
 1 

Community science designed ribosomes with beneficial phenotypes 
 
 
Antje Krüger1,*, Andrew M. Watkins2,*, Roger Wellington-Oguri3, Jonathan Romano2,3,4, 
Camila Kofman1, Alysse DeFoe1, Yejun Kim1, Jeff Anderson-Lee3, Eli Fisker3, Jill Townley3, 
Eterna participants3, Anne E. d’Aquino1, Rhiju Das2,5,#, Michael C. Jewett1,6,#   
 
 
Affiliations: 
1Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and 
Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA 
2Department of Biochemistry, Stanford University, Stanford, CA 94305, USA 
3Eterna Massive Open Laboratory, Stanford, CA 94305, USA 
4Department of Computer Science and Engineering, State University of New York at Buffalo, 
Buffalo, NY 14260 
5Department of Physics, Stanford University, Stanford, CA 94305, USA 

6Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern 
University, Chicago, IL 60611, USA  
 
 
*These authors contributed equally 
 
#Correspondence:  
 
Michael C. Jewett 
Department of Chemical and Biological Engineering 
Northwestern University, Evanston, IL 60208, USA 
E-mail address: m-jewett@northwestern.edu 
Tel: 1 847 467 5007; Fax: 1 847 491 3728  
Postal Address for corresponding author:  
2145 Sheridan Road, Tech E-136 Evanston, IL 60208, USA  
 
Rhiju Das 
Departments of Biochemistry and Physics 
Stanford University, Stanford, CA 94305 
E-mail address: rhiju@stanford.edu 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.09.05.458952doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.05.458952
http://creativecommons.org/licenses/by-nc/4.0/


 2 

ABSTRACT 
 
Functional design of ribosomes with mutant ribosomal RNA (rRNA) could expand opportunities 
for understanding molecular translation, building cells from the bottom-up, and engineering 
ribosomes with altered capabilities. However, such efforts have been hampered by cell viability 
constraints, an enormous combinatorial sequence space, and limitations on large-scale, 3D 
design of RNA structures and functions. To address these challenges, we developed 
an integrated community science and experimental screening approach for rational design of 
ribosomes. This approach couples Eterna, an online video game that crowdsources RNA 
sequence design to community scientists in the form of puzzles, with in vitro ribosome synthesis, 
assembly, and translation in multiple design-build-test-learn cycles. We applied our framework to 
discover mutant rRNA sequences that improve protein synthesis in vitro and cell growth in vivo, 
relative to wild type ribosomes, under diverse environmental conditions. This work provides new 
insights into ribosome rRNA sequence-function relationships, with implications for synthetic 
biology. 
 
INTRODUCTION 
 
The bacterial ribosome is composed of three distinct ribosomal RNAs (rRNAs) and more than 50 
ribosomal proteins (rProteins) separated into small (30S) and large (50S) subunits1–3. It is 
responsible for the molecular translation of a defined genetic template into sequence-defined 
polymers of amino acids (i.e., proteins), with rRNA components facilitating messenger RNA 
(mRNA) decoding, accommodating amino acid substrates, catalyzing peptide bond formation, 
and excreting proteins from the exit tunnel. Motivated by the ribosome’s central role in controlling 
molecular translation, efforts are rapidly expanding to redesign, build, and repurpose ribosomes 
to facilitate understanding of ribosome assembly and function2,4–7, fill knowledge gaps in the 
origins of life8–11, and advance biotechnology12–16.  
 
Efforts to modify or redesign the ribosome typically focus on creating rRNA mutants with assigned 
defects, enhanced functions, or altered capabilities. However, several bottlenecks have made 
altering the natural rRNA difficult. First, because the ribosome’s function is necessary for life, cell 
viability constrains the rRNA mutations that can be made as many mutations are dominantly 
lethal17–22. Cell-free approaches offer an alternative strategy, but cell-free built bacterial 
ribosomes, such as those from Escherichia coli, are not as active as wild type ribosomes8,23,24. 
Second, the mutational space is massive. For example, the 1,542-nucleotide long 16S and 2,904-
nucleotide long 23S rRNAs of the E. coli ribosome are critical for function; thus, the theoretical 
sequence space for rRNA mutation (i.e., 44446) is intractable to study experimentally. Third, the 
ribosome’s shape, physiochemical, and dynamic properties have been evolved over billions of 
years to build proteins with ~20 canonical α-amino acids, making redesign for a new function non-
trivial25. Taken together, these features have resulted in a limited understanding of how to 
rationally design the structure and function of rRNA that makes up the ribosome.  
 
Community science has emerged as a new approach to rationally design RNA structures and 
functions. This approach has advantages over typical computational RNA design methods, which 
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are thwarted by the exponential complexity of minimizing the free energy of target RNA 
structures26. Eterna is an internet-scale community science game in which players ‘solve’ RNA 
secondary structure design puzzles subject to the constraints imposed by state-of-the-art 
thermodynamic energy models. In ‘lab challenges,’ players submit RNA puzzle ‘solutions’ and 
select a subset of these by voting, which then are synthesized and tested in research labs. 
Previously, Eterna has successfully targeted RNA design challenges inaccessible to other 
algorithms27. Despite recent progress in community science applied to RNAs and new methods 
for computational design of 3D RNA structure and function28,29, no RNA design efforts to date 
have approached the size or complexity of the entire bacterial ribosome. 
 
In this work, we developed a design-build-test-learn (DBTL) approach, implemented through the 
Eterna platform, to create mutant ribosomes with improved rRNA secondary structure energetics. 
Specifically, our approach connects community scientists, university scientists, and game 
developers through three synergistic, interlocking, and mutually reinforcing DBTL cycles: game 
developers create 16S and 23S rRNA puzzles according to the needs of community scientists, 
community scientists design mutant 16S and 23S rRNAs by utilizing community and expert 
knowledge, and university scientists test these mutants by assessing them in an in vitro ribosome 
synthesis, assembly, and translation (iSAT) platform8. We demonstrate the power of our approach 
by conducting two iterations of a DBTL pipeline connecting three rounds of community science-
derived ribosome design with a goal of improving protein expression in the iSAT cell-free platform. 
Through the course of this process, Eterna participants exceeded state-of-the-art computational 
predictions and designed mutant ribosomes with 42 ± 10% greater protein expression than wild 
type ribosomes under optimal conditions and across diverse stress conditions in vitro. 
Surprisingly, the mutant ribosomes also support life and enable faster growth than cells grown 
exclusively with wild type ribosomes. We anticipate that our Eterna-based DBTL approach will be 
valuable for engineering complex RNA machines, advancing our knowledge about RNA 
sequence-folding-function relationships, and inspiring new directions to engineer ribosomes for 
synthetic biology applications. 
 
RESULTS 
 
In this study, we aimed to demonstrate the use of the Eterna platform to crowdsource the design 
of ribosomes with functional, stabilized mutant rRNAs with beneficial phenotypes. Following a 
“pilot round” (R0), where we discovered Eterna players could design functional ribosomes with 
unexpectedly large numbers of rRNA mutations, we devised a DBTL framework for iterative 
citizen science collaborations and applied it to two further rounds of the “OpenRibosome 
Challenge.” 
 
Eterna participants can design mutant ribosomes with diverse sequences that outperform 
computationally predicted designs 
 
We aimed to explore the use of the Eterna platform to crowdsource the design of functional 16S 
and 23S rRNA variants with improved secondary structure energetics, as compared to the wild 
type (WT) E. coli sequences. For this, we first carried out a “pilot round” (R0) of puzzles on the 
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Eterna platform for the ribosome’s 16S and 23S rRNAs and used a conventional Design-Build-
Test-Learn (DBTL) strategy (Fig. 1a). In the Design phase, the Eterna platform released 16S and 
23S rRNA puzzles, and participants designed mutant rRNA sequences by exchanging individual 
nucleotides against any other unmodified RNA nucleotide (A, C, G, U) in the puzzles, with some 
critical nucleotides “locked” to their WT identities (see Methods). These sequences then were 
scored with a folding engine calculating the free energy (∆G) of the sequence’s secondary 
structure (see Methods, “Design of ribosome puzzles”) and submitted to a pool of designs from 
which the players then voted on the best 8 designs. In the Build phase, we synthesized plasmid 
DNA encoding the rRNA designs selected by the players. In the Test phase, mutant 16S and 23S 
rRNAs were assessed in an in vitro ribosome construction platform, called iSAT8,24,30. iSAT 
enables one-pot co-activation of rRNA transcription, assembly of rRNA with native ribosomal 
proteins into E. coli ribosomes, and synthesis of functional proteins from these ribosomes in a 
crude S150 extract lacking native ribosomes (Figure 1a, bottom). A key feature of this system is 
the ability to generate ribosomal variants by simply changing the DNA input, which enables rapid 
screening of E. coli ribosome mutations31,32. Moreover, because ribosomes assembled in iSAT 
have lower activity than in vivo-assembled versions8,23,24 and there are known inefficiencies with 
ribosome reconstitution in vitro8,23, we hypothesized that iSAT would enable us to identify 
ribosomes where stabilized rRNAs could lead to improved activity. Finally, in the Learn phase, we 
shared the results with the players on the Eterna webpage in the form of detailed results postings. 
 
Seventeen players submitted 129 16S rRNA designs and sixteen players submitted 157 23S 
rRNA designs. The players then voted on their top eight designs for each rRNA. The 16S rRNA 
designs comprised 2-55 mutations and 23S rRNA designs harbored 1-72 mutations distributed 
over the entire rRNA sequences (Suppl. Data 1; Suppl. Table 1). DNA sequences were then 
synthesized and cloned in place of the corresponding 16S rRNA or 23S rRNA into plasmid pT7-
rrnB, which encodes a copy of the rrnB operon controlled by the T7 promoter, tested in the iSAT 
platform, and results shared with the Eterna community (Figure 1a). Six of the 16S rRNA and 
seven of the 23S rRNA designs from the players were functional in iSAT, conferring activities 
between 14 and 96% compared to WT with only a mild negative correlation between number of 
16S/23S rRNA mutations and iSAT activity. We compared the iSAT activity of the 16S and 23S 
rRNA variants designed by community scientists (CS) head-to-head with a set of computationally 
predicted (CP) designs (see Methods) with exactly matched mutation numbers (Figure 1b; 
Suppl. Figure 1) and subject to the same secondary structure requirements. We found that CS 
designs were able to maintain nearly WT-like performance despite installing >20 mutations (16S 
rRNA) or even >40 mutations (23S rRNA), while every CP design with more than 4 mutations was 
inactive in iSAT. While we have previously used iSAT to show that more than 85% of 180 single 
nucleotide mutations within the ribosome active site possess some functional activity31, we were 
surprised that so many mutations could be designed into active ribosomes. 
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Figure 1: Crowdsourcing rRNA design enables 
functional mutant ribosomes and outperforms 
computational predictions. (a) rRNA design was 
crowdsourced to community scientists (CS) via the 
Eterna platform. In a “pilot round” (R0), CS solved 
16S rRNA and 23S rRNA puzzles, submitted their 
“solutions” and voted on 8 designs per puzzle. These 
designs were synthesized and tested for activity in 
vitro by integrated ribosome synthesis, assembly, 
and translation (iSAT). (b) Comparison of sfGFP 
expression in iSAT reactions with pT7-rrnB-16S and 
pT7-rrnB-23S rRNA variants generated either by 
computationally prediction (CP or by CS). sfGFP 
expression was determined by fluorescence over 16 
hours and normalized to the maximum sfGFP of 
pT7-rrnB-wild type (WT). Data are shown as mean ± 
s.d.; n ≥ 3. Dotted red line indicates background 
activity of the S150 extract due to residual ribosomal 
subunits.  

 
 
To determine the robustness of the initial Eterna 16S rRNA and 23S rRNA designs, we took 
advantage of the iSAT platform’s direct access to the reaction environment to perturb the 
magnesium (Mg2+) concentration, which impacts rRNA folding and intrinsic rRNA folding 
stability33,34. For this, we set up iSAT reactions with half of the experimentally optimized Mg2+ 
concentration (3.75 mM instead of 7.5 mM) and compared the activity of CS-designed rRNA 
variants with WT rRNA. While WT ribosome activity was still highest with 42% activity compared 
to optimal iSAT conditions, most CS-designed rRNAs assembled into functional ribosomes at low 
Mg2+ concentration, leading to activities of up to 41% of WT (Suppl. Figure 2). These results 
show that the CS rRNA designs, which were implemented on the basis of RNA secondary 
structure folding energetics, are robust under non-optimal iSAT conditions. In sum, the “pilot 
round” allowed us to build a community of Eterna participants with interest in ribosome design 
challenges, implement puzzles for rRNAs in the Eterna design framework, and realize that 
community scientists can outperform computational prediction methods in designing functional 
16S and 23S rRNAs by balancing numerous constraints in the design process and selecting the 
best designs through the voting process.   
 
Development of a progressive design-build-test-learn pipeline for designing diverse 16S and 23S 
rRNAs 
 
Following the pilot round, we recognized that continuing our initial DBTL approach would limit the 
project’s progress. While the size and complexity of the rRNA molecules and the assay used to 
test them excited Eterna players, they were also overwhelming. The puzzles were difficult to play 
through the Eterna interface because the algorithm to display their structures would place multiple 
nucleotides at the same point in 2D space, making it impossible to mutate certain bases. Finally, 
the feedback available to players was limited to energetics calculated within the puzzles and the 
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experimental results available months later, limiting their ability to explore diverse solution 
strategies. To this end, we realized that the Eterna platform itself—from the ribosome puzzles to 
the analysis tools offered by the game—would require DBTL iteration in parallel, and that the 
same three parties—university scientists, game developers, and community scientists—would 
have to collaborate to advance an approach in which each of these typically disparate groups 
would work together to propel the science and gameplay in tandem (Figure 2a).  
 
To test this framework, we set up a multi-round “OpenRibosome Challenge” on the Eterna 
platform with the aim of generating further stabilized rRNAs that lead to improved iSAT activity. 
We improved upon R0 in two notable ways. First, we programmed new software for RNA layout 
(https://github.com/ribokit/RiboDraw) and composed a diagram of the 16S and 23S rRNAs that 
reflects the relative position of elements in 3D space to avoid the overlapping rRNA sequences 
observed in the R0 puzzles. Second, we released two constraints over “locked” nucleotides. We 
made this change because during R0 we found that the “locked” nucleotides constrained player 
creativity, and after examining sequence variation across all gammaproteobacteria we noted that 
some residues deemed immutable were not conserved. The Eterna players developed an in-
game system for tracking which mutations violated gammaproteobacteria sequence conservation 
(see Methods, “Design of ribosome puzzles”); we anticipated that this system would enable fine-
grained feedback, leading to greater freedom to make extensive but high-confidence mutations 
than was possible with “locked” nucleotides. 
 
We conducted two rounds of the OpenRibosome Challenge. In Round 1 (R1), a total of 31 players 
submitted 205 16S rRNA designs and 22 players submitted 161 23S rRNA designs. In Round 2 
(R2), a total of 23 players submitted 139 16S rRNA designs and 20 players submitted 113 23S 
rRNA designs. During each round, the players selected 20 designs each of 16S rRNA and 23S 
rRNA, which then were synthesized and tested at optimal iSAT conditions (Suppl. Data 1; Suppl. 
Table 1). After each round, the data were shared with the community in the form of posts and 
discussed in forums and community meetings. We found that Eterna players learned from the 
iSAT data provided and improved their designs over time. For example, player designs in R1 and 
R2 had higher activity and more mutations than the R0 “pilot” 16S and 23S rRNA designs (Figure 
2b-c; Suppl. Figure 3). 
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Figure 2: The Eterna approach transforms traditional design-build-test-learn cycles. (a) Our Eterna 
approach exploits community scientists (CSs) who solve RNA design challenges by closely working 
together with each other, university scientists, and game developers. Each of these parties contribute to 
synergistic, interlocking, and mutually reinforcing DBTL cycles, thereby boosting the iteration of making 
rRNA puzzles, crowdsourcing rRNA design to community scientists through the Eterna platform, and 
discovering rRNA variants in research labs. We performed two rounds of our approach. Functionality 
comparison of Round 1 (R1) and Round 2 (R2) Eterna 16S rRNA (b) and 23S rRNA (c) designs in iSAT 
with the pilot round (R0) in dependence of the designs’ mutation counts. In order to approach the challenge, 
CSs followed and combined different strategies: (d) secondary structure energetics, (e) breaking stretches 
of consecutive identical nucleotides, (f) altering base pairing in rRNA secondary structures, (g) integrating 
mutations from other gammaproteobacteria, and (h) integrating/ combining of mutations from previous 
rounds. sfGFP expression in iSAT was determined by fluorescence and normalized to max sfGFP of pT7-
rrnB-wild type. Dotted line in (d) and (e) indicates the WT value. Data are shown as mean ± s.d.; n ≥ 3.  
 
 
Several sequence-function strategies emerged for designing stabilized rRNAs. These included: 
optimizing secondary structure energetics to support intrinsic rRNA folding, especially in R0 
(Figure 2d), and minimizing sequence repeats to prevent T7 RNA polymerase-derived rRNA 
synthesis errors (Figure 2e; Suppl. Figure 4a). When making mutations, players predominantly 
flipped base pairs, switched AU to CG pairs and vice versa, and wobble (non-Watson-Crick (non-
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WC)) base pairs to WC base pairs (Figure 2f; Suppl. Figure 4b). Furthermore, guided by 
scientific literature, players also successfully incorporated mutations from other 
gammaproteobacteria, with a focus on extremophilic bacteria that are known to have favorable 
RNA folding capabilities4,5 (Figure 2g). The players used designs from current or previous rounds 
as inspiration, borrowing and recombining mutations with great success (Figure 2h). In addition, 
players found it beneficial to prevent exchanging nucleotides that are conserved or directly contact 
rProteins35,36  (Suppl. Figure 4c) and they avoided previously described deleterious 
mutations21,22,31. 
 
To characterize and identify robust Eterna rRNA designs, we selected all R1 and R2 designs with 
≥ 6 mutations that showed activity of ≥ 80% WT at optimal iSAT conditions as a curated set of 
high performing, high sequence diversity ribosomes and tested them under folding stress 
conditions: low Mg2+ (3.75 mM) concentration and optimal temperature (37 ºC), LMOT; or low 
Mg2+ (3.75 mM) concentration and low temperature (30 ºC), LMLT (Figure 3a; Suppl. Figure 5-
6; Suppl. Table 1). Several Eterna designs showed robustness to these folding stress conditions, 
especially the R1 16S designs.  
 
From this set of 41 designs, we identified the 18 most diverse (i.e., high mutation rate) and robust 
(i.e., high iSAT activity) designs per rRNA and round. These 18 designs were next tested in ISAT 
under non-physiological conditions; the presence of organic solvents (ACN: acetonitrile, DMSO: 
dimethylsulfoxide, MeOH: methanol, EtOH: ethanol) or altered pH (Figure 3b; Suppl. Figure 8-
12). We selected solvent conditions that reduce iSAT activity using WT rRNAs (Suppl. Figure 7). 
Strikingly, several Eterna-designed ribosomes from R1 and R2 exceeded WT ribosome 
performance, including R1-13 and R1-15 at 9.7% MeOH, R1-09 at 12.5% MeOH, R2-02 at 6.7% 
EtOH, as well as R1-33 and R2-26 at 12.5% ACN (Figure 3b; Suppl. Figure 8-12). Together, 
these data highlight the potential for community science to develop ribosomes with beneficial 
phenotypes, and how computational design might be used to build modified ribosomes with 
altered chemical properties in the future. 
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Figure 3: Eterna rRNA designs are robust across diverse stress conditions in vitro. Designs with ≥ 6 
mutations and an activity of ≥ 80% wild type (WT) at optimal iSAT conditions were tested in diverse iSAT 
stress conditions. (a) Heatmaps illustrating folding stress tolerance of Eterna R1 and R2 16S and 23S 
designs with ≥ 6 mutations and an activity at optimal iSAT conditions of ≥ 80 % WT in iSAT. (b) Heatmap 
illustrating solvent and pH tolerance of designs with robust folding phenotypes and high mutation rate in 
iSAT. sfGFP expression in iSAT was determined by fluorescence and normalized to the maximum sfGFP 
of pT7-rrnB-wild type at optimal iSAT conditions. Data are shown as mean; n ≥ 3. ACN: acetonitrile, DMSO: 
dimethylsulfoxide, EtOH: ethanol, MeOH: methanol. As reference, activities of WT at each iSAT stress 
condition compared to iSAT at optimal conditions and the number of mutations of the most mutated design 
are provided as white numbers in each heatmap. * selected in (a) as designs for being tested in (b), in (b) 
as designs with outstanding features (i.e., high iSAT activity in multiple stress conditions). 
 
Combining Eterna 16S and 23S rRNA designs increases in vitro ribosome activity 
 
We next combined orthogonal Eterna player designs to assess the impact on in vitro ribosome 
synthesis and activity. We selected three 16S rRNA designs (R1-09, R1-13, R2-02) and two 23S 
rRNA (R1-33, R2-26) designs covering both rounds. These designs were selected because they 
had the best combination of sequence diversity, optimal iSAT performance, and tolerance to iSAT 
stress conditions. After building plasmids encoding the combined designs, we tested the six 
combinations (each designed small subunit paired with a designed large subunit) in iSAT 
reactions (Figure 4; Suppl. Figure 13, 14). In iSAT at optimal conditions, the R1-09/R1-33 
combination, totaling 28 mutations, showed 142 ± 10 % activity, a significantly higher level of 
function than the WT (Figure 4a). This advantage was also observed in several solvent stress 
conditions (Figure 4b). Under low Mg2+/37 °C and 9.7% MeOH condition, the R1-09/R1-33 
combination also performed about 1.4-times better than WT sequences in sfGFP expression 
(Suppl. Table 1). 
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Figure 4: Eterna ribosomes confer beneficial 
phenotypes in vitro. Two 23S rRNA designs and 
three 16S rRNA designs with tolerant iSAT stress 
phenotypes were combined and tested in iSAT under 
various conditions: (a) optimal conditions, or (b) 
stress conditions. sfGFP expression in iSAT was 
determined by fluorescence and normalized to max 
sfGFP of pT7-rrnB-wild type at optimal iSAT 
conditions. Fold-changes in (b) illustrate iSAT 
activities normalized to wild type performance under 
solvent condition. ACN: acetonitrile, DMSO: 
dimethylsulfoxide, EtOH: ethanol, MeOH: methanol. 
Data are shown as boxplots with error bars 
representing s.d. (a) or mean (b); n ≥ 3. 
 
 
 
 
 
 

 
 
Community science design ribosomes are functional in vivo 
 
A key challenge of ribosome design is that many rRNA mutants are dominantly lethal. Despite 
this challenge, we wondered if the community science designed ribosomes could support life. To 
test this, we individually cloned the R2 and “Combined” designs into the pL-rrnB plasmid, 
expressing the rrnB operon from a temperature-sensitive promoter, pL37, and conferring 
carbenicillin resistance. These plasmids were then individually transformed into the Escherichia 
coli SQ171fg strain12, which was evolved from the SQ171 strain38. The SQ171fg strain lacks 
chromosomal rRNA alleles and lives on the pCSacB plasmid which carries an rRNA operon 
encoding a tethered ribosome, Ribo-T v239 and the tRNA67 plasmid encoding missing tRNA 
genes. The pCSacB plasmid also contains a counter-selectable marker sacB gene which confers 
sucrose sensitivity and a kanamycin resistance cassette. Transformed SQ171fg cells were grown 
in the presence of carbenicillin and sucrose, individual colonies were picked and tested for loss 
of kanamycin resistance, indicating loss of plasmid pCSacB-RiboT v2, and resistance to 
carbenicillin, indicating the presence of the corresponding pL-rrnB designs. Loss of pCSacB-
RiboT v2 and presence and accuracy of the pL-rrnB-R2 plasmids was verified by Sanger 
sequencing. Strikingly, 18 of 20 R2 16S rRNA and 17 of 20 R2 23S rRNA designs support life—
of the four designs that are non-functional in iSAT, three were lethal in vivo (R2-22, R2-23, R2-
36), and one design with only about 50% iSAT activity (R2-13) harboring a mutation in the central 
16S rRNA pseudoknot was lethal as well (Figure 5a, b). Interestingly, one design is inactive in 
iSAT, but functional in cells (R2-25); suggesting it may suffer from assembly defects in vitro which 
can be compensated for in vivo.  
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We investigated how the ribosomes containing Eterna rRNA designs affect growth on solid 
nutritionally rich (LB) media. For this, we performed spot plating assays (Figure 5a-d; Suppl. 
Figure 15). Surprisingly, most of the R2 and combined 16S and 23S rRNA designs showed 
growth phenotypes on plates similar to WT, and 5 strains (R2-10, R2-21, R2-33, R2-38, R2-39) 
grew better than WT on plates (Figure 5a, b; Suppl. Figure 15a, c). When incubating the plates 
at sub-optimal temperature (30 °C) the phenotypes were even more pronounced and additional 
strains showed growth phenotypes (R2-12, R2-24); Figure 5c, d; Suppl. Figure 15b, d). We also 
assessed the functionality of the combinatorial design in vivo (Figure 5e, f; Suppl. Figure 16), 
and found that, except for two ribosomes designs (R1-09/R2-26 and R1-13/R2-26), the combined 
mutant ribosomes also support life. Surprisingly, two highly mutated ribosomes containing 55 and 
62 mutations (combinatorial designs R1-13/R1-33 and R1-13/R2-26) show improved growth at 
37 °C and 30 °C. This growth phenotype presumably arises from 16S rRNA design R1-13, which 
also confers improved growth when combined with WT 23S rRNA. Taken together, our results 
demonstrate the functionality of Eterna-designed ribosomes both in vitro and in vivo. 
 

 
Figure 5: Eterna discovers diverse rRNAs which are functional in vivo. a-f) Spotted SQ171fg cells 
growing with pL-rrnB-wild type and pL-rrnB-R2 16S rRNA (a) and 23S rRNA (b) designs imaged after 24 
hours at 37 °C or 72 hours at 30 °C. Stationary cells were diluted to an OD600 = 1, diluted stepwise 1:10, 
and spotted onto LB + Carb100 plates. Mut.: mutations, WT: wild type. Data representative of n=3 
independent in vivo growth experiments. 
 
 
DISCUSSION 
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In this study, we present an integrated computational and experimental workflow for constructing 
mutant ribosomes. This was accomplished by creating a DBTL pipeline that relies on game 
developers to create rRNA puzzles for stabilizing secondary structure, community scientists to 
design rRNA sequences, and lab scientists to carry out high-throughput, in vitro reactions to 
assess ribosome synthesis, assembly, and translation. We applied this pipeline to create mutant 
ribosomes that are functionally active. 
 
Our work has several important features. First, we found that mutant rRNA sequences confer 
beneficial phenotypes. In vitro, we showed that ribosomes constructed and assessed in iSAT 
outperformed WT ribosomes in in vitro translation under standard conditions, and were even more 
tolerant in stress phenotypes (e.g., protein expression in organic solvents). In vivo, we were 
surprised to find that more than 85% of designed ribosomes tested could support life, with more 
than 10% demonstrating improved growth phenotypes in strains that live exclusively off 
community scientist designed ribosomes. Second, our data provided new insights into ribosome 
sequence-to-function relationships. For example, we found that mutations that slightly improve 
secondary structure energetics, or those that remove base repeats (R2-24), can be well tolerated, 
and that these effects can be amplified when combining mutations from well-performing designs 
(R2-02, R2-33). Surprisingly, we found that exchanging nucleotides against nucleotides from 
other gammaproteobacterial can improve protein translation in vitro (R1-13, R2-26) and growth in 
vivo (R1-13, R2-12, R2-38) at optimal and low temperature conditions. Third, we applied 
crowdsourcing to ribosome design for the first time. Crowdsourcing design presents complex 
problems to a diverse population of citizen scientists, resulting in a variety of solutions that, taken 
together, can avoid trapping by local optima in a fashion reminiscent of classic nonconvex 
optimization algorithms40. For example, in our case, we found that community scientists were able 
to improve at each stage of the process (from R0 through R2), working together to infer how to 
iterate on a family of solutions in light of newly disseminated experimental data. 
 
Looking forward, our Eterna-based DBTL approach to crowdsourcing ribosome design may 
provide a rapid and powerful strategy for developing engineered ribosomes for synthetic and 
chemical biology. This could be used to deepen our understanding of the ribosome’s RNA-based 
active site, make simpler ribosomes to fill in knowledge gaps in the origins of life, and tailor the 
ribosome active site to accommodate novel monomers to yield new classes of enzymes, 
therapeutics, and materials. 
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METHODS 
 
S150 extract preparation 
Escherichia coli MRE600 cells for S150 extract and TP70 preparation were grown in 2x YPTG at 
37 ºC until OD600 = 3.0. Cells were pelleted, washed three times in S150 lysis buffer (20 mM 
Tris-HCl (pH 7.2 at 4 ºC), 100 mM NH4Cl, 10 mM MgCl2, 0.5 mM EDTA, 2 mM DTT), flash frozen 
in liquid nitrogen, and stored at -80 ºC. For cell lysis, 4 g of cells were resuspended in S150 lysis 
buffer at a ratio of 5 ml of buffer per 1 g of cells and supplemented with 200 µl of Halt Protease 
Inhibitor Cocktail (Thermo Fisher Scientific Inc.) and 75 µl RNase Inhibitor (Qiagen) per 4 g of 
cells. The cells were lysed at ∼ 20’000 psi with an EmulsiFlex-C3 homogenizer (Avestin). Lysate 
was supplemented with an equivalent dose of RNase Inhibitor and 3 µl of 1M DTT per ml 
suspension and clarified twice by centrifugation at 30’000 x g and 4 ºC for 30 min. Resulting S30 
extract was recovered and layered in a 1:1 volumetric ratio on a high sucrose cushion composed 
of Buffer B (20 mM Tris-HCl (pH 7.2 at 4 ºC), 500 mM NH4Cl, 10 mM MgCl2, 0.5 mM EDTA, 2 mM 
DTT, 37.7% sucrose) into Ti70 ultracentrifuge tubes. Samples were centrifuged at 90,000 x g and 
4 ºC for 20 h. Clear ribosome pellets were used for TP70 preparation and supernatants recovered 
and spun at 150,000 x g and 4 ºC for an additional 4 h. The top two-thirds of the supernatants 
were collected without disturbing the pellet and dialyzed in SnakeSkin dialysis tubing (Thermo 
Fisher Scientific; 3.5 kDa MWCO) against 50 volumes of high-salt S150 extract buffer (10 mM 
Tris-OAc (pH 7.5 at 4 °C), 10 mM Mg(OAc)2, 20 mM NH4OAc, 30 mM KOAc, 200 mM KGlu, 1 
mM spermidine, 1 mM putrescine, 1 mM DTT). Four dialysis steps with fresh dialysis buffer were 
performed: three steps for 2 h and a final step overnight. Extracts were then clarified at 4’000 × g 
for 10 min and concentrated to ~4 mg/mL total protein concentration using 3 kDa molecular weight 
cutoff (MWCO) Centriprep concentrators (EMD Millipore) to account for dilution during 
preparation. S150 extract samples were aliquoted, flash-frozen, and stored at -80 °C. Protein 
concentration was determined using Bradford assay with bovine serum albumin (BSA; BioRad) 
as a standard. 
 
Total protein of 70S ribosomes (TP70) preparation 
Clear ribosome pellets from S150 extract preparation were washed and resuspended in 10 mM 
Tris-OAc pH 7.5, 60 mM NH4Cl, 7.5 mM Mg(OAc)2, 0.5 mM EDTA, and 2 mM DTT. Concentration 
of resuspended ribosomes was determined from A260 NanoDrop readings (1 A260 unit of 70S = 
24 pmol 70S41). Ribosomes were aliquoted, flash-frozen and stored at -80 ºC until further use. To 
precipitate rRNA, two volumes of glacial acetic acid were added to purified 70S ribosomes in 
Buffer C (10 mM Tris-OAc (pH 7.5 at 4 °C), 60 mM NH4Cl, 7.5 mM Mg(OAc)2, 9.5 mM EDTA, 2 
mM dithiothreitol (DTT)) with 0.2 mM spermine and 2 mM spermidine, and 100 mM Mg(OAc)2. 
Samples were mixed well and centrifuged at 16,000 × g for 30 min to pellet rRNA. Supernatants 
containing ribosomal proteins was collected, mixed with five volumes of chilled acetone and 
stored at -20 °C overnight. Precipitated protein was collected by centrifugation at 10’000 × g for 
30 min, dried, and resuspended in simplified high-salt/ urea buffer (50 mM HEPES (pH 7.6 at RT), 
10 mM Mg(Glu)2, 200 mM KGlu, 0.5 mM EDTA, 2 mM DTT, 1 mM putrescine, 1 mM spermidine, 
6 M urea). Protein sample was then transferred to midi-size 1 kDa MWCO Tube-O-Dialyzers (G-
Biosciences) and first dialyzed against 100 volumes of simplified high-salt buffer with urea 
overnight, then three times against 100 volumes of simplified high-salt buffer without urea for 90 
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min each. The dialyzed protein sample was next clarified at 4’000 × g for 10 min, and the 
supernatant’s protein concentration determined from A230 NanoDrop readings (1 A230 unit of 
TP70 = 240 pmol TP70 39). TP70 samples were aliquoted, flash-frozen, and stored at −80 °C until 
use. 
 
iSAT reactions 
iSAT reactions were set-up as previously described 8,30,40,41. Briefly, 6.5 µl reactions were prepared 
by mixing salts, substrates, cofactors and additives (7.5 mM Mg(Glu)2, 167 mM K(Glu), 1.2 mM 
ATP, 0.85 mM GTP, 0.85 mM UTP, 0.85 mM CTP, 0.034 mg/ml folinic acid, 0.1706 mg/ml tRNAs, 
0.33 mM NAD, 0.27 mM CoA, 4 mM oxalic acid, 1 mM putrescine, 1.5 mM spermidine, 57 mM 
HEPES, 3 mM amino acids, 42 mM PEP, 4% PEG8000, 2 mM DTT), with 4 nM sfGFP reporter 
plasmid, 4 nM pT7rrnB construct, 60 µg/ml T7 RNA polymerase, 200 nM TP70, and S150 extract. 
Reactions were incubated in 384-well plates (Greiner, catalog number 781096) at 37 °C in a 
BioTek Synergy H1 plate reader, and fluorescence of superfolder GFP (sfGFP) was monitored 
(excitation: 450–490 nm, emission: 510–530 nm) over the course of the reaction. 
 
iSAT plasmid construction 
DNA templates of 16S and 23S rRNA designed by community scientists (Eterna designs) were 
synthesized by Twist Biosciences and exchanged against wild type 16S rRNA and 23S rRNA of 
the 7311-bp plasmid pT7rrnB carrying the Escherichia coli rrnB operon under the control of the 
T7 promoter and the β-lactamase resistance gene as a selective marker (Supplemental data – 
Plasmid sequences).  
 
Plasmid construction for in vivo tests 
DNA templates of 16S and 23S rRNA round 2 Eterna designs were synthesized by Twist 
Biosciences and exchanged against wild type 16S rRNA or mutant 23S rRNA A2058G of the 
7415-bp plasmid pLrrnB carrying the Escherichia coli rrnB operon under the control of the pL-G-
12T promoter43 and the β-lactamase resistance gene as a selective marker (Supplemental data 
– Plasmid sequences). Constructs carrying the 16S rRNA Eterna designs therefore harbored the 
A2058G point mutation in the 23S. This point mutation was corrected back to wild type by site-
directed mutagenesis using Q5® Hot Start High-Fidelity DNA Polymerase (New England Biolabs) 
and primers: ACGGAAAGACCCCGTGAACC and CTTGCCGCGGGTACACTGC. Linear PCR 
products were purified using DNA Clean and Concentrator-5 kit (Zymo Research), DpnI digested, 
phosphorylated by T4 PNK (New England Biolabs), blunt-end ligated using T4 ligase (New 
England Biolabs), transformed into 50 μL of electrocompetent POP cells, recovered in 800 µL 
SOC media, plated onto LB-agar/ carbenicillin plates and grown at 30 °C. Clones were picked, 
streaked out onto fresh LB-agar/ carbenicillin plates, and grown over night in 3 ml of LB / 
carbenicillin media at 30 °C. Plasmids were prepped (Zymo Research) and rrnB operons 
sequence-verified using sanger sequencing (Northwestern University Sanger Sequencing 
Facility). 
 
Replacement of Ribo-Tv2 by Eterna-pLrrnB plasmid in SQ171fg cells.  
SQ171fg cells harboring the Ribo-Tv2 plasmid containing the kanamycin resistance gene as 
selection marker were transformed with pLrrnB plasmids carrying the 16S and 23S rRNA Eterna 
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designs and the β-lactamase resistance gene. In brief, 20-100 ng of an Eterna-pLrrnB plasmid 
was transformed into 50 μL of electrocompetent cells. Cells were resuspended in 850 μL of SOC 
media and incubated for 1 h at 37 °C with shaking. 250 μL of recovering cells were transferred to 
1.75 ml of SOC containing 50 μg/ ml of carbenicillin and 0.25% sucrose (final concentrations) and 
grown for 16-18 hours at 37 °C with shaking. Cells were pelleted and plated on LB-agar plates 
containing 50 μg/ ml carbenicillin and 5% sucrose. Colonies were tested for loss of the original 
Ribo-Tv2 plasmid and containment of the desired pLrrnB plasmid by selecting clones only living 
on LB-agar/ carbenicillin plates, but not on LB-agar/ kanamycin plates. The presence and 
correctness of the Eterna-design rrnB operon in identified clones was sanger sequence-verified.  
 
Spotting assay  
Eterna-pLrrnB-containing SQ171fg cells were grown overnight in 3 mL of LB media containing 75 
μg/ ml of carbenicillin. The cultures were diluted to OD600 = 1, 0.1, 0.01, 0.001, and 0.0001 with 
water. If not stated otherwise, 3 µl of the dilutions were spotted onto LB-agar/ 100 µg/ ml 
carbenicillin plates and grown for 24 hours at 37 °C or 72 hours at 30 °C.  
 
Computational prediction (CP) control  
In order to provide a realistic comparison for the designs from the Eterna pilot round, a Python 
script was used to launch hundreds of Metropolis criterion Monte Carlo trajectories starting from 
the wild type sequence for the 16S and 23S rRNAs. These trajectories attempted to make 
mutations to the rRNA that would minimize the difference in energy between the “delta” – the 
energy of the sequence’s minimum free energy structure in the Vienna2 engine and the energy 
of the “target” structure used in the corresponding pilot round puzzle. Moves reducing “delta” were 
accepted unconditionally, while moves increasing “delta” were accepted conditionally (if they 
passed the Metropolis criterion). Following these trajectories, the resulting set of sequences were 
taken together and for each mutation count found in an Eterna design, the CP sequence with the 
lowest “delta” was selected. Scripts to carry out these simulations are included at 
https://github.com/everyday847/vienna_guided_mc. 8544 sequences were generated for the 23S 
rRNA, and 40689 sequences were generated for the 16S rRNA.   
 
Design of ribosome puzzles 
The initial pilot round ribosome puzzles were created with the conventional tools already available 
in Eterna, which permitted the specification of a sequence and secondary structure, an energy 
model, and some design restrictions (i.e., that certain bases could not be mutated (i.e., “locked”) 
and that at most a certain number of mutations would be tolerated). 
 
For that round, we prompted players to minimize the energy gap for each rRNA sequence 
between its experimental secondary structure and its minimal free energy (MFE) secondary 
structure. So that players could receive real-time feedback on their design progress, we created 
16S and 23S rRNA puzzles and equipped them with the LinearFold implementation of the 
Vienna2 energy model42. As a precaution, we limited the total number of mutations to 5% of the 
16S and 23S rRNA (76 and 145 mutations, respectively). We additionally prohibited 40 nt in the 
16S rRNA and 70 nt in the 23S rRNA from being mutated; these “locked” bases included contacts 
with ribosomal proteins, tertiary contacts within one ribosomal subunit or across both subunits, or 
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they formed base pairs that could not be recovered in the Vienna energy model (e.g., pseudoknots 
or single base pairs bridging two individually unstable two-way junctions (see Supplemental Data).  
 
Eterna developers created several new features for the first full round of puzzles. To ameliorate 
the innumerable overlaps resulting from the naïve layout algorithm available in Eterna, the puzzles 
were modified to accept a “custom” layout for the target structure, whereby the correct RNA 
secondary structure had fixed Cartesian coordinates for each nucleotide, and every time a 
junction’s orientation was solved in “natural mode”, it would “snap” to the target mode coordinates, 
eliminating all target mode overlaps and improving the situation in natural mode. Furthermore, to 
provide more detailed feedback to players, a new constraint was implemented using sequence 
conservation of each nucleotide in the rRNA sequences across gammaproteobacteria. This 
“IUPAC constraint,” named for how sequence variation was encoded, ensured that players had 
real-time access to the mutations that self-evidently are tolerated in related organisms, thus 
allowing players to vote for solutions that might have many mutations, but relatively few “IUPAC 
violations.” The first round also included several “subpuzzles” permitting players to explore the 
individual domains from these large molecules in more detail.  
 
For the second round, two significant changes were made to improve the 16S rRNA puzzle 
specifically. First, because the energy models used in Eterna – especially for ribosome puzzles – 
omit pseudoknots, the 16S helix ‘h2’, which is properly a pseudoknot, had only been modeled 
implicitly via IUPAC constraints or locks. In the second round, a second version of the 16S rRNA 
puzzle was provided with h2 defined instead of h1, permitting players to test their designs in each 
structural context. Second, the sequence used for the pilot and R1 16S rRNA was only 1534 
nucleotides, omitting the aSD sequence. In the R2 16S rRNA puzzles, the aSD sequence appears 
and is locked to its WT sequence identity. The science team also created new resources that the 
players could use as a supplement to their design process. Several players concerned with the 
prospect of disrupting contacts with rProteins asked the science team for annotations of what 
nucleotides contacted proteins in each rRNA. The science team used a 3D structure of the E. coli 
ribosome (PDB code: 4YBB35) to annotate each protein-contacting residue and, importantly, to 
annotate which contacts directly influenced the allowed nucleotides at that position (i.e., a contact 
through the phosphate backbone does not constrain the nucleotide sequence, a contact with 
adenosine N7 could be satisfied by guanosine, but a contact with guanosine’s keto group could 
not be satisfied by another nucleotide).   
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