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ABSTRACT 

Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we 

analyzed structural and functional brain network development in an accelerated longitudinal cohort 

spanning 14–25 years (n = 199). Core to our work was an advanced in vivo model of cortical wiring 

incorporating MRI features of cortico-cortical proximity, microstructural similarity, and white matter 

tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a 

continued differentiation of multiple cortico-cortical structural networks in youth. Studying resting-

state functional MRI measures in the same participants at baseline, we found that regions with more 

similar structural wiring were more likely to be functionally coupled. Moreover, longitudinal 

structural wiring changes, particularly between sensory/unimodal and default mode networks, were 

reflected in tendencies for increased differentiation in brain function. These longitudinal findings 

provide new insights into adolescent development of human brain structure and function, illustrating 

how structural wiring interacts with the maturation of macroscale functional hierarchies. 
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INTRODUCTION 

In adolescence, increasing evidence suggests that ongoing maturation of structural and functional 

brain networks underpins broad cognitive development (1–9). Prior magnetic resonance imaging 

(MRI) literature has assessed regional changes in brain structure in youth (1–3, 10–16), showing age-

related widespread decreases in cortical thickness (1, 13) as well as changes in surrogates of 

intracortical myelin content (15–17). Complementing these regional changes, diffusion MRI as well 

as functional MRI (fMRI) studies have shown an ongoing maturation of both the microstructure of 

inter-connecting white matter tracts as well as large-scale developmental changes in functional 

organization, indicative of shifts in brain connectivity towards a more distributed network topology 

(18–20). Utilizing multimodal longitudinal MRI analyses, here, we explored how adolescent 

structural network development gives rise to potential shifts in functional network architecture.  

Core to our work was a comprehensive and recently introduced in vivo model of cortical wiring, 

which integrates several neuroimaging features of structural connectivity i.e., diffusion MRI 

tractography, cortico-cortical geodesic distance mapping, and microstructural covariance analysis 

(21). Diffusion MRI tractography maps white matter fibers, showing increasing validity in 

approximating deeper tracts, but some limitations in the proximity of cortical grey matter regions (22, 

23). On the other hand, geodesic distance analysis measures the spatial proximity of areas across the 

cortical sheet, tapping into short range cortico-cortical connectivity and wiring cost (24). Finally, a 

recent extension of structural covariance analysis (25, 26), labelled microstructural profile covariance 

analysis, identifies networks with similar myelin-sensitive imaging characteristics across cortical 

depths in a subject-specific manner (27, 28). By integrating these complementary measures from 

diffusion MRI tractography, geodesic distance, and microstructural covariance via unsupervised 

pattern learning, we could generate a new coordinate system and arrange cortical regions with respect 

to their similarity in structural wiring (21). In a prior evaluation in healthy adults, we demonstrated 

that this novel approach captures spatial gradients of (i) cortical cytoarchitecture, (ii) cell-type 

specific gene expression, and (iii) intrinsic functional connectivity and signal flow measured from 

resting-state fMRI (rs-fMRI) and intracranial electrical recordings (21), supporting neurobiological 

and functional validity. Here, we adopted this wiring model to chart adolescent development of 

cortical structural networks longitudinally. 

As brain structure ultimately scaffolds brain function (29–35), it is not surprising that multiple 

functional networks also change throughout adolescence. Prior analyses based on rs-fMRI 

connectivity analysis in youth have shown marked shifts in the connectivity patterns of multiple large-

scale cortical networks. A particular emphasis has been placed on the default mode and frontoparietal 

networks, both known to be spatially distributed and important for higher cognition (3, 36, 37). In 

one recent study, it was furthermore shown that different cortical areas undergo variable functional 

maturational trajectories, differentiating sensory and motor networks that follow a more ‘conservative’ 

functional trajectory from transmodal systems such as the default mode and frontoparietal networks 

that show a more ‘disruptive’ mode, reflected by reconfiguration of their functional connectivity 

patterns towards a more distributed and long-range network architecture (37). Benefitting from an 

increasing availability of multimodal datasets, several studies have begun to examine how brain 

structure and function co-mature. For example, a prior study showed that structural network modules 

become more segregated with advancing age, and that this process reflects ongoing development of 

executive function from 8 to 22 years (38). In other studies, the authors showed changes in structure-

function coupling with ongoing age, particularly with respect to transmodal vs sensory and motor 

networks (3, 39). The current work built on this growing literature to assess how adolescent changes 

in cortical wiring are reflected in functional network maturation.  

Our study was based on the Neuroscience in Psychiatry Network (NSPN) 2400 cohort, an accelerated 

longitudinal dataset that enrolled healthy individuals between 14–25 years (16, 40). Structural wiring 

models were derived for each participant at two time points based on multimodal neuroimaging and 
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unsupervised machine learning (41), and we estimated longitudinal trajectories in structural network 

maturation using linear mixed effect models. In addition to assessing whether age-effects on structural 

wiring were similar to cortical thickness changes in the same subjects (1, 11, 13, 42), we examined 

how structural wiring changes reflect adolescent functional network maturation based on parallel  

rs-fMRI acquisitions. Multiple sensitivity analyses assessed robustness of our findings with respect 

to several analysis parameter variations.   

 

RESULTS 

We studied 199 healthy participants obtained from the NSPN 2400 cohort, who were part of the 

accelerated longitudinal design and had imaging data available (16, 40) (Fig. 1A). Included 

participants had two measurement time points (mean inter-scan interval was 0.94 years, range = 0.5–

1), with a mean age of 18.84 (range = 14–25) years at baseline and 19.96 (range = 15–26) years at 

follow-up. Participants were uniformly distributed across the entire age range, with a similar sex ratio 

(52/48% males/females). Participant demographics, image processing, and analysis are further 

detailed in the Methods. 

 

Multiscale cortical wiring in youth 

Following a recently developed approach in healthy adults (21), we built a comprehensive in vivo 

model of cortico-cortical wiring for every subject time point (Fig. 1B). Models combined MRI-based 

measures of geodesic distance (GD), microstructural profile covariance (MPC), and diffusion MRI 

tract strength (TS). We integrated these three complementary features into a common low-

dimensional space using a non-linear manifold learning technique (see Methods) (41). Two 

eigenvectors (E1, E2) were identified that collectively explained approximately 37.8 ± 0.01% (mean 

± SD) of information, and averaged across ten iterations with different non-overlapping subsets within 

the NSPN cohort (Fig. 1B–C; see Methods). The first eigenvector (E1) depicted a sensory-fugal 

gradient from sensory/motor towards transmodal networks such as the default mode and 

frontoparietal networks and the second eigenvector (E2) differentiated anterior and posterior cortices. 

We calculated the Euclidean distance between all brain regions in the wiring-derived low dimensional 

space, as a measure of structural differentiation (henceforth wiring distance; Fig. 1D; see Methods 

for details). While within-network connectivity showed overall low wiring distance, connections 

between sensory and transmodal regions showed high values. In other words, the wiring distance 

measure captured an overall integration of nodes involved in the same functional network and an 

overall segregation between networks, particularly between sensory vs transmodal networks. 

Findings were furthermore summarized according to intrinsic functional communities (43).  
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Fig. 1 | Adolescent development of multiscale cortical wiring. (A) We studied the multimodal MRI dataset from the 

NSPN 2400 cohort, examining both baseline and follow-up scans. Age at both visits is represented in the histograms. (B) 

Our in vivo model of cortico-cortical wiring combined three cortical neuroimaging features i.e., geodesic distance (GD), 

microstructural profile covariance (MPC), and tract strength (TS). Matrices were normalized and concatenated prior to 

applying non-linear manifold learning, which identifies a coordinate system informed by cortical wiring. The scree plot 

shows eigenvalues of each estimated component, with error bars indicating the SD across ten repetitions. (C) We 

estimated two eigenvectors (E1, E2) from cortical wiring features. Averaged maps across ten repetitions are reported. The 

scatter plot represents each brain region projected onto the two-dimensional wiring space with different colors, mapped 

onto the cortical surface. Solid dots indicate mean across ten repetitions, and transparent dots with lines indicate results 

from each repetition. (D) Nodes in the wiring space were assigned to seven intrinsic functional communities. Multiscale 

cortical wiring distance, i.e., the Euclidean distance between different nodes in the wiring space, was calculated at a node-

level and summarized for intrinsic functional communities. (E) The t-statistics of age-effects on cortical wiring distance 

within- and between-networks are reported, with significant (pFDR < 0.05) results marked with asterisks. The within-

network effects are represented with radar plots, and significant networks are reported with asterisks. Significant between-

network effects are reported with circular plots. (F) The scatter plots show age-related changes in within (upper) and 

between-network (lower) wiring distance of each individual in the identified networks. Abbreviation: NSPN, the 

Neuroscience in Psychiatry Network; T1w, T1-weighted; MT, magnetization transfer; dMRI, diffusion magnetic 

resonance imaging; rs-fMRI, resting-state functional magnetic resonance imaging; FDR, false discovery rate. 
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Tracking adolescent changes in multiscale cortical wiring  

We assessed age-effects on this wiring distance using linear mixed effect models. In adolescence, 

several prior studies have reported robust age-related changes in cortical thickness (1, 11, 13, 42), 

and we confirmed similar age-effects in our NSPN cohort. Indeed, cortical thickness decreased in 

widespread cortical regions with advancing age (false discovery rate (pFDR) < 0.05; Fig. S1A). 

Running a spatial correlation analysis between longitudinal thickness and wiring effects, while 

controlling for spatial autocorrelation of the two maps (44), we only observed a weak spatial 

association to changes in wiring measures, with no correlation to within-network wiring distance (r 

= -0.02 ± 0.05, pspin-FDR = 0.27) and a trend-level association to between-network wiring distance (r 

= -0.12 ± 0.04 across ten repetitions, pspin-FDR = 0.06; Fig. S1B). We then assessed age-effects on 

wiring distance after controlling for sex, site, head motion, and subject-specific random intercepts, as 

well as cortical thickness (45). We found robust increases in wiring distance within and across 

multiple networks with advancing age (pFDR < 0.05; Fig. 1E), indicative of an ongoing structural 

differentiation in multiple systems in youth. Among the seven large-scale communities, the default 

mode network showed significant within-network changes, and we furthermore observed increased 

wiring distance across several between-network connections, particularly between nodes of default 

mode and attention, frontoparietal regions as well as between sensory and attention, limbic networks 

(pFDR < 0.05). Investigating changes in wiring distance for each individual in the identified networks, 

we could show a low but significant association between age and within-network wiring distance (r 

= 0.21, pperm-FDR = 0.004) as well as a moderate association between age and between-network wiring 

distance (r = 0.43, pperm-FDR < 0.001; Fig. 1F). 

We additionally assessed age-effects on each cortical feature (i.e., GD, MPC, and TS) to quantify how 

wiring distance captures age-related changes in cortical organization relative to changes in single 

features (Fig. S2). When analyzing wiring distance, the effect size (i.e., the mean absolute t-statistic 

across network pairs) was 32.07 ± 17.88% higher than when studying only GD across ten repetitions 

(see Methods), 15.45 ± 6.53% higher than when studying MPC, and 14.65 ± 11.58% higher than when 

studying TS, indicating that wiring distance describes adolescent cortical reorganization more 

sensitively than each modality separately. When associating age-effects on wiring distance with those 

on each feature, wiring distance increases were strongly related to reductions in MPC (r = -0.58, pFDR 

= 0.001), but not very much to changes in TS (r = -0.25, pFDR = 0.21) nor GD (r = 0.22, pFDR = 0.27), 

supporting the notion that increases in multiscale wiring distance reflected mostly a decreased 

similarity of intracortical microstructure. Furthermore, as the overall manifold size (i.e., mean of 

wiring distance across all networks) was significantly associated with age (r = 0.19 ± 0.02, p < 0.001 

across ten repetitions), we repeated linear mixed effect models after additionally controlling for mean 

wiring distance (Fig. S3). Despite decreases in the effect size, we observed overall consistent patterns, 

confirming that age-effects on wiring distance were not driven by the expansion in manifold space 

itself.  

 

Associations with macroscale functional network maturation 

To evaluate functional associations of the changes in multiscale cortical wiring, we first generated 

functional connectivity based on rs-fMRI obtained in the same subjects at equivalent time points (Fig. 

2A). Associating structural cortical wiring distance and functional connectivity across intrinsic 

functional networks at a cross-sectional level, we found strong negative structure-function coupling 

(r = -0.74, pspin < 0.001; Fig. 2B). In other words, regions with increased wiring distance generally 

show weaker functional connectivity. We then charted the development of functional connectivity 

across age, and we found decreases in sensory-default mode network connectivity and increases in 

connectivity between sensory networks (pFDR < 0.05; Fig. 2C). To assess how the age-related changes 

in structural and functional measures were inter-related, we correlated the age-effects on wiring 

distance with the age-effects on functional connectivity. Here, we found a tendency for a negative 
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association (r = -0.21, pspin = 0.09; Fig. 2D). The results indicate that cross-sectionally, weaker inter-

connectivity in brain function between sensory and transmodal networks is coupled with higher 

cortical wiring distance between these networks. Moreover, age-related functional differentiation 

between sensory and default mode networks also tends to be reflected in increased differentiation in 

structural wiring during adolescence.  

  

Fig. 2 | Association between functional connectivity and wiring distance. (A) Functional connectivity matrix was 

summarized according to intrinsic functional communities (left) and projected onto brain surfaces (right). (B) Cross-

sectional structure-function coupling between functional connectivity and cortical wiring distance. The histogram 

indicates distribution of correlation coefficients, and the actual r-value is represented with a red bar. (C) Age-effects on 

functional connectivity. The t-statistics of age-effects are reported. The within-network effects are represented with radar 

plots, and significant networks are reported with asterisks. Significant between-network effects are reported with circular 

plots. (D) Longitudinal structure-function coupling between age-effects on functional connectivity and cortical wiring 

distance. Abbreviation: FDR, false discovery rate. 
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Sensitivity analysis 

We assessed whether our findings were robust with respect to several methodological variations.  

a) Parcellation scales. We repeated assessing age-effects using different parcellation scales (i.e., 100 

and 300 regions) and revealed consistent results (Fig. S4), indicating robustness of our findings across 

different scales.  

b) Structural manifold generation using principal component analysis. Our main analysis estimated 

structural manifolds using diffusion map embedding (46), in keeping with a previous approach to 

study structural manifolds in healthy young adults (21, 47). We repeated our analysis after 

alternatively estimating structural manifolds using principal component analysis (48), and the 

manifolds and age-effects were similar (Fig. S5), confirming robustness.  

c) Parcellation scheme. We generated connectome manifolds and assessed adolescent remodeling 

using a functional (i.e., Schaefer) parcellation (49) instead of structural parcellation scheme (50), and 

found consistent results (Fig. S6), indicating the robustness of our analyses across different 

parcellations. 

 

 

DISCUSSION 

The current work assessed adolescent maturation of cortical networks based on an advanced in vivo 

model of cortical wiring (21). Charting typical development from late childhood to early adulthood 

using the longitudinal NSPN cohort (16, 40), we observed marked increases in within- and between-

network wiring distances in both sensory and transmodal association networks, indicating of ongoing 

structural differentiation in youth across multiple cortical networks. Moreover, associating cortical 

structural wiring features with intrinsic functional connectivity obtained from parallel rs-fMRI 

analysis performed in the same subjects, we observed that functional networks reconfigure alongside 

the marked reorganization of cortico-cortical wiring. Collectively, our work offers a novel perspective 

on how structural brain networks reconfigure and how these changes give rise to ongoing functional 

maturation in typically developing youth.  

Our work centered on an advanced in vivo model of structural wiring that integrates multiple 

dimensions of cortico-cortical connectivity (21), namely diffusion MRI tractography strength (TS), 

geodesic distance (GD), and microstructure profile covariance (MPC). Each feature taps into different 

aspects of cortico-cortical connectivity, grounded in seminal neuroanatomical work on the multiple 

facets of the cortical wiring scheme (51). Synergistic integration of these features is hypothesized to 

comprehensively describe structural connectivity, and to thus reveal structure-function relationships 

in the developing brain. In fact, TS is an established measure of short- and long-range fibers in the 

white matter (52, 53), whereas GD is computed within the cortical ribbon, approximating horizontal 

connectivity between adjacent cortical regions (24, 54). Similarity of intracortical microstructural 

profiles, quantified as MPC (28), is also recognized as an indicator of inter-regional connectivity (21, 

27, 55, 56). In fact, the structural model of brain connectivity, initially formulated in non-human 

animals, predicts that areas with similar microstructure are more likely to be connected than areas 

with different connectivity profiles (57). These findings were recently extended to human 

neuroanatomy, by relating microstructural similarity to diffusion MRI-derived streamline strength 

(56, 58) and to resting-state functional connectivity (28, 59). Here, we fused and mapped the three 

above cortical wiring features into a 2D coordinate system using manifold learning techniques (21, 

41, 46). By translating the approach previously formulated in adults (21) to typically developing 

adolescents, we demonstrated that the wiring space in youth overall resembles the one previously 
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seen in adults. Indeed, the two principal dimensions of the wiring space represented sensory-fugal 

and anterior-posterior gradients – two major axes of adult macroscale cortical topography (60–64). 

On the other hand, we could obtain new insights into adolescent reconfigurations of structural 

networks via longitudinal analyses. The NSPN dataset was built using an accelerated longitudinal 

design, enrolling individuals aged from late childhood to young adulthood with a 1 year follow up on 

average (16, 40). Compared to cross-sectional studies, longitudinal designs measure intra-individual 

changes in cortical features and chart developmental trajectories directly (3, 20, 65–67). Our 

multiscale approach gathered evidence for developmental shifts in cortical wiring, indicative of 

increased wiring distances in multiple systems of the cortical mantle, with highest effects in default 

mode and ventral attention networks. These findings indicate a continued differentiation of cortico-

cortical structural networks, which most markedly take place in transmodal systems at the apex of the 

cortical hierarchy (3, 37, 68, 69). Notably, wiring space analysis revealed increased effects compared 

to analysis of single features, suggesting that our compact multiscale approach may offer additional 

sensitivity in the study of adolescent development. These findings could, thus, recapitulate prior work 

in adolescence more generally and the NSPN dataset specifically, including our recent work showing 

overall changes in cortical myelination (16, 70) as well as depth-dependent shifts in intracortical 

myeloarchitecture (17). Moreover, several studies have described structural connectivity changes 

based on diffusion MRI tractography, reporting general increases in streamline strength in transmodal 

areas in adolescence (20, 71), together with enhanced within-module integration and strengthening 

of structural network hubs, sometimes alongside a weakening of more local connections (72, 73). In 

our work, different constituent wiring features contributed in a graded manner to our overall findings, 

with a marked association wiring distance increases and ongoing microstructural differentiation of 

transmodal areas from the rest of the brain (17). 

Alterations in cortical morphology during adolescence are well established, and the prevailing 

findings in the literature indicate widespread cortical thickness reductions with advancing age, a 

finding likely reflecting ongoing synaptic pruning and cortical myelination (10, 16, 74, 75). Here, by 

analyzing longitudinal cortical thickness changes in the same NSPN participants, we could confirm 

widespread cortical thinning in youth with advancing age. What’s more, we showed that wiring space 

changes were only partially attributable to these changes in cortical thickness, suggesting that age-

related structural wiring changes likely occurred above and beyond maturational effects on cortical 

morphology per se. In prior work in healthy adults (21), we could identify associations between in 

vivo cortical wiring space organization and intracortical factors, specifically cell-type specific gene 

expression as well as externopyramidization. Although these associations were indirect and based on 

separate datasets (in vivo MRI and histology-based post mortem gene expression information), they 

nevertheless supported a link between multiscale wiring and internal cortical microcircuitry that go 

beyond the changes measurable by cortical thickness measures alone. Such interactions between 

different scales of cortical organization during typical development could be further explored in 

studies obtaining wiring space data and gene expression in the same subjects.  

During adolescence, the age-related reconfiguration in functional connectome organization has 

recently been shown to mainly follow two distinct trajectories, labeled as conservative and disruptive 

modes (37). Conservative modes involve the ongoing strengthening of already strong functional 

connectivity and primarily take place in primary cortical regions. On the other hand, disruptive 

functional maturational trajectories have been observed in cortical association areas and subcortical 

nodes, and are characterized by a strengthening of initially weak connections or as a weakening of 

initially strong connections (37). These results complement our structural wiring space findings of an 

alteration of functional network topologies in adolescence, which showed increases in wiring distance 

between sensory and transmodal regions. Furthermore, assessing spatial associations between age-

effects on structural wiring and functional connectivity, we observed that adolescent decreases in 

functional connectivity between sensory and association systems are marginally reflected in increased 

cortical wiring distances between these systems. These segregation patterns of sensory-transmodal 
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networks echo prior studies in individuals aged 8-23 that has shown marked reconfigurations of 

structure-function coupling during development, particularly in sensory and transmodal regions, 

which further could support increased functional flexibility and cognitive control with advancing age 

during that time window (3, 38, 76).  

To conclude, we tracked longitudinal development of structural brain networks in adolescence based 

on an advanced model of cortical structural wiring, and showed an ongoing differentiation in cortico-

cortical wiring across multiple brain networks. Parallel analysis of rs-fMRI connectivity data obtained 

in the same subjects could show ongoing maturation of functional networks, which tended to reflect 

the observed changes in structural wiring. Our multimodal framework, thus, provides novel insights 

into structural and functional brain development in adolescence, and points to an inherent coupling 

of developmental trajectories across both domains.  

 

 

METHODS 

Participants 

We obtained imaging and phenotypic data from the NSPN 2400 cohort, which contains questionnaire 

data on 2,402 individuals (with MRI data in a subset of ~300) from adolescence to young adulthood 

in a longitudinal setting (16, 40). In this study, we included 199 participants who completed quality-

controlled (see Data preprocessing section) multimodal MRI scans consisting of T1-weighted, 

magnetization transfer (MT), diffusion MRI, and rs-fMRI for at least two time points (48% female; 

mean ± SD age = 18.84 ± 2.83 (between 14 and 25) years at baseline and 19.96 ± 2.84 (between 15 

and 26) years at follow-up with inter-scan interval of 0.94 ± 0.17 (between 0.5 and 1) years; Fig. 1A). 

Data were collected from three different sites: Wolfson Brain Imaging Centre; MRC Cognition and 

Brain Sciences Unit in Cambridge; and University College London. Participants provided informed 

written consent for each aspect of the study, and parental consent was obtained for those aged 14–15 

years old. Ethical approval was granted for this study by the NHS NRES Committee East of England-

Cambridge Central (project ID 97546). The authors assert that all procedures contributing to this work 

comply with the ethical standards of the relevant national and institutional committees on human 

experimentation and with the Helsinki Declaration of 1975, as revised in 2008. 

 

MRI acquisition 

Imaging data were obtained using a Siemens Magnetom TIM Trio 3T scanner at all sites. The T1-

weighted and MT sequences were acquired using a quantitative multiparameter mapping (MPM) 

sequence (repetition time (TR)/flip angle = 18.7ms/20º for T1-weighted and 23.7ms/6º for MT; six 

equidistance echo times (TE) = 2.2–14.7ms; voxel size = 1mm3; 176 slices; field of view (FOV) = 

256 × 240mm; matrix size = 256 × 240 × 176) (77). The diffusion MRI data were acquired using a 

spin-echo echo-planar imaging (EPI) sequence (TR = 8,700ms; TE = 90ms; flip angle = 90º; voxel 

size = 2mm3; 70 slices; FOV = 192 × 192mm2; matrix size = 96 × 96 × 70; b-value = 1,000s/mm2; 

63 diffusion directions; and 6 b0 images). The rs-fMRI data were collected using a multi-echo EPI 

sequence with three different TEs (TR = 2.43 ms; TE = 13.0/30.55/48.1 ms; flip angle = 90º; voxel 

size = 3.75 × 3.75 × 4.18 mm3; 34 slices; FOV = 240 × 240 mm2; matrix size = 64 × 64 × 34; and 

269 volumes). 

 

Data preprocessing 

T1-weighted data were processed using the fusion of neuroimaging preprocessing (FuNP) pipeline 

integrating AFNI, FSL, FreeSurfer, ANTs, and Workbench (https://gitlab.com/by9433/funp) (78–82), 
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which is similar to the minimal preprocessing pipeline for the Human Connectome Project (83). 

Gradient nonlinearity and b0 distortion correction, non-brain tissue removal, and intensity 

normalization were performed. The white and pial surfaces were generated by following the 

boundaries between different tissues (80, 84–86). The midthickness surface was generated by 

averaging the white and pial surfaces, and it was used to generate an inflated surface. Quality control 

involved visual inspection of surface reconstruction of T1-weighted data, and cases with faulty 

cortical segmentation were excluded. Surface-based co-registration between T1-weighted and MT 

weighted scans were performed. We generated 14 equivolumetric cortical surfaces within the cortex, 

especially between inner white and outer pial surfaces, and sampled MT intensity along these surfaces 

(28). The diffusion MRI data were processed using MRtrix3 (23), including correction for 

susceptibility distortions, head motion, and eddy currents. The rs-fMRI data were processed using 

multi-echo independent component analysis (ME-ICA) pipeline (https://github.com/ME-ICA/me-ica) 

(87, 88). The first six volumes were discarded to allow for the magnetic field saturation, and slice 

timing was corrected. Motion correction parameters were estimated from the middle TE data by 

aligning all volumes to the first volume using rigid-body transformation. The co-registration 

transformation parameters from functional to structural image were estimated by registering the skull-

stripped spatially concatenated multi-echo functional data to the skull-stripped anatomical image 

using affine transformation. The estimated motion correction and anatomical co-registration 

parameters were applied to each slice-timing corrected TE data and then temporally concatenated. 

The noise components were removed using principal component analysis followed by independent 

component analysis (87, 88). The processed fMRI data were mapped to the standard grayordinate 

space (i.e., 32k Conte69) with a cortical ribbon-constrained volume-to-surface mapping algorithm. 

Finally, data were surface smoothed with 5 mm full width at half maximum.  

 

Multiscale cortical wiring features 

We calculated complementary cortical wiring features from different imaging sequences, namely GD 

from T1-weighted, MPC from MT, and TS from diffusion MRI (Fig. 1B). GD is a physical distance 

represented by the shortest paths between two points along the cortical surface (24, 47, 54). To 

calculate the GD matrix, we first matched each vertex to the nearest voxel in volume space. Then we 

calculated the distance to all other voxels traveling through a grey/white matter mask using a Chamfer 

propagation (https://github.com/mattools/matImage/wiki/imGeodesics) (89). Unlike a previously 

introduced approach that calculates only intra-hemispheric distance (24, 47, 54), this approach allows 

estimating interhemispheric projections (21). We mapped GD to 200 cortical nodes parcellation 

scheme, which preserves the boundaries of the Desikan Killiany atlas (50). Following our prior study 

in adults (28), the MPC matrix was constructed by calculating linear correlation of cortical depth-

dependent intensity profiles between different nodes, controlling for the average whole-cortex 

intensity profile based on the 200 parcels. The MPC matrix was thresholded at zero and log-

transformed. We generated the TS matrix from preprocessed diffusion MRI data using MRtrix3 (23). 

Anatomical constrained tractography was performed using different tissue types derived from the T1-

weighted image, including cortical and subcortical grey matter, white matter, and cerebrospinal fluid 

(90). We estimated co-registration transformation from T1-weighted to diffusion MRI data with 

boundary-based registration and applied the transformation to different tissue types to align them onto 

the native diffusion MRI space. The multi-shell and multi-tissue response functions were estimated 

(91), and constrained spherical deconvolution and intensity normalization were performed (92). 

Seeding from all white matter voxels, the tractogram was generated using a probabilistic approach 

(23, 93) with 40 million streamlines, a maximum tract length of 250, and a fractional anisotropy cutoff 

of 0.06. Subsequently, we applied spherical-deconvolution informed filtering of tractograms (SIFT2) 

to optimize an appropriate cross-section multiplier for each streamline (94), and reconstructed whole-

brain streamlines weighted by cross-section multipliers. Reconstructed cross-section streamlines 

were mapped onto the 200 parcels to build TS matrix, and log-transformed (95, 96). 
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Structural manifold identification 

We estimated structural manifolds based on the multiscale cortical features calculated above using an 

openly accessible normative manifold map approach (https://github.com/MICA-

MNI/micaopen/tree/master/structural_manifold) (21), which is now integrated in BrainSpace 

(https://github.com/MICA-MNI/BrainSpace) (41). First, we rank normalized nonzero entries of the 

input matrices, and the less sparse matrices (i.e., GD and MPC) were rescaled to the same numerical 

range as the sparsest matrix (i.e., TS) to balance the contribution of each input measure (Fig. 1B). 

Notably, we rank normalized the inverted GD matrix to represent closer regions with larger values. 

We horizontally concatenated the normalized GD, MPC, and TS matrices and constructed an affinity 

matrix with a normalized angle kernel with 10% density, which quantifies the strength of cortical 

wiring between two regions. Structural manifolds were estimated via diffusion map embedding (46) 

(Fig. 1C), which is robust to noise and computationally efficient compared to other non-linear 

manifold learning techniques (97, 98). It is controlled by two parameters α and t, where α controls 

the influence of the density of sampling points on the manifold (α = 0, maximal influence; α = 1, no 

influence) and t controls the scale of eigenvalues of the diffusion operator. We set α = 0.5 and t = 0 to 

retain the global relations between data points in the embedded space, following prior applications 

(17, 20, 28, 41, 47, 99, 100). Cortical regions with more similar inter-regional patterns are more 

proximal in this new structural manifold. To assess robustness, we repeated estimating structural 

manifolds ten times with different sets of participants. Specifically, we split the dataset into non-

overlapping template (1/10) and non-template (9/10) partitions with similar distribution of age, sex, 

and site. The template manifold was generated using the averaged concatenated matrix of template 

dataset, and individual-level manifolds were estimated from the non-template dataset and aligned to 

the template manifold via Procrustes alignment (41, 101). We repeated generating connectome 

manifolds ten times with different template and non-template datasets.  

 

Age-effects on structural manifolds 

To chart age-effects on structural manifolds, we first calculated multiscale cortical wiring distance, 

which is the Euclidean distance between different brain regions in the manifold space (Fig. 1D) (21, 

102), and stratified the node-level wiring distance based on intrinsic functional communities (43). It 

has been shown that cortical thickness shows significant changes across age (1, 11, 13, 42). We first 

replicated these morphological findings by assessing age-effects on cortical thickness measured using 

T1-weighted MRI (Fig. S1A). Next, we linearly correlated time-related changes in wiring distance 

and those in cortical thickness to assess spatial similarity across the cortex (Fig. S1B). The 

significance of the similarity was assessed based on 1,000 spin tests that account for spatial 

autocorrelation (41, 44), and FDR corrected across within and between-network correlations. We then 

assessed age-effects on network-level wiring distance using a linear mixed effect model (45). The 

model additionally controlled for sex, site, head motion (i.e., frame-wise displacement measured from 

diffusion MRI), cortical thickness, and included a subject-specific random intercept. We corrected for 

multiple comparisons across all pairs of functional communities with pFDR < 0.05 (103). We repeated 

the age modeling ten times with different non-template individuals and reported only those network 

pairs showing significant effects across all repetitions (Fig. 1E). To assess individual-level changes 

in wiring distance across the age, we calculated linear correlations between mean age and within- and 

between-network wiring distance in the identified networks between baseline and follow-up, where 

the significance was determined based on 1,000 permutation tests randomly assigning subjects (Fig. 

1F). We additionally implemented mixed effect models for each cortical wiring feature separately 

(i.e., GD, MPC, and TS) to assess how much the age-effects improved when we considered multiscale 

cortical wiring distance (Fig. S2). The age-effect t-statistics of each feature were correlated with those 

of wiring distance to assess which features are strongly related to adolescent development in wiring 

distance. To assess the association between global manifold effects and age, we calculated linear 
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correlation between age and mean wiring distance across the whole network. We also implemented a 

linear mixed effect model that additionally controlled for mean wiring distance to assess whether the 

age-effects on wiring distance are affected by global changes in the size of manifold space (Fig. S3).  

 

Association between structural manifolds and functional connectivity 

Structure-function coupling analyses assessed how multiscale cortical wiring related to functional 

connectivity. First, we constructed the functional connectivity matrix by calculating linear 

correlations of resting-state functional time series between different brain regions, controlling for 

average whole-cortex signals (Fig. 2A). After row-wise thresholding remaining 10% of values for 

each row in the connectivity matrix, we assessed structure-function correspondence by computing 

linear correlations between the z-transformed functional connectivity and wiring distance at network-

level (43) (Fig. 2B). To assess the relationship between age-effects on multiscale cortical wiring and 

those on functional connectivity, we first assessed age-effects on functional connectivity to obtain 

node by node t-statistics (Fig. 2B). Then, we calculated linear correlation between the age-effect t-

statistics of functional connectivity and wiring distance (Fig. 2D). We calculated correlations 1,000 

times with spin test (41, 44).  

 

Sensitivity analysis 

a) Parcellation scales. Our main analyses were based on the structural atlas of 200 cortical nodes 

defined using Desikan Killiany atlas (50). To assess robustness across multiple parcellation scales, 

we generated structural manifolds using structural atlases with 100 and 300 parcels and repeated the 

age modeling (Fig. S4).  

b) Structural manifold generation using principal component analysis. Instead of relying on diffusion 

map embedding (46), we generated structural manifolds using principal component analysis (48). 

Then, we repeated calculating multiscale cortical wiring distance and assessed age-effects to evaluate 

consistency of our findings (Fig. S5). 

c) Functional parcellation. We also repeated structural manifold generation and age modeling using 

the functional Schaefer parcellation scheme with 200 parcels (49) (Fig. S6). 
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DATA AND CODE AVAILABILITY 

The imaging and phenotypic data were provided by the Neuroscience in Psychiatry Network (NSPN) 

2400 cohort. As stated in https://doi.org/10.1093/ije/dyx117, the NSPN project is committed to make 

the anonymised dataset fully available to the research community, and participants have consented to 

their de-identified data being made available to other researchers. A data request can be made to 

openNSPN@medschl.cam.ac.uk. Codes for multimodal connectome manifold generation are 

provided at https://github.com/MICA-MNI/micaopen/tree/master/structural_manifold and 

https://github.com/MICA-MNI/BrainSpace, and those for wiring distance calculation are provided at 

https://github.com/MICA-MNI/micaopen/tree/master/manifold_features.  
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Supporting Information 

 

Fig. S1 | Cortical thickness effects. (A) The t-statistics of the identified regions that showed 

significant age-related changes in cortical thickness. (B) Linear correlations between time-related 

changes in cortical thickness and within/between-network wiring distance.  
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Fig. S2 | Age-effects on each cortical wiring feature. The spatial maps of GD, MPC, and TS are 

shown on the brain surface. The t-statistics of age-related changes on each cortical feature within- 

and between-networks, with significant (pFDR < 0.05) results marked with asterisks. Abbreviation: 

FDR, false discovery rate. 
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Fig. S3 | Age-effects on multiscale cortical wiring distance after controlling for mean wiring 

distance. The t-statistics of age-effects are reported in the matrix, and within- and between-network 

effects are represented with radar and circular plots, respectively. For details, see Fig. 1.  
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Fig. S4 | Structural manifolds and age-effects on multiscale cortical wiring distance using 

different parcellation scales. (A) Results using 100 and (B) 300 parcellations. Two eigenvectors (E1, 

E2) estimated from the cortical wiring features (top) and t-statistics of age-effects within- and 

between-networks (bottom) are reported. For details, see Fig. 1. 
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Fig. S5 | Structural manifolds derived using principal component analysis and age-effects on 

multiscale cortical wiring distance. (A) Two eigenvectors (E1, E2) estimated from the cortical 

wiring features. (B) The wiring distance summarized based on functional communities. (C) The t-

statistics of age-effects on wiring distance within- and between-networks. For details, see Fig. 1. 
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Fig. S6 | Structural manifolds and age-effects on multiscale cortical wiring distance using 

Schaefer 200 parcellation. (A) Two eigenvectors (E1, E2) estimated from the cortical wiring features. 

(B) The wiring distance summarized based on functional communities. (C) The t-statistics of age-

effects on wiring distance within- and between-networks. For details, see Fig. 1. 
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