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Abstract26

At present, there is no simple, complete, and first principles-based model for quantita-27

tively describing the full range of observed biological temperature responses. Here, we derive28

a theory exhibiting these features based on the Eyring-Evans-Polanyi theory governing chem-29

ical reaction rates, and which is applicable across all scales from the micro to the macro.30

Assuming only that the conformational entropy of molecules changes with temperature, we31

derive a theory for the temperature dependence which takes the form of an exponential32

function modified by a power-law. Our framework leads to six deductions applicable to any33

biological trait that depends on temperature, and elucidates novel aspects of universal tem-34

perature responses across the tree of life, from quantum to classical scales. All predictions35

are well supported by data for a wide variety of biological rates and steady states, from36

molecular to ecological scales and across multiple taxonomic groups. In addition, we provide37

novel explanations of several empirical relationships including optimal values in temperature38

response curves.39

40

One-Sentence Summary: We derive a simple and universal formulae to characterize41

temperature responses of biological processes across the tree of life.42

43

Introduction: Temperature dependence models and the Eyring-Evans-Polanyi44

(EEP) theory. Temperature is a major determinant of reaction rates of enzymes, which45
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regulate processes that manifest at all levels of biological organization from molecules to46

ecosystems [1-7]. Formulating a fundamental theory for the response of biological rates to47

changes in temperature, especially in ecological systems, has become a matter of some ur-48

gency with the intensification of the climate crisis, particularly since existing models are49

unable to account for such responses across the entire range of temperatures that support50

life. Here we address this challenge by developing a comprehensive theory that unifies several51

key properties that have not been simultaneously included in past work. This is critical for52

making accurate predictions of biological quantities that are relevant in industrial applica-53

tions, food production, disease spread, and responses to climate warming, among others.54

The model we derive is: i) based on first principles and fundamental chemical mechanisms;55

ii) mathematically simple in form, yet efficient in that it generates many predictions with56

very few free parameters; iii) general and applicable across multiple levels of biological orga-57

nization and taxa, thereby manifesting a universal biophysical law. Among its many novel58

results, our theory makes six significant categories of new deductions that are confirmed by59

data and resolves unexplained observations in the temperature response of organisms.60

61

Different models have been suggested to explain temperature dependence in biology,62

among which the Arrhenius equation [8-9] has become the most used by biologists and63

ecologists, as epitomized, for example, by the Metabolic Theory of Ecology (MTE), [7] and64

is given by65

k = ae−E/kBT (1)

where k is some biological quantity (e.g. at the molecular level, enzyme reaction rate), kB66

is Boltzmann’s constant, T is absolute temperature in Kelvin degrees (K), E is an effective67

activation energy for the process of interest, and a is an overall normalization constant char-68

acteristic of the process. Consequently, a plot of log k vs. 1/T should yield a straight line,69

often referred to as an Arrhenius plot. This equation was originally an empirical formulation,70

but was later motivated heuristically from chemical reaction theory [10, 11]. Although it71

has been instrumental in explaining the approximately universal temperature dependence72

across many diverse biological rates [5, 7], it cannot account for deviations that occur beyond73

certain temperature ranges in, for example, the metabolic rates of endotherms, thermophiles74

and hyperthermophiles [3, 5, 12]. Furthermore, experiments and observations have long es-75

tablished that the form of the temperature response has an asymmetric concave upward or76

downward pattern relative to the canonical straight-line Arrhenius plot. Consequently, there77

are ranges of temperatures where the traditional Arrhenius expression, Eq. (1), even gives78

the wrong sign for the observed changes in biological rates: they decrease with increasing79

temperature rather than increase, as predicted by Eq. (1).80

81

The EEP transition state theory (TST) [13-14], which is the widely accepted theory of82

enzyme chemical kinetics, offers the possibility of developing a fundamental theory for the83

temperature dependence of biological processes that extends and generalises the heuristic84

Arrhenius equation by grounding it in the underlying principles of thermodynamics, kinetic85

theory and statistical physics [15]. The framework of the TST conceives of a chemical86

reaction as a flux of molecules with a distribution of energies and a partition function given87

by the Planck distribution, flowing through a potential energy surface (PES) which effectively88
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simulates molecular interactions. The configuration of molecules flowing through this surface89

proceeds from i) a separate metabolite and enzyme to ii) an unstable metabolite-enzyme90

complex, which, iii) after crossing a critical energy threshold barrier, or transition state, then91

forms the final product (the transformed metabolite). EEP thereby derived the following92

equation for the reaction rate [11]93

k =
kB
h
Te−∆G/RT (2)

where h is Planck’s constant, ∆G is the change in Gibbs free energy or free enthalpy, R =94

NkB is the universal gas constant and N is Avogadro’s number. An overall coefficient of95

transmission also is originally part of (2) but is usually taken to be 1. The change in Gibbs96

free energy is the energy (heat) transferred from the environment to do chemical work. It can97

be expressed in terms of enthalpy (∆H) and the temperature-dependent change in entropy,98

or dissipated energy (∆S) [16], as ∆G = ∆H − T∆S. Eq. (2) can then be written as:99

k =
kB
h
Te∆S/Re−∆H/RT (3)

Analogous to the Arrhenius expression, Eqs. (2) and (3) describe an exponential response100

of the rate k to temperature provided, however, that there is no temperature dependence of101

the thermodynamic parameters. Models have been developed for including this temperature102

dependence, but they typically invoke several additional assumptions and new parameters103

[11, 17-18]. Furthermore, unlike the widespread use of the Arrhenius equation in the MTE,104

most models for temperature response have been conceived for a single level of biological105

organization (primarily at the enzymatic/molecular level) [6, 18] or for specific taxonomic106

groups; e.g. only for mesophilic ectotherms [19], endotherms [20], or thermophiles [21].107

Derivation of the Theory. Temperature changes the conformational entropy of pro-108

teins [23], which in turn determines the binding affinity of enzymes [24-25] and affects the109

flexibility/rigidity and stability of the activated enzyme-substrate complex and hence the110

reaction rate [25]. The resulting temperature dependence of the change in entropy, ∆S111

(with enthalpy and heat capacity remaining constant), is the simplest mechanism for giving112

rise to curvature in an Arrhenius plot and naturally leads, via Eq. (3), to power law devi-113

ations from the simple exponential form [22]. Following [16], the change of entropy for a114

given change in temperature can be expressed as Td∆S/dT = ∆C, where ∆C is the heat115

capacity of proteins. Integrating over temperature gives ∆S = ∆S0 + ∆C ln (T/T0), where116

∆S0 is the entropy when T = T0, an arbitrary reference temperature, commonly taken to117

be 298.15 K (25◦C) [11]. Using this expression for ∆S in eq. (3), and after simplifying, we118

straightforwardly obtain [11]119

k =

(
kB
h

)[
e

∆S0
R T0

−∆C
R

]( 1

T

)−( ∆C
R

+1)

e
−∆H
RT (4)

Eq. (4) has the form of a classic Arrhenius-like exponential term, modified by a power-120

law, but with a different interpretation of the “effective activation energy” in terms of the121

change in enthalpy. The pattern described by Eq. (4) is a curved temperature response in122

an Arrhenius plot of ln k vs. T−1:123
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ln(k) = ln

(
kB
h

)[
e

∆S0
R T0

−∆C
R

]
−
(

∆H

R

)
T−1 −

(
∆C

R
+ 1

)
lnT−1 (5)

Consequently, d ln(k)/dT−1 = −∆H/R− (∆C/R+ 1)/T−1, leading to the extrema of ln(k)124

occurring at T−1 = T−1
opt = −(∆C + R)/∆H (see Supplementary Text S6). This is a mini-125

mum, i.e., the curve is concave upwards, or a “happy mouth”, if ∆C > −R, whereas it is a126

maximum, or a convex downwards “sad mouth”, if ∆C < −R. Furthermore, for T−1
opt to be127

positive this requires ∆H < 0 for a minimum or ∆H > 0 for a maximum.128

129

Several important points should be noted about our result:130

131

1) Its simple mathematical form, namely an exponential modified by a power law, coin-132

cides with an empirical phenomenological equation suggested by Kooij in 1893 [26]. However,133

our derivation provides an underlying mechanism for the origin of the expression and, con-134

sequently, for how its parameters are related to the thermodynamic variables. Our approach135

differs from previous expressions derived from considerations of chemical kinetics [11]. For136

instance, a heuristic derivation inspired by a Maxwell-Boltzmann distribution predicts a137

similar expression but with a power law modification of T 1/2 rather than T
∆C
R

+1 [13, 14],138

which apart from not having a mechanistic basis, is also unable to explain concave deviations.139

140

2) An important consequence of our derivation is that it shows that a change of entropy141

with temperature is both sufficient and necessary for simultaneously explaining both the142

convex and concave curvatures commonly observed in temperature-response plots. Under a143

thermodynamic interpretation, the decrease in enzymatic rate with increasing entropy due144

to increasing temperature beyond the optimal, means that the disorder of the enzyme, and145

particularly of the active site, has reached a state that causes a decrease in the binding affin-146

ity to the ligands. In contrast, changes in enthalpy alone can only explain convex curvature147

but not concave. To see this explicitly, we express ∆H in terms of heat capacity in eq. (3),148

∆H = ∆H0 −∆C(T − T0), to obtain k = kB
h
e∆S/R

(
1
T

)−1
e

[
∆H0−∆C(T−T0)

R

]
( 1
T ), which leads to149

ln k ∝ ln
(

1
T

)
−
[

∆H0+T0∆C
R

] (
1
T

)
. Regardless of the sign of both ∆C and/or ∆H0, this always150

results in a convex downwards curve and so cannot explain, nor accommodate, concavity.151

Hobbs et al. [27] included changes in both enthalpy and entropy with temperature and de-152

rived a significantly more complicated expression than ours based on TST. In contrast, the153

minimalist scenario developed here is one in which only changes in entropy with temperature154

need be considered.155

156

3) The above derivation was for reaction rates at the microscopic enzymatic scale. Fol-157

lowing the argument in the MTE we now show how it can be extended to biological variables158

at multiple scales up through multicellular organisms to ecosystems. The most salient exam-159

ple is metabolic rate, B. In general, this is derived by appropriately summing and averaging160

over all enzymatic reaction rates contributing to metabolism - some connected in series, some161

in parallel - and then summing and averaging over all cells: symbolically, B ∝
∑
k ≈ k.162

Assuming there is a dominant set of rate limiting reactions contributing to the production163

of ATP [19], then the temperature dependence of k, and therefore B, can be approximated164
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by an equation of the form of Eq. (4), but with the parameters being interpreted as corre-165

sponding averages, ∆H and ∆C. This results in: B ≈ B0

(
T0

T

)−∆C
R
−1
e
−∆H
RT0

(T0
T ), where B0 is166

a normalization constant (see Supplementary Material Eq. (S3.3) and Text S8).167

168

4) Care, however, has to be taken with the normalization constants, such as B0 in the169

case of metabolic rate, since from Eq. (4), these would naively be proportional to the ratio170

of the two fundamental constants, kB and h. The presence of Planck’s constant, h, for mi-171

croscopic enzymatic reactions appropriately reflects the essential role of quantum mechanics172

in molecular dynamics. On the other hand, for macroscopic processes, such as whole body173

metabolic rate, the averaging and summing over macroscopic spatio-temporal scales which174

are much larger than microscopic molecular scales must lead to a classical description de-175

coupled from the underlying quantum mechanics and, therefore, must be independent of h.176

This is analogous to the way that the motion of macroscopic objects, such as animals or177

planets, are determined by Newton’s laws and not by quantum mechanics, and therefore do178

not involve h. Formally, the macroscopic classical limit is, in fact, realised when h→ 0. The179

situation here is resolved by recognising that the partition function for the distribution of180

energies in the transition state of the reaction has not been explicitly included in Eq. (2).181

This is given by a Planck distribution which leads to an additional factor (1 − e−hν/kBT )182

where ν is the vibrational frequency of the bond, as first pointed out by Herzfeld [28]. For183

purely enzymatic reactions discussed above this has no significant effect since kBT << hν,184

and thus (1 − e−hν/kBT ) → 1, resulting in Eq. (2). Multicellular organisms, however, cor-185

respond to the classical limit where h → 0 so kBT >> hν and (1 − e−hν/kBT ) → hν/kBT ,186

thereby cancelling the h in the denominator of Eq. (4).187

Consequently, the resulting temperature dependence of macroscopic processes, such as188

metabolic rate, become independent of h, as they must, but lose a factor of T relative to the189

microscopic result, Eq. (4), so for metabolic rate, B, this is:190

B ≈ B̃0

(
1

T

)−∆C
R

e
−∆H
RT (6)

with the normalization constant, B̃0, no longer depending on h. Note that the above correc-191

tion for the enzyme level can also be applied to Eyring Eqs. (2) and (3), in which case they192

become mathematically identical to the Arrhenius relationship.193

194

5) The micro and macro results, Eqs. (4) and (6), can be combined into a single expression195

for the temperature dependence of any variable, Y (T ):196

Y (T ) ≈ Y0

(
1

T

)−∆C
R
−α

e
−∆H
RT (7)

where α = 1 for the molecular level and 0 otherwise. Y (T ) represents either a rate or various197

steady-state quantities [11] including variables that have been explicitly derived theoretically,198

such as in the MTE. For reaction rates at the molecular level Y0 is determined by Eq. (4).199

The corresponding extrema (either minima or maxima) in an Arrhenius plot now occur at200

T−1 = T−1
opt = −

(
∆C + αR

)
/∆H. It should be noted that the thermodynamic parameters201

5
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may have additional dependencies that make the forms of Eqs. (6) and (7) more complicated202

under certain conditions [11].203

204

In addition to quantitatively explaining the origin and systematic curvature of the Ar-205

rhenius plot, our theory makes several further testable deductions that interrelate the key206

features of thermodynamic parameters (e.g. enthalpy and heat capacity), biological traits207

(e.g growth and metabolic rates), classic thermal traits (e.g. thermal range and optimum208

temperature). These various deductions, exhibited in Fig. S1, are summarized as follows:209

i. The concave or convex form of the relationship between any biological trait and tem-210

perature (Eq. (4)-(7); Fig. 1).211

ii. The relationship between differences in rates (e.g., Y (T2)/Y (T1)) and differences in212

temperatures (T2 − T1) (Eq. (S5.2)-(S5.3); Fig. S2).213

iii. A linear relationship between heat capacity and enthalpy resulting from optimization214

of the rate (i.e. when the rate of change of k respect to temperature is zero), and where215

the slope of the relationship is the optimum temperature of the temperature response216

curve (Eq. (S6.2); Fig. S4).217

iv. The linear relationship amongst all pairs of the key thermal traits of the temperature218

response curve such as the minimum, maximum, and optimum temperatures or thermal219

range (Eq. (S6.5.1-3); Fig. S6).220

v. The linear relationships between a given thermal trait and fundamental thermodynamic221

parameters such as enthalpy (Eq. (S6.6.3-5); Fig. S7).222

vi. The collapse, onto a single universal curve, of all temperature response curves after223

the appropriate re-scaling given by our theoretical framework (see discussion below224

and [11]; Eq. (9), (10); Fig. 2, Fig. S10). In particular our theory predicts that the225

optimum of this curve should be located at a rescaled temperature of 1.226

Importantly, data fitting to deductions iii), iv), and v) all reveal universal relationships227

and constants. For example, the relationship between ∆C and ∆H holds across all data (fig228

S4) and is driven by a slope that is the optimum temperature associated to response curves.229

230

Comparing the theory to temperature response curve data across levels of231

biological organization and taxa. To assess the model performance, we compiled a232

database of 65 studies encompassing 128 temperature-response curves including those which233

are explicitly predicted by biological theories such as the MTE. Our survey included data of234

different rates/times/properties in different environments ranging from psychrophilic to hy-235

perthermophilic organisms and across all domains of life, including viruses, bacteria, archaea236

and unicellular and multicellular eukaryotes covering both ectotherms and endotherms (see237

[11]).238

239

We found that our theory provides an excellent fit to a wide variety of temperature re-240

sponse data for rates and times, spanning individual to ecosystem-level traits across viruses,241
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unicellular prokaryotes, and mammals (see Supplementary Table S2). Fig. 1 shows some rep-242

resentative examples of fits to concave patterns with long tails at low and high temperatures243

(Fig. 1a-c) as well as convex patterns (such as the temperature dependence of endotherm244

metabolism and biological times, Fig. 1d-f) also with tails at both ends. Prediction ii) also245

fits the data well showing that curved temperature responses can be transformed into a linear246

relationship for discrete measures of both rates and temperatures (Fig. S2). As predicted in247

Eq. S6.2 we found a relationship between the estimated thermodynamic parameters −∆C248

and ∆H (fig. S4) for all the (128) curve from our database.249

Deductions iv-v) — the relationships among thermal traits and between thermal traits250

and parameters — are well supported by a subset of the overall data (Figs. S6 and S7).251

Universal scaling and data collapse. A powerful, but classic, method for exhibiting252

and testing the generality of a theory is to express it in terms of dimensionless variables253

which collapse the data onto a single “universal” curve across all scales [e.g. 30]. To do so254

here, we introduce dimensionless rates, Y ∗, and temperatures, T ∗, by rescaling them by Topt,255

where Y takes on either its minimum or maximum value, Yopt = Y (Topt):256

Y ∗(T ∗) =
Y (T )

Yopt
; T ∗ =

T

Topt
(8)

In terms of these rescaled variables, Eq. (7) reduces to the simple dimensionless form257

Y ∗1/a = T ∗e1/T ∗−1 (9)

where a = ∆C/R + α with α = 0 or 1, depending on whether the system is macro- or mi-258

croscopic. Note that the optimum is given by Yopt = Y0T
a
opte

−b/Topt and Topt = −b/a, where259

b = ∆H/R [11].260

261

Our theory therefore predicts that when Y ∗1/a is plotted against 1/T ∗ all of the various262

rates regardless of the specific processes collapse onto a single parameterless curve whose263

simple functional form is given by Eq. (9). Notice that this optimises at T ∗ = 1 and264

encompasses in the same curve both the convex and concave behaviours predicted in the265

original Arrhenius plot as a function of T . In that regard, note also that the function266

Ŷ ∗(T ∗) ≡ (e/T ∗)aY ∗(T ∗) = ea/T
∗

(10)

is predicted to be of a “pure” exponential Arrhenius form as a function of T ∗. Thus, a plot267

of ln(Ŷ ∗(T ∗)) vs. 1/T ∗ should yield a straight line with slope a (see [11]).268

269

Our prediction of the universal curve is very well supported by data, as illustrated in Fig.270

2 where the collapse of all the data from this study for both convex and concave patterns271

regardless of organizational level, temperature range or taxa are shown. This result strongly272

supports the idea that our theory captures all of the meaningful dimensions of thermody-273

namic and temperature variation for diverse biological properties, which can ultimately be274

viewed as a single exponential relationship, Eq. (10). (See also Supplementary Material S8275

and Fig. S8 for an alternative formulation for data collapse).276

277
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Conclusion. In conclusion, we have derived a mechanistic yet simple theory for bio-278

logical temperature responses. Our model is a general extension of the EEP equation, but279

unlike previous models requires only entropy to vary with temperature. From this single280

assumption, we derived six novel general predictions that include not only a formula for281

the temperature-dependence but also for explaining the parameters and relationships among282

thermodynamic properties, thermal traits, and between the two. This set of predictions283

leads to the discovery of universal constants, such an average global optimum for tempera-284

ture response curves. We also derive a formula that expresses temperature dependence as285

a universal law that leads to data collapse across all levels of biological organization, taxa,286

and the whole range of temperature within which life can operate ( -25 to 125°C). We do not287

imply that temperature is the only variable determining biological rates. We acknowledge288

the importance, and have included here, other variables that could be more limiting than289

temperature in certain environments, such as pH, which also determine enzymatic and other290

rates at higher levels of organization [31]. This framework allows us to make predictions for291

scenarios of global warming, disease spread, and industrial applications. Further extensions292

of this theory could incorporate time and other variables to predict the thermodynamic293

parameters or vice versa (i.e. the parameters could explain biological traits), and future294

connections could and should be made with non-equilibrium thermodynamics [32]. Finally,295

our framework allow us to better understand the diverse impacts of climate change upon296

processes at global scales, suggesting that processes such as mutation rates of viruses and297

mortality will likely increase, given their convex temperature response curves , but other such298

germination and growth rates will likely decrease given their concave temperature response299

curves (Fig. 1).300

301
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Methods343

Details on mathematical derivation, database compilation and estimation of parameters for344

the models are in Supplementary Methods.345

Data and code availability346

The database and (R) code will be available in a public repository after acceptance. During347

the review process, data and code can be provided upon request.348
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Figure 1. Temperature response curves compared to the predictions of Eqs. (5) and (7) for363

a wide diversity of biological examples. Plotted are ln(Y ) vs. 1/T (in 1/K; where K is Kelvin364

degrees) showing (a)-(c) convex patterns and (d)-(f) concave patterns: (a) metabolic rate365

in the multicellular insect Blatella germanica, (b) maximum relative germination in alfalfa366

(for a conductivity of 32.1 dS/m), (c) growth rate in Saccharomyces cerevisiae, (d) mortality367

rate in the fruit fly (Drosophila suzukii), (e) generation time in strain 121, (f) metabolic rate368

in the rodent Spermophilus parryii. For references see Supplementary Methods. The x-axis369

is in units of (1/K)× 103.370
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Fig. 2. Universal patterns of temperature response predicted by Eqs. (9) and (10). The371

left panels show the convex and concave non-linear patterns predicted when lnY ∗ is plotted372

vs. 1/T ∗, [Eq. (9)], whereas the right panels show the straight lines predicted when ln Ŷ ∗ is373

plotted vs. 1/T ∗, [Eq. (10)]. All curves regardless of variable, environment and taxa collapse374

onto a single curve when plotted in either of these ways. These rescalings explicitly show375

the universal temperature-dependence of the data used in Fig. 1, as well as additional data376

from compiled studies. Panels (a) and (b) show molecular (enzymatic) data exhibiting the377

predicted concave and convex patterns on the left, while (c) and (d) show corresponding378

concave and convex patterns for data above the molecular level. Note that there appears379

to be no variance in the fits to the linear predictions (the right-hand set of graphs) whereas380

there is significant variation in the non-linear ones (the left-hand set of graphs). This is381

basically because ln(Ŷ ∗) >> ln(Y ∗). The value of ln(Y ∗) is typically around 0.01 with a382

variance much smaller than 0.005. Since ln(Ŷ ∗) = ln(Y ∗)+a ln(e/T ∗) and ln(Ŷ ∗) is typically383

around 3, fluctuations in ln(Y ∗) are very much smaller and consequently completely lost. The384

point is that the difference between what is plotted in the left panels vs. that on the right,385

namely a ln(e/T ∗), is in absolute value very large (more than 10 times the value of ln(Ŷ ∗);386

furthermore, it is almost a constant over the range of temperatures since it is logarithmic,387

whereas all of the temperature variation is in the much smaller term ln(Ŷ ∗).388
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