Supplemental Data

Community science designed ribosomes with beneficial phenotypes

Antje Krüger ${ }^{1, *}$, Andrew M. Watkins ${ }^{2, *}$, Roger Wellington-Oguri ${ }^{3}$, Jonathan Romano ${ }^{2,3,4}$, Camila Kofman ${ }^{1}$, Alysse DeFoe ${ }^{1}$, Yejun Kim ${ }^{1}$, Jeff Anderson-Lee ${ }^{3}$, Eli Fisker ${ }^{3}$, Jill Townley ${ }^{3}$, Eterna participants ${ }^{3}$, Anne E. d'Aquino ${ }^{1}$, Rhiju Das ${ }^{2,5, \#}$, Michael C. Jewett ${ }^{1,6, \#}$
${ }^{1}$ Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
${ }^{2}$ Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
${ }^{3}$ Eterna Massive Open Laboratory, Stanford, CA 94305, USA
${ }^{4}$ Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY 14260
${ }^{5}$ Department of Physics, Stanford University, Stanford, CA 94305, USA
${ }^{6}$ Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
*These authors contributed equally

Contents

1. Supplemental details on ribosome puzzle definitions
2. Plasmid sequences
3. Supplemental Figures

In addition to the following supplemental details, sequences, and figures, please find a Suppl. Table (Excel spreadsheet) containing all designed rRNAs' parameters and experimental data as well as diagrams of each of the rRNAs designed in this study supplied as a single .zip archive.

1. Supplemental details on ribosome puzzle definitions

Energetic rationale for base locks

Most base locks were chosen based on intra- or inter-subunit tertiary contacts, particularly when Watson-Crick, and protein-RNA contacts that would both enormously influence the folding energetics of the rRNA under investigation but could not be represented in a secondary structure folding model. Pseudoknotted residues were also locked; folding the ribosome with a pseudoknotaware secondary structure model would be both physically unrealistic (ribosome folding is chaperoned; the only pseudoknots likely to form in designed ribosomes are those that form in the wild type) and computationally intractable.

Some "singlet" base pairs, however, were also locked. In large, folded RNAs, tertiary folding influences the secondary structure ensemble and can render stable features that otherwise might struggle to form. "Singlet" base pairs - those that do not form part of a secondary structure stem - are not favorable on their own, since they contribute no stabilizing stacking energy, and in energy models like Vienna will typically destabilize large loops.

Because this "secondary structure" constraint could not be satisfied in the energy model, we omitted it from the target secondary structure to make the objective more achievable for players, but we locked the nucleotides to ensure that these destabilized bases were not mutated.

2. Plasmid sequences

pL-rrnB-wild type:
GATCTCTCACCTACCAAACAATGCCCCCCTGCAAAAAATAAATTCATATAAAAAACATACAG ATAACCATCTGCGGTGATAAATTATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTTAT ACTGAGCACGGGTACCGGCCGCTGAGAAAAAGCGAAGCGGCACTGCTCTTTAACAATTTA TCAGACAATCTGTGTGGGCACTCGAAGATACGGATTCTTAACGTCGCAAGACGAAAAATGA ATACCAAGTCTCAAGAGTGAACACGTAATTCATTACGAAGTTTAATTCTTTGAGCGTCAAAC TTTTAAATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACATG CAAGTCGAACGGTAACAGGAAGAAGCTTGCTTCTTTGCTGACGAGTGGCGGACGGGTGAG TAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCG CATAACGTCGCAAGACCAAAGAGGGGGACCTTCGGGCCTCTTGCCATCGGATGTGCCCAG ATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTG AGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCA GTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAG GCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTTAATACCTTTGCTC ATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACG GAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAG TCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGT CTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAAT ACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGG GAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTT GTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACG GCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTG GTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAGTTTTCAGA GATGAGAATGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTG TTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGT CCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGT

CAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCGCATACAAAGA GAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTC TGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGCCACGGTGAA TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAG TAGGTAGCTTAACCTTCGGGAGGGCGCTTACCACTTTGTGATTCATGACTGGGGTGAAGTC GTAACAAGGTAACCGTAGGGGAACCTGCGGTTGGATCACCTCCTTACCTTAAAGAAGCGTA CTTTGTAGTGCTCACACAGATTGTCTGATAGAAAGTGAAAAGCAAGGCGTTTACGCGTTGG GAGTGAGGCTGAAGAGAATAAGGCCGTTCGCTTTCTATTAATGAAAGCTCACCCTACACGA AAATATCACGCAACGCGTGATAAGCAATTTTCGTGTCCCCTTCGTCTAGAGGCCCAGGACA CCGCCCTTTCACGGCGGTAACAGGGGTTCGAATCCCCTAGGGGACGCCACTTGCTGGTTT GTGAGTGAAAGTCGCCGACCTTAATATCTCAAAACTCATCTTCGGGTGATGTTTGAGATATT TGCTCTTTAAAAATCTGGATCAAGCTGAAAATTGAAACACTGAACAACGAGAGTTGTTCGTG AGTCTCTCAAATTTTCGCAACACGATGATGAATCGAAAGAAACATCTTCGGGTTGTGAGGTT AAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTA ATCTGCGATAAGCGTCGGTAAGGTGATATGAACCGTTATAACCGGCGATTTCCGAATGGG GAAACCCAGTGTGTTTCGACACACTATCATTAACTGAATCCATAGGTTAATGAGGCGAACC GGGGGAACTGAAACATCTAAGTACCCCGAGGAAAAGAAATCAACCGAGATTCCCCCAGTA GCGGCGAGCGAACGGGGAGCAGCCCAGAGCCTGAATCAGTGTGTGTGTTAGTGGAAGCG TCTGGAAAGGCGCGCGATACAGGGTGACAGCCCCGTACACAAAAATGCACATGCTGTGAG CTCGATGAGTAGGGCGGGACACGTGGTATCCTGTCTGAATATGGGGGGACCATCCTCCAA GGCTAAATACTCCTGACTGACCGATAGTGAACCAGTACCGTGAGGGAAAGGCGAAAAGAA CCCCGGCGAGGGGAGTGAAAAAGAACCTGAAACCGTGTACGTACAAGCAGTGGGAGCAC GCTTAGGCGTGTGACTGCGTACCTTTTGTATAATGGGTCAGCGACTTATATTCTGTAGCAA GGTTAACCGAATAGGGGAGCCGAAGGGAAACCGAGTCTTAACTGGGCGTTAAGTTGCAGG GTATAGACCCGAAACCCGGTGATCTAGCCATGGGCAGGTTGAAGGTTGGGTAACACTAAC TGGAGGACCGAACCGACTAATGTTGAAAAATTAGCGGATGACTTGTGGCTGGGGGTGAAA GGCCAATCAAACCGGGAGATAGCTGGTTCTCCCCGAAAGCTATTTAGGTAGCGCCTCGTG AATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGGGGGTCATCCCGACTTACCAACCC GATGCAAACTGCGAATACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACGT CCGTCGTGAAGAGGGAAACAACCCAGACCGCCAGCTAAGGTCCCAAAGTCATGGTTAAGT GGGAAACGATGTGGGAAGGCCCAGACAGCCAGGATGTTGGCTTAGAAGCAGCCATCATTT AAAGAAAGCGTAATAGCTCACTGGTCGAGTCGGCCTGCGCGGAAGATGTAACGGGGCTAA ACCATGCACCGAAGCTGCGGCAGCGACGCTTATGCGTTGTTGGGTAGGGGAGCGTTCTGT AAGCCTGCGAAGGTGTGCTGTGAGGCATGCTGGAGGTATCAGAAGTGCGAATGCTGACAT AAGTAACGATAAAGCGGGTGAAAAGCCCGCTCGCCGGAAGACCAAGGGTTCCTGTCCAAC GTTAATCGGGGCAGGGTGAGTCGACCCCTAAGGCGAGGCCGAAAGGCGTAGTCGATGGG AAACAGGTTAATATTCCTGTACTTGGTGTTACTGCGAAGGGGGGACGGAGAAGGCTATGTT GGCCGGGCGACGGTTGTCCCGGTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAA AATCAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGCAACAAATGCCCTGCTT CCAGGAAAAGCCTCTAAGCATCAGGTAACATCAAATCGTACCCCAAACCGACACAGGTGGT CAGGTAGAGAATACCAAGGCGCTTGAGAGAACTCGGGTGAAGGAACTAGGCAAAATGGTG CCGTAACTTCGGGAGAAGGCACGCTGATATGTAGGTGAGGTCCCTCGCGGATGGAGCTGA AATCAGTCGAAGATACCAGCTGGCTGCAACTGTTTATTAAAAACACAGCACTGTGCAAACA CGAAAGTGGACGTATACGGTGTGACGCCTGCCCGGTGCCGGAAGGTTAATTGATGGGGTT AGCGCAAGCGAAGCTCTTGATCGAAGCCCCGGTAAACGGCGGCCGTAACTATAACGGTCC TAAGGTAGCGAAATTCCTTGTCGGGTAAGTTCCGACCTGCACGAATGGCGTAATGATGGC CAGGCTGTCTCCACCCGAGACTCAGTGAAATTGAACTCGCTGTGAAGATGCAGTGTACCC GCGGCAAGACGGAAAGACCCCGTGAACCTTTACTATAGCTTGACACTGAACATTGAGCCTT GATGTGTAGGATAGGTGGGAGGCTTTGAAGTGTGGACGCCAGTCTGCATGGAGCCGACCT TGAAATACCACCCTTTAATGTTTGATGTTCTAACGTTGACCCGTAATCCGGGTTGCGGACA GTGTCTGGTGGGTAGTTTGACTGGGGCGGTCTCCTCCTAAAGAGTAACGGAGGAGCACGA

AGGTTGGCTAATCCTGGTCGGACATCAGGAGGTTAGTGCAATGGCATAAGCCAGCTTGAC TGCGAGCGTGACGGCGCGAGCAGGTGCGAAAGCAGGTCATAGTGATCCGGTGGTTCTGA ATGGAAGGGCCATCGCTCAACGGATAAAAGGTACTCCGGGGATAACAGGCTGATACCGCC CAAGAGTTCATATCGACGGCGGTGTTTGGCACCTCGATGTCGGCTCATCACATCCTGGGG CTGAAGTAGGTCCCAAGGGTATGGCTGTTCGCCATTTAAAGTGGTACGCGAGCTGGGTTT AGAACGTCGTGAGACAGTTCGGTCCCTATCTGCCGTGGGCGCTGGAGAACTGAGGGGGG CTGCTCCTAGTACGAGAGGACCGGAGTGGACGCATCACTGGTGTTCGGGTTGTCATGCCA ATGGCACTGCCCGGTAGCTAAATGCGGAAGAGATAAGTGCTGAAAGCATCTAAGCACGAA ACTTGCCCCGAGATGAGTTCTCCCTGACCCTTTAAGGGTCCTGAAGGAACGTTGAAGACG ACGACGTTGATAGGCCGGGTGTGTAAGCGCAGCGATGCGTTGAGCTAACCGGTACTAATG AACCGTGAGGCTTAACCTTACAACGCCGAAGCTGTTTTGGCGGATGAGAGAAGATTTTCAG CCTGATACAGATTAAATCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGC AGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGC CGATGGTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAAC GAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCT CCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAG GGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATC CTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTCCTGTCGTCATATCTACAAGCCGGC GCGCCGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTA TCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGA GTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTG CTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGG GTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACG TTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACG CCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTC ACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCA ATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAG GAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAAC CGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGG CAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTA ATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCT AGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCA GCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAG GCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATT GGTAACTGCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTT AAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTT TTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTT TTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATA CCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCAC CGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTC GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTG AACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATA CCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGT ATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAA CGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTG TGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACG GTTCCTGGCCTTTTGCTGGGCGGCCGC
pT7-rrnB-wild type:
TAATACGACTCACTATAGGGGCCGCTGAGAAAAAGCGAAGCGGCACTGCTCTTTAACAATT TATCAGACAATCTGTGTGGGCACTCGAAGATACGGATTCTTAACGTCGCAAGACGAAAAAT GAATACCAAGTCTCAAGAGTGAACACGTAATTCATTACGAAGTTTAATTCTTTGAGCGTCAA ACTTTTAAATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACA TGCAAGTCGAACGGTAACAGGAAGAAGCTTGCTTCTTTGCTGACGAGTGGCGGACGGGTG AGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATAC CGCATAACGTCGCAAGACCAAAGAGGGGGACCTTCGGGCCTCTTGCCATCGGATGTGCCC AGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAGCTGGTC TGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAG CAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGA AGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTTAATACCTTTGC TCATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATA CGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTA AGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGA GTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGA ATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGG GGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGT TGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTAC GGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGT GGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATCCACGGAAGTTTTCAG AGATGAGAATGTGCCTTCGGGAACCGTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGT GTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGG TCCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACG TCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCGCATACAAAGA GAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTC TGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGCCACGGTGAA TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAG TAGGTAGCTTAACCTTCGGGAGGGCGCTTACCACTTTGTGATTCATGACTGGGGTGAAGTC GTAACAAGGTAACCGTAGGGGAACCTGCGGTTGGATCACCTCCTTACCTTAAAGAAGCGTA CTTTGTAGTGCTCACACAGATTGTCTGATAGAAAGTGAAAAGCAAGGCGTTTACGCGTTGG GAGTGAGGCTGAAGAGAATAAGGCCGTTCGCTTTCTATTAATGAAAGCTCACCCTACACGA AAATATCACGCAACGCGTGATAAGCAATTTTCGTGTCCCCTTCGTCTAGAGGCCCAGGACA CCGCCCTTTCACGGCGGTAACAGGGGTTCGAATCCCCTAGGGGACGCCACTTGCTGGTTT GTGAGTGAAAGTCGCCGACCTTAATATCTCAAAACTCATCTTCGGGTGATGTTTGAGATATT TGCTCTTTAAAAATCTGGATCAAGCTGAAAATTGAAACACTGAACAACGAGAGTTGTTCGTG AGTCTCTCAAATTTTCGCAACACGATGATGAATCGAAAGAAACATCTTCGGGTTGTGAGGTT AAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTA ATCTGCGATAAGCGTCGGTAAGGTGATATGAACCGTTATAACCGGCGATTTCCGAATGGG GAAACCCAGTGTGTTTCGACACACTATCATTAACTGAATCCATAGGTTAATGAGGCGAACC GGGGGAACTGAAACATCTAAGTACCCCGAGGAAAAGAAATCAACCGAGATTCCCCCAGTA GCGGCGAGCGAACGGGGAGCAGCCCAGAGCCTGAATCAGTGTGTGTGTTAGTGGAAGCG TCTGGAAAGGCGCGCGATACAGGGTGACAGCCCCGTACACAAAAATGCACATGCTGTGAG CTCGATGAGTAGGGCGGGACACGTGGTATCCTGTCTGAATATGGGGGGACCATCCTCCAA GGCTAAATACTCCTGACTGACCGATAGTGAACCAGTACCGTGAGGGAAAGGCGAAAAGAA CCCCGGCGAGGGGAGTGAAAAAGAACCTGAAACCGTGTACGTACAAGCAGTGGGAGCAC GCTTAGGCGTGTGACTGCGTACCTTTTGTATAATGGGTCAGCGACTTATATTCTGTAGCAA GGTTAACCGAATAGGGGAGCCGAAGGGAAACCGAGTCTTAACTGGGCGTTAAGTTGCAGG GTATAGACCCGAAACCCGGTGATCTAGCCATGGGCAGGTTGAAGGTTGGGTAACACTAAC TGGAGGACCGAACCGACTAATGTTGAAAAATTAGCGGATGACTTGTGGCTGGGGGTGAAA GGCCAATCAAACCGGGAGATAGCTGGTTCTCCCCGAAAGCTATTTAGGTAGCGCCTCGTG

AATTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGGGGGTCATCCCGACTTACCAACCC GATGCAAACTGCGAATACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACGT CCGTCGTGAAGAGGGAAACAACCCAGACCGCCAGCTAAGGTCCCAAAGTCATGGTTAAGT GGGAAACGATGTGGGAAGGCCCAGACAGCCAGGATGTTGGCTTAGAAGCAGCCATCATTT AAAGAAAGCGTAATAGCTCACTGGTCGAGTCGGCCTGCGCGGAAGATGTAACGGGGCTAA ACCATGCACCGAAGCTGCGGCAGCGACGCTTATGCGTTGTTGGGTAGGGGAGCGTTCTGT AAGCCTGCGAAGGTGTGCTGTGAGGCATGCTGGAGGTATCAGAAGTGCGAATGCTGACAT AAGTAACGATAAAGCGGGTGAAAAGCCCGCTCGCCGGAAGACCAAGGGTTCCTGTCCAAC GTTAATCGGGGCAGGGTGAGTCGACCCCTAAGGCGAGGCCGAAAGGCGTAGTCGATGGG AAACAGGTTAATATTCCTGTACTTGGTGTTACTGCGAAGGGGGGACGGAGAAGGCTATGTT GGCCGGGCGACGGTTGTCCCGGTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAA AATCAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGCAACAAATGCCCTGCTT CCAGGAAAAGCCTCTAAGCATCAGGTAACATCAAATCGTACCCCAAACCGACACAGGTGGT CAGGTAGAGAATACCAAGGCGCTTGAGAGAACTCGGGTGAAGGAACTAGGCAAAATGGTG CCGTAACTTCGGGAGAAGGCACGCTGATATGTAGGTGAGGTCCCTCGCGGATGGAGCTGA AATCAGTCGAAGATACCAGCTGGCTGCAACTGTTTATTAAAAACACAGCACTGTGCAAACA CGAAAGTGGACGTATACGGTGTGACGCCTGCCCGGTGCCGGAAGGTTAATTGATGGGGTT AGCGCAAGCGAAGCTCTTGATCGAAGCCCCGGTAAACGGCGGCCGTAACTATAACGGTCC TAAGGTAGCGAAATTCCTTGTCGGGTAAGTTCCGACCTGCACGAATGGCGTAATGATGGC CAGGCTGTCTCCACCCGAGACTCAGTGAAATTGAACTCGCTGTGAAGATGCAGTGTACCC GCGGCAAGACGGAAAGACCCCGTGAACCTTTACTATAGCTTGACACTGAACATTGAGCCTT GATGTGTAGGATAGGTGGGAGGCTTTGAAGTGTGGACGCCAGTCTGCATGGAGCCGACCT TGAAATACCACCCTTTAATGTTTGATGTTCTAACGTTGACCCGTAATCCGGGTTGCGGACA GTGTCTGGTGGGTAGTTTGACTGGGGCGGTCTCCTCCTAAAGAGTAACGGAGGAGCACGA AGGTTGGCTAATCCTGGTCGGACATCAGGAGGTTAGTGCAATGGCATAAGCCAGCTTGAC TGCGAGCGTGACGGCGCGAGCAGGTGCGAAAGCAGGTCATAGTGATCCGGTGGTTCTGA ATGGAAGGGCCATCGCTCAACGGATAAAAGGTACTCCGGGGATAACAGGCTGATACCGCC CAAGAGTTCATATCGACGGCGGTGTTTGGCACCTCGATGTCGGCTCATCACATCCTGGGG CTGAAGTAGGTCCCAAGGGTATGGCTGTTCGCCATTTAAAGTGGTACGCGAGCTGGGTTT AGAACGTCGTGAGACAGTTCGGTCCCTATCTGCCGTGGGCGCTGGAGAACTGAGGGGGG CTGCTCCTAGTACGAGAGGACCGGAGTGGACGCATCACTGGTGTTCGGGTTGTCATGCCA ATGGCACTGCCCGGTAGCTAAATGCGGAAGAGATAAGTGCTGAAAGCATCTAAGCACGAA ACTTGCCCCGAGATGAGTTCTCCCTGACCCTTTAAGGGTCCTGAAGGAACGTTGAAGACG ACGACGTTGATAGGCCGGGTGTGTAAGCGCAGCGATGCGTTGAGCTAACCGGTACTAATG AACCGTGAGGCTTAACCTTACAACGCCGAAGCTGTTTTGGCGGATGAGAGAAGATTTTCAG CCTGATACAGATTAAATCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGC AGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGC CGATGGTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAAC GAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCT CCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAG GGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATC CTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTCCTGTCGTCATATCTACAAGCCGGC GCGCCAAATTGACAATTACTCATCCGGCTCGAATAATGTGTGGAACTTAAACACACACAGG AGGAAAACATATGTCTATCCAGCACTTCCGTGTTGCGCTGATCCCGTTCTTCGCGGCGTTC TGCCTGCCGGTTTTCGCGCACCCGGAAACCCTGGTTAAAGTTAAAGACGCGGAAGACCAG CTGGGTGCGCGTGTTGGTTACATCGAACTGGACCTGAACTCTGGTAAAATCCTGGAATCTT TCCGTCCGGAAGAACGTTTCCCGATGATGTCTACCTTCAAAGTTCTGCTGTGCGGTGCGGT TCTGTCTCGTGTTGACGCGGGTCAGGAACAGCTGGGTCGTCGTATCCACTACTCTCAGAA CGACCTGGTTGAATACTCTCCCGTTACCGAAAAACACCTGACCGACGGTATGACCGTTCGT GAACTGTGCTCTGCGGCGATCACCATGTCTGACAACACCGCAGCGAACCTGCTGCTGACC ACCATCGGTGGTCCGAAAGAACTGACCGCGTTCCTGCACAACATGGGCGACCACGTTACC

CGTCTGGACCGTTGGGAACCGGAACTGAACGAAGCGATCCCGAACGACGAACGTGACAC CACCATGCCTGCGGCGATGGCGACCACCCTGCGTAAACTGCTGACCGGTGAACTGCTGAC CCTGGCATCTCGTCAGCAGCTGATCGACTGGATGGAAGCGGACAAAGTTGCGGGTCCGCT GCTGCGTTCTGCGCTGCCTGCGGGTTGGTTCATCGCGGACAAATCTGGTGCGGGTGAAC GTGGTTCTCGTGGTATCATCGCGGCGCTGGGTCCGGACGGTAAACCGTCTCGTATCGTTG TTATCTACACCACCGGTTCTCAGGCGACCATGGACGAACGTAACCGTCAGATCGCGGAAA TCGGTGCGTCTCTGATTAAACACTGGTAAACTCACTCCTAGCCCGCCTAATAAGCGGGCTT TTTTTCTGCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTT AAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTT TTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTT TTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATA CCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCAC CGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTC GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTG AACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATA CCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGT ATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAA CGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTG TGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACG GTTCCTGGCCTTTTGCTGGT

3. Supplemental Figures

Supplementary Figure 1: sfGFP expression of 16S and 23S rRNA designs during iSAT. (a). Community scientist-designed (CS) 16S rRNA (b) and 23S rRNA (c) designs. Computationally predicted (CP) 16 S rRNA (d) and 23 S rRNA (e). sfGFP expression in iSAT was determined by fluorescence over the course of 8 hours and normalized to the maximum sfGFP made by the wild type ribosome. Time course data are shown as mean \pm s.d. on the left of each panel and the relative max sfGFP generated by each design as boxplots on its right side. Error bars represent s.d.; $n \geq 4$. Dotted red line indicates background activity arising from the extract. Mut: mutations; WT: wild type.

Supplementary Figure 2: Eterna rRNAs can enable cell-free translation in folding stress conditions. (a) Relative sfGFP expression of wild type ribosomes under optimal and low (3.75 mM)-magnesium (Mg^{2+}) iSAT conditions. Performance of Eterna 16S rRNAs (b) and 23S rRNAs (c) at low magnesium iSAT conditions. (d) Heatmap illustrating number of rRNA mutations and relative maximum sfGFP expression in optimal (7.5 mM) and low (3.75 mM)-magnesium iSAT reactions of pT7-rrnB-16S (left) and pT7-rrnB-23S (right) wild type and variants designed by community scientists (CS). sfGFP expression was determined by fluorescence over 8 hours and normalized to the maximum sfGFP of pT7-rrnB-WT at optimal iSAT conditions. Max sfGFP made by each design is shown as means normalized to pT7-rrnB-wild type activity at optimal iSAT conditions. Error bars represent s.d.; $n \geq 4$. Dotted red line indicates background activity arising from the extract. Mut: mutations; WT: wild type.

Supplementary Figure 3: iSAT time courses of Round (R1) and Round 2 (R2) Eterna designed ribosomes. sfGFP expression of pT7-rrnB-R1 and pT7-rrnB-R2 16S rRNA (a) and pT7-rrnB-R1 and pT7-rrnB-R2 23S rRNA (b) designs for 16-hour iSAT reactions. sfGFP expression in iSAT was determined by fluorescence and normalized to max sfGFP of pT7-rrnBwild type. Error bars represent s.d.; $n \geq 3$. Dotted red line indicates background activity arising from the extract. Mut: mutations, R1: round 1, R2: round 2, WT: wild type.
a

b

$$
\begin{array}{lll}
\diamond & \diamond & R 0 \\
\Delta & \Delta & R 1 \\
\boldsymbol{\nabla} & \boldsymbol{\nabla} & R 2
\end{array}
$$

c

Supplementary Figure 4: Community scientists followed and combined different strategies to improve rRNA performance. Relative maximum sfGFP expression made in iSAT reactions by each design was plotted against the instances of (a) stretches of consecutive identical nucleotides, (b) altered base pairing in rRNA secondary structures, or (c) changes in conserved nucleotides or nucleotides which contact rProteins. Data are shown from the "pilot round" (R0) and round 1 (R1) and round 2 (R2) as mean \pm s.d.; $n \geq 3$. Dotted line in (a) indicates wild type value. rProteins: ribosomal proteins; WC: Watson-Crick.

Supplementary Figure 5: Eterna designs are robust across diverse folding stress conditions in vitro. Data are replotted from Main Figure 4a, but with numerical values listed. sfGFP expression in iSAT was determined by fluorescence and normalized to max sfGFP of pT7-rrnB-wild type at optimal iSAT conditions. Data are shown as mean; $n \geq 3$. R1: round 1, R2: round 2, WT: wild type.

Supplementary Figure 6: iSAT kinetics and maximum yields for Eterna designed ribosomes under folding stress. sfGFP expression of (a) pT7-rrnB-16S R1 and R2 designs and (b) pT7-rrnB-23S R1 and R2 designs in iSAT at low Mg^{2+} concentration (3.75 mM) and optimal temperature $\left(37^{\circ} \mathrm{C}\right)$ (left panels) and low Mg^{2+} concentration (3.75 mM) and low temperature $\left(30^{\circ}\right.$ C) (right panels). sfGFP expression was determined in 15 hour iSAT reactions by fluorescence and normalized to max sfGFP of pT7-rrnB-wild type at optimal iSAT conditions. Data are shown as mean. Error bars represent s.d.; $\mathrm{n} \geq 3$. These data were used to generate the heat maps in Main Figure 3 and Suppl. Figure 5. Mut: mutations; R1: round 1, R2: round 2, WT: wild type.

Supplementary Figure 7: Influence of solvents on iSAT reactions. sfGFP expression of pT7-rrnB-WT in iSAT in the presence of increasing concentrations of solvents. Solvents are shown based on volume percent. ACN: acetonitrile, DMSO: dimethylsulfoxide, EtOH: ethanol, MeOH: methanol. Data are shown as boxplots. Error bars represent s.d.; $\mathrm{n} \geq 3$.

Supplementary Figure 8: Eterna designs are robust across diverse in vitro stress conditions. Data are replotted from Main Figure 4b, but with numerical values listed. sfGFP expression in iSAT was determined by fluorescence and normalized to the maximum sfGFP of pT7- rrnB-WT at optimal iSAT conditions. Data are shown as mean; $n \geq 3$. ACN: acetonitrile, DMSO: dimethylsulfoxide, EtOH: ethanol, MeOH: methanol, HEPES: (4-(2-hydroxyethyl)-1piperazineethanesulfonic acid), MES: 2-(N-morpholino)ethanesulfonic acid, Tris: tris(hydroxymethyl)aminomethane, Mut: mutations, R1: round 1, R2: round 2, WT: wild type. 16S rRNA and 23S rRNA designs whose names have been highlighted represent the most diverse and robust 16 S rRNA and 23 S rRNA designs per round.

Supplementary Figure 9: Influence of solvents and pH on iSAT reactions of selected R1 16 S rRNA designs. (a) Solvents ($\mathrm{v} / \mathrm{v} \%$). (b) pH . Time course data are shown as mean \pm s.d. Maximum sfGFP expression was determined in iSAT reactions by fluorescence and normalized to max sfGFP of pT7-rrnB-wild type at optimal iSAT conditions. Maximal sfGFP expression data are presented as boxplots. Error bars represent s.d.; $\mathrm{n} \geq 3$. ACN: acetonitrile, DMSO: dimethylsulfoxide, EtOH: ethanol, MeOH: methanol, HEPES: (4-(2-hydroxyethyl)-1piperazineethanesulfonic acid), MES: 2-(N-morpholino)ethanesulfonic acid, Tris: tris(hydroxymethyl)aminomethane, Mut: mutations, R1: round 1, WT: wild type.

Supplementary Figure 10: Influence of solvents and pH on iSAT reactions of selected R2 16S rRNA designs. (a) Solvents (v/v \%). (b) pH . Time course data are shown as mean \pm s.d. Maximum sfGFP expression was determined in iSAT reactions by fluorescence and normalized to max sfGFP of pT7-rrnB-wild type at optimal iSAT conditions. Maximal sfGFP expression data are presented as boxplots. Error bars represent s.d.; n ≥ 3. ACN: acetonitrile, DMSO: dimethylsulfoxide, EtOH: ethanol, MeOH: methanol, HEPES: (4-(2-hydroxyethyl)-1piperazineethanesulfonic acid), MES: 2-(N-morpholino)ethanesulfonic acid, Tris: tris(hydroxymethyl)aminomethane, Mut: mutations, R2: round 1, WT: wild type

Supplementary Figure 11: Influence of solvents and pH on iSAT reactions of selected R1 $23 S$ rRNA designs. (a) Solvents (v/v \%). (b) pH. Time course data are shown as mean \pm s.d. Maximum sfGFP expression was determined in iSAT reactions by fluorescence and normalized to max sfGFP of pT7-rrnB-wild type at optimal iSAT conditions. Maximal sfGFP expression data are presented as boxplots. Error bars represent s.d.; $\mathrm{n} \geq 3$. ACN: acetonitrile, DMSO: dimethylsulfoxide, EtOH: ethanol, MeOH: methanol, HEPES: (4-(2-hydroxyethyl)-1piperazineethanesulfonic acid), MES: 2-(N-morpholino)ethanesulfonic acid, Tris: tris(hydroxymethyl)aminomethane, Mut: mutations, R1: round 1, WT: wild type.

Supplementary Figure 12: Influence of solvents and pH on iSAT reactions of selected R2 23S designs. (a) Solvents (v/v \%). (b) pH. Time course data are shown as mean \pm sd. Maximum sfGFP expression was determined in iSAT reactions by fluorescence and normalized to max sfGFP of pT7-rrnB-wild type at optimal iSAT conditions. Maximal sfGFP expression data are presented as boxplots. Error bars represent s.d.; $\mathrm{n} \geq 3$. ACN: acetonitrile, DMSO: dimethylsulfoxide, EtOH: ethanol, MeOH: methanol, HEPES: (4-(2-hydroxyethyl)-1piperazineethanesulfonic acid), MES: 2-(N-morpholino)ethanesulfonic acid, Tris: tris(hydroxymethyl)aminomethane, Mut: mutations, R2: round 2, WT: wild type.

Supplementary Figure 13: Eterna designs are robust across diverse in vitro stress conditions (i.e., solvents). Data are replotted from Main Figure 5a, but with numerical values listed. sfGFP expression in iSAT was determined by fluorescence and normalized to maximum sfGFP of p T7- rrnB-wild type at optimal iSAT conditions. Data are shown as mean; $n \geq 3$. ACN: acetonitrile, DMSO: dimethylsulfoxide, EtOH: ethanol, MeOH: methanol, WT: wild type.
a

b

Supplementary Figure 14: Influence of in vitro solvent conditions on iSAT reactions of Eterna ribosomes. (a) Relative sfGFP expression of ribosomes with both 16S rRNA and 23S rRNA designs under iSAT conditions at low (3.75 mM)-magnesium $\left(\mathrm{Mg}^{2+}\right.$) and optimal or low $(3.75 \mathrm{mM})$-magnesium $\left(\mathrm{Mg}^{2+}\right)$ and low temperature. (b) Solvents ($\mathrm{v} / \mathrm{v} \%$). Time course data are shown as mean \pm s.d. Maximum sfGFP expression was determined in iSAT reactions by fluorescence and normalized to max sfGFP of pT7-rrnB-wild type at optimal iSAT conditions. Maximal sfGFP expression data are presented as boxplots. Error bars represent s.d.; $n \geq 3$. ACN: acetonitrile, DMSO: dimethylsulfoxide, EtOH: ethanol, MeOH: methanol, Mut: mutations.

Supplementary Figure 15: R2 Eterna designs support life. (a-d) Un-cut images of spotted SQ171fg cells growing with pL-rrnB-wild type and pL-rrnB-R2 16S rRNA (\mathbf{a}, \mathbf{b}) and 23 S rRNA (c, d) designs imaged after 24 hours at $37^{\circ} \mathrm{C}(\mathbf{a}, \mathbf{c})$ or 72 hours at $30^{\circ} \mathrm{C}(\mathbf{b}, \mathbf{d})$. Stationary cells were diluted to an OD600 = 1, diluted stepwise 1:10, and spotted onto LB + Carb100 plates. Data are representative of $n \geq 3$. R2: round $2, W T$: wild type.

Supplementary Figure 16: Combinatorial Eterna designs support life. (a-b) Un-cut images of spotted SQ171fg cells growing with pL-rrnB-wild type and pL-rrnB-Combinations imaged after 24 hours at $37^{\circ} \mathrm{C}(\mathbf{a})$ or 72 hours at $30^{\circ} \mathrm{C}(\mathbf{b})$. Stationary cells were diluted to an OD600 $=1$, diluted stepwise 1:10, and spotted onto LB + Carb100 plates. Data are representative of $n \geq 3$. R1: round $1, R 2$: round $2, W T$: wild type.

