya are covered by approximately   1 to 2-km wide plain of 

112 lacustrine and swamp deposits [33]. The topsoil textural classes of major soils in its spatial 

113 distribution are mainly dominated by clay loam, light clay, loam sand and sandy clay loam 

114 based on USDA classification.

115 Vegetation Cover

116 According to [34], the study area is characterized by complex vegetation types such as 

117 Combretum-Terminalia woodland vegetation, Acacia-Commiphora woodland vegetation and 

118 Dry evergreen Montana forest. The most common tree species in the study area are 

119 Terminalia brownii, Combretum molle, Ziziphus mucronata, Pappea capensis, Cadaba 

120 farinosa, Vachellia and Senegalia Acacia species, Balanites aegyptiaca, Commiphora 

121 abyssinica, Rhus natalensis, Olea europaea, Psydrax schimperiana, Acokanthera schimperi, 

122 etc. 

123 Climate
124 The study area has a bimodal rainfall type. Maximum and minimum mean annual rainfall 

125 during 1999-2019 was 1141.1 mm and 491.8 mm, respectively (Figure 3). The maximum and 

126 minimum mean annual temperature was 33.60C and 150C, respectively (Figure 3) [35].

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.09.08.459379doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.08.459379
http://creativecommons.org/licenses/by/4.0/


127
128 Figure 3: Annual Max. and Min. temp.in 0C and rainfall in mm (1990-2019)

129

130

131 2.2 Data types and sources

132 Primary and secondary data were used: Ground control points (GCP) for ground truth were 

133 collected as primary data using handheld GPS. Secondary data include  Landsat Thematic 

134 Mapper (TM) for the year 1999, ETM+ for the year 2009 and Landsat 8 Operational Land 

135 Imager (OLI) images for the year 2019 acquired from United States Geological Survey online 

136 imagery portals (http:// glovis.usgs.gov). Other Geo-spatial data include Shapefiles and 

137 topographic maps collected from the Central Statistical Agency (CSA) and Ethiopian 

138 Mapping Agency (EMA) for extraction and delineation of area of interest (Table 2). 

139 Table 2: Remote sensing data of the study

Acquisition 

data 

Sensors Path and 

Row

Spatial 

Resolution

Number of 

bands

Format Source 

01/05/1999 TM 169, 56 30m 7 TIFF USGS

01/05/2009 ETM+ 169,56 30m 8 TIFF USGS

01/05/2019 OLI 169,56 30m 11 TIFF USGS

140
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141 2.3 Land-use change assessment (1999–2019)

142 Digital satellite images were processed classified and analyzed using ERDAS Imagine (14). 

143 Computations of the area and changes in land use categories were made using Arc GIS 10.2 

144 software analytical tools. Pre-processing of satellite images was done to create a more faithful 

145 representation of the original scene. An intensive pre-processing such as geo-referencing, 

146 layer-stacking, resolution merge, and sub sets were carried out to Ortho-rectify the satellite 

147 images into UTM coordinates (WGS, 1984 ) and to remove disturbances such as haze, noise, 

148 steep slope effect, and radiometric variation between acquisition dates.  A stacked satellite 

149 image of the study area was extracted by clipping the Area of Interest (AOI) layer of the 

150 Gamo shapefile in ERDAS 14 software. 

151 The satellite image was classified using the supervised image classification technique and 

152 employed pixel-based supervised image classifications with the maximum likelihood 

153 classification algorithm [36] to produce LULC maps of the study area. Appropriate band 

154 combinations were obtained and the signatures were used for the supervised classification. 

155 Land cover change detection for the study area was monitored at three intervals: 1999_2009, 

156 2009_2019 and 1999_2019. Supervised classification into four land classes were categories 

157 and distinguished into farmlands, forest lands, settlement,  water bodies and wetlands (Table 

158 3).

159 Table 3: Characteristics of land cover classes

Class name Description

Farmlands     Areas used for crop cultivation (Maze, teff, Banana, Mango, etc.). 

Dense forest 
scattered forest 
and woodland

 This habitat is dominated by trees characterized by a multi-storeyed 
nature with the crown cover of almost 10-50%

Settlement Different settlements (villages) associated with building 
Water_wetland                  areas where water cover and  may support both aquatic and wetland 

species
160
161 2.4 Accuracy analysis
162 Since image classification without accuracy assessment is incomplete [37], accuracy 

163 assessment for the images was carried out.   The accuracy of the classification was assessed 

164 using producers, users and overall methods of accuracy assessment.  The overall accuracy, as 

165 well as Kappa statics, was calculated based on the GCP collected from the identified land-use 

166 types. Kappa statics was calculated by the following equation:- 
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167 Kappa =
(observed Agreement – Expected Agreement)

1 ― Expected Agreement ....................................(1)

168 2.5 Land use land covers change detection

169 The LULC maps of three years showing period's with a range of ten years in between (1999, 

170 2009 and 2019) were generated from the satellite imageries using supervised maximum 

171 likelihood classification. To analyze the land cover structural changes in the study area the 

172 table showing the area in hectares and percentage changes between the periods 1999_2009, 

173 2009_2019 and 1999-2019 were measured for each LULC type.  Change detection was 

174 calculated by:-  

175 R = 𝑄2 ―𝑄1/𝑡..................................................................................(2)

176 Where, R = Rate of Change, Q2 =  Recent year forest cover in ha

177 Q1 = Initial Year forest cover in ha and

178 t = Interval year between Initial year and Recent year

179

180 2.6 Vegetation index
181
182 Normalized Difference Vegetation Index (NDVI) is one of the indicators commonly used to 

183 detect the vegetation cover of the earth‘s surface i.e. spectral change detection method. NDVI 

184 values were calculated on composite image and used band 3 (Red) and 4 (Near Infrared) for 

185 Landsat 7, and band 4 (Red) come with band 5 (Near Infrared) for Landsat 8. NDVI 

186 approaching calculation of greenness degree of image correlates with vegetation crown 

187 density. NDVI correlates with chlorophyll content and its value is between -1 to 1. NDVI is 

188 calculated as: 

189 NDVI =
NIR ― R
NIR + R

190 ..........................................................................................................................(3)

191 Where: NDVI = Normalized Difference Vegetation Index, NIR=Near Infra-Red Band   R= 

192 Red Band

193 2.7 Drivers of LULC changes 

194 LULC changes are influenced by a number of driving factors. In the study area, human 

195 activity is often mentioned as the major driver of LULC Changes. For a better understanding 

196 of LULC changes data were collected including field observation, focused group discussion 
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197 (FDG) and key informant interview (KII).  KII and FGD were selected based on the 

198 recommendation of local community leaders and agriculture extension workers. The 

199 participants included elders (male and female), agriculture extension workers and youth 

200 jobless. The informants were asked for their consent to participate in the discussion were then 

201 given clear information about LULC changes in the study area. Data were analyzed using 

202 IBM SPSS version 20.

203 3. RESULTS AND DISCUSSION

204 3.1 Land use land covers classification
205 The Four land classes identified in the study include forest, farmland, settlement and water 

206 bodies and water-wetlands. The land use land cover categories in Figure 4 show that forest 

207 land class has progressively decreased while farmlands and settlement increased from 

208 1999_2019. 

209

Figure 4: Land use land cover change from 1999_2019

210 Similar results were reported by [38; 39; and 40] showing that farmlands in the Rift Valley of 

211 Ethiopia have expended as a result of population pressure.[41] has shown that more than 4/5 

212 of the total terrestrial productive land in the Ethiopian Central Rift Valley was lost to 

213 agriculture. Conversions to other land use types have been observed and the image 

214 classification shows a clear conversion of land covers into farmland and settlement (Table 4).

215 3.2 Land use land covers change

216 Results revealed that the extent of land cover changes from forest to farmland in the last three 

217 decades was rapid. The decline of water bodies and wetlands was not as dramatic as the loss 

218 of forests (Table 4). The conversion of farmlands to settlements was equally high. Similar 
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219 results were reported by [42 and 43] in the Finchaa Catchment, North-western Ethiopia and 

220 Abijata Shalla National Park, respectively. This is due to small-scale irrigation by pumping 

221 water from the lakes and rivers for income generation through the production of fruit and 

222 vegetables. [44] also showed that urban settlements and farmland expansion gained the most 

223 in the area compared to other LULC types, while forest areas exhibited a decreasing trend. 

224 Demand for food and grazing land for the growing population appears to be the driving 

225 factors. 

226

227

228

229

230

231

232 Table 4: Land use land covers change (1999_2019)

Area Area (ha)

( 1999_2009)

% Area (ha)                  
( 2009_2019)

% Area (ha) 
(1999-
2019)

%

Forest - Agriculture 1416.156 11.4 2671.36 21.51 1878.42 15.13

Forest - Settlement 500.144 4.03 284.27 2.29 376.529 3.03

Agriculture - Forest 155.922 1.26 105.00 0.85 50.315 0.41

Agriculture-Settlement 142.651 1.15 408.7 3.29 376.529 3.03

Agriculture - Water 235.9683 1.9 166.1 1.34 232.268 1.87

Water - Agriculture 384.342 3.09 401.85 3.24 277.00 2.23

233

234 3.3 Land use land covers change detection

235 LULC change detection was showing that the areal coverage of settlement and farmlands 

236 increased. On the other hand, both forest and water_wetland were decreased by an aerial 

237 coverage (Table 5). This was due to the conversion of forest and water_wetland, to settlement 

238 and farmlands increased and also Lake Abaya might be fluctuated increased and or decreased 

239 its volume, but mostly at the expense of forest lands (Table 5). [44] shown that urban 

240 settlements and farmland expansion gained the most in the area compared to other LULC 
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241 types, while forest areas exhibited a decreasing trend (Figure 5). Demand for food and 

242 grazing land for the growing population seems the probable driving force, among others. 
243 Table 5: Land use land covers change detection from 1999 to 2019

Rate  change     (r=Q2-Q1/t )            
1999_2009 2009_2019 1999_2019

Land class

ha % ha % ha %
Settlement 574.17 4.6 398.45 3.2 972.63 7.83
Agriculture 628.62 5.06 101.1 0.81 729.72 5.88
Forest -199.95 -1.61 -1169.79 -9.42 -1369.74 -11.03
Water -1002.83 -8.08 670.23 5.4 -332.6 -2.68

244

245
246 Figure 5: Change detection of the study area

247 3.4 Overall accuracy assessment (1999, 2009 and 2019)

248 The accuracy of image classification was checked with an accuracy matrix using 140, 173 

249 and 158 randomly selected control points, respectively. The accuracy assessment was 

250 performed using land-use maps, ground truth points and Google Earth. Three periods (1999, 

251 2009 and 2019) land use classification have shown, user's accuracy and producer's accuracy 

252 are greater than 85%, as well the overall accuracy of 92.86%, 94.22% and 94.3% ( Table 7,8 

253 and 9), respectively (Table 6, 7 and 8). These values indicate the LAND SAT images and the 

254 methodologies used were so accurate. The Kappa coefficient was also calculated, with a 

255 value of K= 0.9, which indicates that the classification is almost perfect since it is greater 

256 than 0.8. [45] argued that overall accuracy values greater than 0.8 indicate in the Landsat and 

257 the methodologies used to have high accuracy. 
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258 Table 6: Overall accuracy 0f the study area (1999)

Ground truth

Land class
Settlement Agriculture Forest Water Row

Total
User’s
Accuracy

Settlement 50 2 1 0 53 94.34 %
Agriculture 0 29 0 1 30 96.67%
Forest 2 2 26 0 30 86.67%
Water 0 1 1 25 27 92.6%
Column 
Total

52 34 28 26 140

Producers 
Accuracy

96.15% 85.3% 82.86% 96.15% 92.86%

259

260 Overall Classification Accuracy =     92.86%

261 KAPPA (K^) STATISTICS

262 Overall Kappa Statistics = 0.902

263 Table 7: Overall accuracy 0f the study area (2009)

Ground truth

Land class
Settlement Agriculture Forest Water Row

Total
User’s
accuracy

Settlement 47 2 1 0 50 94%
Agriculture 1 60 2 0 63 95.25%
Forest 1 1 36 0 38 94.74%
Water 0 1 1 20 22 90.91%
Column 
Total

49 64 40 20 173

Producers 
Accuracy

95.92% 93.75% 90% 100% 94.22%

264 Overall Classification Accuracy =94.22%

265 KAPPA (K^) STATISTICS
266 Overall Kappa Statistics = 0.92
267
268 Table 8: Overall accuracy 0f the study area (2019)

Ground truth

Land class
Settlement Agriculture Forest Water Row

Total
User’s
accuracy

Settlement 54 2 1 0 57 94.74%
Agriculture 1 40 1 0 42 95.25%
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Forest 1 1 30 0 32 93.75%
Water 0 1 1 25 27 92.59%
Column 
Total

56 44 33 25 158

Producers 
Accuracy

96.43% 90.91% 90.91% 100% 94.3%

269 Overall Classification Accuracy =     94.3%

270 KAPPA (K^) STATISTICS

271 Overall Kappa Statistics = 0.922

272

273

274 3.5 Normalized difference vegetation index (NDVI)

275 The statistics and visual observation of the NDVI images over three successive periods 

276 (1999, 2009 and 2019) showed that major land cover changes have taken in the study area 

277 (Figure 7). The threshold value of NDVI was approximately 0.73 (Figure 6). The pixels 

278 having an NDVI value above the threshold were identified as vegetated areas, while low 

279 NDVI values represented non-vegetated areas. For non-vegetated areas, we found that the 

280 water bodies were represented by low NDVI values, ranging from -0.28 to -0.42, while the 

281 pixels having NDVI values in the range of 0.51 to 0.73 were considered as vegetation cover 

282 areas (Table 9). NDVI analysis has proven that there had been changes in vegetation cover 

283 between 1999 and 2019 images and higher values were recorded in the period 1999 in the 

284 study area. 

285 Table 9: NDVI result of the study area

Statistics

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 ― 𝑅)
𝑁𝐼𝑅 + 𝑅)

1999 2009 2019

Low -0.42 -0.28 -0.37

High 0.73 0.64 0.51

Mean 0.18 0.059 -0.21

SD 0.11 0.095 0.11

286
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Figure 6: NDVI of the study area from 1999_2019

287

288 3.6 Drivers of LULC changes

289 The results of FGD and KII reveal the five major direct driving forces (Table 10). Among 

290 these, agricultural expansion account, expansion of settlement and Fuelwood collection and 

291 Charcoal production take large shares. 
292 Table 10: Proximate causes of LULC changes

No Driver Frequency % Rank

1 Fuelwood collection, tree cutting and 
Charcoal production

8 22.9 3

2 Agricultural expansion 11 31.4 1
3 Expansion of settlement 9 25.7 2
4 Fire 2 5.7 5
5 Overgrazing 5 14.3 4

Total 35 100
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293 The demographic data of the study area over the past three decades has revealed that 

294 population pressure ranked as the top cause of LULC changes (Table 11) [46]. The work of 

295 Lambin et al (2003) show that impact human population pressure is causing the accelerated 

296 conversion of natural habitats into agricultural and settlement areas to meet the mounting 

297 demand for food and housing. In Ethiopia, resettlement and villagization programs during the 

298 Military Government had made a significant contribution to the expansion of settlements and 

299 agriculture. Due to the low policy enforcing capacity of the then government landless farmers 

300 cleared forests and occupied as much land as possible to increase the chances of land 

301 ownership.

302 Table 11: Underlying causes of LULC changes

No Driver categories Frequency % Rank

1 Demographic 13 37.1 1
2 Biophysical 8 22.9 3
3 Economic 10 28.6 2
4 Institution and policy 4 11.4 4

Total 35 100

303
304 3.7 CONCLUSION and RECOMMENDATIONS
305 There were four land classes in the study area including forest, farmland, settlement and 

306 water bodies and wetlands.  The changes observed in 2009 and 2019 were more rapid than 

307 that in 1999 the expansion of small-scale irrigated farmlands for fruit and vegetable 

308 production. Field observations, KII and focus group discussant confirmed that the main cause 

309 of LULC changes in the study area was the expansion of farmland and settlement. On the 

310 other hand, demographic, economic and biophysical conditions were indirect driving forces 

311 of LULC changes. 

312 Linking participatory forest management with an institution and strong monitoring policies, 

313 green legacy and creating awareness to local people is hopped to improve the current status 

314 forest biodiversity and environment of the study area. Furthermore, the land use policy and 

315 environmental rehabilitation policies of the country need to be revised to include biodiversity 

316 hotspots and sequestration of carbon for carbon trading. The environmental trade-offs of fruit 

317 and vegetable productions that fetch good economic income must be mitigated through 

318 payment for ecosystem services that can be channeled for payment to the workforce involved 

319 in green legacy and environmental rehabilitation. Furthermore, promoting none agricultural 

320 economy to the jobless youths and creating forest reserved areas with a buffer zone of the 

321 study area. 
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