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Integrator has critical roles in noncoding RNA 3¢-end processing as well as 

transcription attenuation of selected mRNAs. IntS11 is the endonuclease for RNA cleavage, 

as a part of the IntS4-IntS9-IntS11 complex (Integrator cleavage module, ICM). Our 

structure of the Drosophila ICM, determined by cryo-electron microscopy at 2.74 Å 

resolution, unexpectedly revealed the stable association of an inositol hexakisphosphate (IP6) 

molecule. The binding site is located in a highly electropositive pocket at an interface among 

all three subunits of ICM, 55 Å away from the IntS11 active site and generally conserved in 

other ICMs. IP6 binding is also confirmed in human ICM. Mutations of residues in this 

binding site or disruption of IP6 biosynthesis significantly reduced Integrator assembly and 

activity in snRNA 3¢-end processing. Our structural and functional studies reveal that 

Integrator is subject to intricate cellular control and IP6 is a critical regulator of Integrator 

assembly and function in Drosophila, humans, and likely other organisms.  

 

Integrator is a 14-subunit complex associated with RNA polymerase II (Pol II) that is crucial 

for 3¢-end processing of snRNAs 1 and other noncoding RNAs 2-5, as well as transcription 

attenuation through cleavage of a subset of nascent mRNAs 6-10. The broad importance of 

Integrator function to gene regulation is evidenced by the wide range of human disease states 

attributed to dysfunction of its subunits 11,12. The Integrator subunits, named IntS1 through IntS14, 

can be purified as a complex but likely form several sub-modules. For example, our earlier studies 

have shown that IntS4-IntS9-IntS11 form the Integrator cleavage module (ICM) 13,14. IntS9 and 

IntS11 are paralogs of CPSF100 and CPSF73 in the canonical and U7 replication-dependent 

histone pre-mRNA 3¢-end processing machineries, and CPSF73 catalyzes the cleavage reaction in 

both machineries 15-17. The subunits IntS10-IntS13-IntS14 form a nucleic acid binding module 
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18,19, and the IntS5-IntS8 complex 19,20 is critical for recruiting protein phosphatase 2A (PP2A) 20-

22.  

The structures of several Integrator components have been reported over the years, including 

the C-terminal domain (CTD2) complex of human IntS9-IntS11 23, the N- and C-terminal domains 

of human IntS3 24,25, human IntS13-IntS14 complex 18, and the human ICM 19. In addition, the 

structure of human Integrator in complex with PP2A was reported recently 21, in an inactive state. 

These structures reveal how Integrator is organized overall, but the mechanism of how RNA 

cleavage occurs is still unknown, and insight is lacking as to how Integrator activity, especially 

that of the endonuclease IntS11 1, is regulated within this machinery and by other factors.  

We co-expressed and purified the Drosophila ICM using baculovirus-infected insect cells 

(Figs. 1a,b) and determined its structure at 2.74 Å resolution by cryo-EM (Extended Data Figs. 1, 

2a-c, Extended Data Table 1). Most of the residues of the three proteins in the complex could be 

located (Fig. 1a), with good side chain density. The overall structure of Drosophila ICM (Figs. 

1c,d, Extended Data Fig. 2d) is generally similar to that of human ICM 19,21 (Extended Data Figs. 

3a,b). IntS11 is in a closed, inactive state in our structure of Drosophila ICM, as well as those 

reported recently of human ICM 19,21. The structure shows that the C-terminal segments of IntS9 

and IntS11 contain two separate domains, CTD1 and CTD2 (Figs. 1a,c), similar to their paralogs 

CPSF100 and CPSF73 17. The two CTD2 domains have weak EM density (Extended Data Figs. 1, 

2a-c), and their atomic models were guided by the structure of the human IntS9-IntS11 CTD2 

complex 23. The CTDs have extensive interactions with each other, which should facilitate the 

association of IntS9 and IntS11. The metallo-b-lactamase and b-CASP domains of IntS9 and 

IntS11 form a pseudo-dimer in this structure (Fig. 1c), remarkably similar to the pseudo-dimer for 

the equivalent domains of CPSF100 and CPSF73 in the active U7 machinery (Extended Data Fig. 

2e) 17. The N-terminal domain (NTD) of IntS4 contacts the metallo-b-lactamase domain of IntS9 
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and the back face of IntS11 metallo-b-lactamase and b-CASP domains (Fig. 1c), which may 

promote the formation of this pseudo-dimer.  

The structure of Drosophila ICM unexpectedly revealed the presence of an inositol 

hexakisphosphate (IP6) molecule (Fig. 1c), with good quality EM density (Fig. 1d). The compound 

was bound to the ICM during expression in insect cells and remained associated through two steps 

of column purification, suggesting that it has high affinity for ICM. IP6 is located at an interface 

among all three subunits of the ICM, formed by the N-terminus and the linker to CTD1 of IntS9, 

the CTD1 of IntS11, and the first few helical repeats of IntS4 NTD (Fig. 1e). IP6 has ionic 

interactions with all three subunits, including Lys189 of IntS4, the N-terminal ammonium ion, 

Arg2, Arg504, Lys508 and Arg509 of IntS9, and Lys462 of IntS11 (Fig. 1e). These residues create 

a large, highly positively charged pocket (Fig. 1f), suggesting that the binding of IP6 here may help 

stabilize the conformation of ICM.  

Residues in the IP6 binding site are generally conserved among IntS9 and IntS11 homologs 

(Fig. 1g). While Lys189 is a glutamine in vertebrate IntS4, IP6 should maintain the favorable 

interactions with the dipoles of the helices in the IntS4 NTD. In the structure of the human ICM 

19, EM density highly consistent with IP6 is present near the N-terminus of IntS9 as well (Fig. 1h), 

although IP6 was not included in that atomic model. The detailed binding mode of IP6 in human 

ICM has only slight differences compared to that in Drosophila ICM (Fig. 1i). In the structure of 

human Integrator-PP2A complex (EMDB 30473) 21, some EM density is present near the N-

terminus of IntS9, although the quality of the density here is poor. In fact, a few N-terminal 

residues of IntS9 were built into this density. Overall, the structural observations suggest that this 

pocket is likely to bind IP6 or another negatively charged compound(s) and play a role in the 

function of ICM in general.  

To characterize the importance of IP6 in Integrator function, we created mutations in the IP6 

binding site that changed the positively charged residues to negatively charged ones and assessed 

their impact on assembly and function of Integrator. We created DL1 nuclear extracts from cell 

lines stably expressing FLAG-IntS11-WT or FLAG-IntS11-K462E and then purified associated 
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complexes using anti-FLAG affinity. We observed that the K462E mutation greatly reduced 

association with IntS4, IntS1, and IntS8 but did not significantly alter the binding to IntS9 (Fig. 

2a). To determine the functional significance of IP6 binding to Integrator, we devised a method to 

induce expression of IntS11-WT or IntS11-K462E in cells where endogenous IntS11 has been 

depleted using dsRNA targeting its 5¢ and 3¢ UTRs. We observed that treatment of DL1 cells with 

IntS11 dsRNA resulted in effective depletion of endogenous IntS11, whereas induction of IntS11 

transgenes allowed expression of near endogenous levels of IntS11-WT or IntS11-K462E proteins 

(Fig 2b). We then analyzed the impact of IntS11 depletion on U4snRNA processing, 

transcriptional attenuation of a previously validated mRNA-encoding gene called tigrin (tig) 6, and 

a gene found not to be regulated by Integrator (Bj1). As expected, depletion of IntS11 resulted in 

a significant increase in U4snRNA misprocessing as well as tig transcription but had no effect on 

Bj1 (Fig. 2c). Importantly, these phenotypes were restored upon re-expression of IntS11-WT but 

were found not to be rescued by the IntS11-K462E mutant (Fig. 2c).  

To further probe the importance of IP6 to Integrator assembly and function, we created 

nuclear extracts from DL1 cells expressing either FLAG-IntS9-WT or FLAG-IntS9-R2E, which 

is predicted to disrupt IP6 interaction. We purified associated complexes using anti-FLAG affinity 

resin and found that the R2E mutation greatly reduced association with other Integrator subunits 

(Fig. 2d). To address the functional importance of the IntS9 residues involved in IP6 binding, we 

repeated a similar RNAi rescue experiment as was done for IntS11. We found that treatment of 

DL1 cells with IntS9 dsRNA resulted in effective depletion of endogenous IntS9, whereas 

induction of RNAi-resistant IntS9 transgenes allowed expression of near endogenous levels of 

IntS9-WT, IntS9-R2E, or an IntS9 containing mutations at all three basic residues located at 504, 

508 or 509 (IntS9-trmt) (Fig. 2e). Depletion of IntS9 led to similar gene expression changes to that 

of IntS11 depletion and that re-expression of IntS9-WT could reverse these changes (Fig. 2f). 

Importantly, expression of the IntS9-R2E or IntS9-trmt did not rescue the depletion phenotype, 

indicating that these residues are required for Integrator function (Fig. 2f).  
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Finally, we transfected cells with two different siRNAs targeting inositol polyphosphate 

multikinase (IPMK), which is required for IP6 biosynthesis 26,27. We assessed Integrator function 

using two reporters where the U7snRNA promoter, gene body, and 3¢ cleavage site are placed 

upstream of either GFP or luciferase with the rationale that loss of Integrator function leads to 

transcriptional readthrough and expression of the downstream open reading frames (Fig. 2g). We 

observed that depletion of IPMK resulted in increased expression of GFP and luciferase relative 

to control (Figs. 2h,i). Notably, the siRNA capable of more significant IPMK depletion (#2 in Figs. 

2h,i) produced much higher GFP/luciferase expression, in fact reaching a level similar to that 

observed after depletion of IntS11.  

The binding site for IP6 in ICM is located far (55 Å) from the active site of IntS11 and is on 

the opposite face from the opening for the canyon in IntS11 for binding RNA (Fig. 1c). Therefore, 

this binding site is unlikely to have a direct effect on the catalysis by IntS11. Mutation of Lys462 

also affected human Integrator function, and it was suggested this binding site could interact with 

a part of the snRNA substrate 19, although our functional studies have demonstrated a critical role 

for IP6 in Integrator activity. Therefore, it is more likely that this is a site for binding allosteric 

modulators (such as IP6) of ICM, revealing a previously unknown mechanism of regulating 

Integrator function. Our observations also expand the repertoire of IP6 as a signaling molecule 

impacting RNA processing 28-32 as well as other processes in the cell 33,34.  
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Methods 
Protein expression and purification. Drosophila IntS4, IntS9, and IntS11 were co-

expressed in insect cells. IntS9 and IntS11 were cloned into the pFL acceptor vector. N-terminal 
6xHis-tagged IntS4 was cloned into the pSPL donor vector. These two vectors were fused by Cre 
recombinase. High5 cells (2 × 106 cells·ml–1) were infected with 16 ml of IntS4-IntS9-IntS11 P2 
virus and harvested after 48 h. 

For purification, the cell pellet was resuspended and lysed by sonication in 100 ml of buffer 
containing 20 mM Tris (pH 8.0), 250 mM NaCl, 2 mM bME, 5% (v/v) glycerol, and one tablet of 
protease inhibitor mixture (Sigma). The cell lysate was then centrifuged at 13,000 rpm for 40 min 
at 4 °C. The protein complex was purified from the supernatant via nickel affinity chromatography. 
The protein complex was further purified by a Hiload 16/60 Superdex 200 column. The IntS4-
IntS9-IntS11 complex was concentrated to 2 mg·ml–1 in a buffer containing 20 mM Tris (pH 8.0), 
300 mM NaCl, and 2 mM DTT, and stored at –80 °C. 

EM specimen preparation and data collection. All specimens for cryo-EM were frozen 
with an EM GP2 plunge freezer (Leica) set at 20 °C and 99% humidity. Cryo-EM imaging was 
performed in the Simons Electron Microscopy Center at the New York Structural Biology Center 
using Leginon 35.  

For the IntS4-IntS9-IntS11 complex, a 3.5 µL aliquot at 0.1 mg·ml–1 was applied to one side 
of a Quantifoil 400 mesh 1.2/1.3 gold grid with graphene oxide support film (Quantifoil). After 30 
s, the grid was blotted for 1.5 s on the other side and plunged into liquid ethane. 3,083 image stacks 
were collected on a Titan Krios electron microscope at New York Structural Biology Center, 
equipped with a K3 direct electron detector (Gatan) at 300 kV with a total dose of 51 e− Å−2 
subdivided into 40 frames in 2 s exposure using Leginon. The images were recorded at a nominal 
magnification of 81,000× and a calibrated pixel size of 1.083 Å, with a defocus range from –1 to 
−2.5 µm. 

Image processing. Image stacks were motion-corrected and dose-weighted using RELION 
3.1 36. The patch CTF parameters were determined with cryoSPARC 37. First, 2,920,144 particles 
were auto-picked and subjected to 2D classification in cryoSPARC. 1,149,821 particles in classes 
with recognizable features by visual inspection were used to generate eight 3D initial models by 
ab initio reconstruction. After one round of heterogeneous refinement, 620,438 particles were 
imported to RELION for CTF refinement and Bayesian polishing, yielding a map at 2.74 Å 
resolution.  

Model building. Atomic models for IntS11, IntS9 and IntS4 were built manually into the 
cryo-EM density with Coot 38. Homology models for Drosophila IntS9 and IntS11 were generated 
with I-TASSER 39, based on the structures of human CPSF100 and CPSF73 40. The atomic models 
were improved by real-space refinement with the program PHENIX 41.  

The model of IP6 in the Drosophila ICM was placed in the human ICM cryo-EM density 
(EMDB 12159) 19 and manually adjusted to fit the density. Real-space refinement was then used 
to optimize the fitting of IP6 to the EM density.  

Plasmid construction and stable cell lines generation. For mutation analysis of Drosophila 
IntS9 and IntS11, site-directed PCR mutagenesis was used to create the IntS9-R2E, IntS9-trmt, 
and IntS11-K462E mutations. Wild-types and the mutants of dIntS9 and IntS11 were subsequently 
cloned into the pMT-3xFLAG-puro vector 6 to inducibly express in DL1 cells. All plasmids were 
sequenced to confirm identity. To generate cells stably expressing the FLAG-IntS9-WT, FLAG-
IntS9-R2E, FLAG-IntS9-trmt, FLAG-IntS11-WT, FLAG-IntS11-K462E, and eGFP control 
transgenes, 2x106 cells were first plated in regular maintenance media in a 6-well dish overnight. 
2 µg of expressing plasmids were transfected using Fugene HD (Promega, #E2311). After 24 
hours, 2.5 µg/mL puromycin was added to the media to select and maintain the cell population. 

Nuclear extract preparation. Five 150 mm dishes of each condition of confluent cells 
(pretreated with 500 µM CuSO4 for 24 hours) were collected and washed in cold PBS before being 
resuspended in ten times volumes of the cell pellet of Buffer A (10 mM Tris pH 8, 1.5 mM MgCl2, 
10 mM KCl, 0.5 mM DTT, and 0.2 mM PMSF). Resuspended cells were allowed to swell during 
a 15-minute rotation at 4 °C. After pelleting down at 1,000 g for 10 minutes, two times volumes 
of the original cell pellet of Buffer A were added and cells were homogenized with a dounce pestle 
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B for 40 strokes on ice. Nuclear and cytosolic fractions were then separated by centrifuging at 800 
g for 10 minutes. To attain a nuclear fraction, the pellet was washed once with Buffer A before 
being resuspended in two times volumes of the original cell pellet of Buffer C (20 mM Tris pH 8, 
420 mM NaCl, 1.5 mM MgCl2, 25% (v/v) glycerol, 0.2 mM EDTA, 0.5 mM PMSF, and 0.5 mM 
DTT). The samples were then homogenized with a dounce pestle B for 20 strokes on ice and 
rotated for 30 minutes at 4 °C before centrifuging at 15,000 g for 30 minutes at 4 °C. Finally, 
supernatants were collected and subjected to dialysis in Buffer D (20 mM HEPES, 100 mM KCl, 
0.2 mM EDTA, 0.5 mM DTT, and 20% (v/v) glycerol) overnight at 4 °C against 3.5 kDa MWCO 
membrane (Spectrum Laboratories, #132720). Prior to any downstream applications, nuclear 
extracts were centrifuged again at 15,000 g for 3 minutes at 4 °C to remove any precipitate. 

Western blotting and anti-FLAG affinity purification. To check protein expression, cells 
were lysed directly in wells in 2X SDS sample buffer (120 mM Tris pH 6.8, 4% SDS, 200 mM 
DTT, 20% (v/v) glycerol, and 0.02% bromophenol blue). Lysates were incubated at room 
temperature with periodic swirling prior to a 10-minute boiling at 95 °C and a short sonication. 
Denatured protein samples were then resolved in a 10% SDS-PAGE and transferred to a PVDF 
membrane (Bio-Rad, #1620177). Blots were probed by custom-designed Drosophila antibodies as 
previously described 6 diluted in PBS-0.1% Tween supplemented with 5% nonfat milk. To detect 
proteins from 293T lysate, anti-hInts11 (Bethyl, #A301-274A), anti-hIMPK (Thermo, #PA5-
21629), anti-GFP (Clontech, #632381), anti-alpha Tubulin (abcam, #ab15246), and anti-GAPDH 
(Thermo, #MA5-15738) were used at the dilution suggested by the manufacturer. 

To purify FLAG-tagged Integrator complexes, 1 mg of nuclear extract was mixed with 40 
µL anti-Flag M2 affinity agarose slurry (Sigma, #A2220) equilibrated in binding buffer (20 mM 
HEPES pH 7.4, 100 mM KCl, 10% (v/v) glycerol, 0.1% NP-40) and rotated for 2 hours at 4 °C. 
Following the two-hour incubation/rotation, five sequential washes were carried out in binding 
buffer with a 10-minute rotation at 4 °C followed by a 500 g centrifugation at 4 °C. After the final 
wash, the binding buffer supernatant was removed using a pipette and the protein complexes were 
eluted from the anti-FLAG resin by adding 40 µL of 2X sample buffer and boiled at 95 °C for five 
minutes. For input samples, nuclear extracts were mixed with 5X loading buffer and boiled, and 
1/10 volume of the immunoprecipitation reaction was loaded on SDS-PAGE.  

RNA Interference. Double-stranded RNAs targeting the 5¢ and 3¢ UTRs of Drosophila 
IntS11 and an RNAi resistant region of the IntS9 constructs were generated by in vitro transcription 
of PCR templates containing the T7 promoter sequence on both ends using MEGAscript kit 
(Thermo, #AMB13345). For RNA interference experiments, 1.5x106/ml of DL1 cells were washed 
into serum free media and seeded into a 6-well plate along with 10 µg of dsRNA. After a 1-hour 
incubation, 2 mls of complete growth medium was added followed by 60 hours of incubation 
before harvest. To perform rescue experiments while knocking down, cells were also treated with 
100 mM CuSO4 throughout the 60 hours incubation period to induce expression of the RNAi-
resistant FLAG-IntS9-WT, FLAG-IntS9-R2E, FLAG-IntS9-trmt, FLAG-IntS11-WT, FLAG-
IntS11-K462E transgenes. 

IntS11 (Sigma, #SASI_Hs01_00032429), IPMK (Sigma, #SASI_Hs01_00047017 and 
#SASI_Hs01_00047015), and control (Sigma, #SIC002) siRNAs (2 µL each of 20 mM stock) 
were incubated in 50 µL of pre-warmed (room temperature) Opti-MEM I reduced serum medium 
(GIBCO) for 5 minutes at room temperature. Similarly, RNAiMax (2 µL per well) was incubated 
in 50 µL pre-warmed Opti-MEM I reduced serum medium for 5 minutes. The siRNA and 
RNAiMAX dilutions were mixed and incubated for 20 minutes at room temperature. 2x105 293T 
cells were seeded into a 24-well plate and the prepared transfection mixes of 40 pmols siRNAs 
were added to each well. Cells were transfected with 60 pmols of siRNA second time after 24 
hours of incubation. The cells were expanded into 12-well plate after total 48 hours, and harvested 
at total 72 hours of incubation under standard mammalian cell culture conditions. 

Reporter cell lines establishment and luciferase measurement. To construct a reporter 
plasmid, pAAVS1-TLR targeting vector (Addgene, #64215) was cut with CalI and PspXI to 
substitute with U11/U7 small nuclear RNA (500 bp upstream of transcription start site, coding 
region, and 50 bp downstream of coding region) followed by Renilla luciferase/GFP coding region 
and SV40 poly(A) signal. The reporter plasmid was co-transfected with the gRNA, cloned into 
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pU6-(BbsI) CBh-Cas9-T2A-mCherry (Addgene, #64324), targeting AAVS1 locus into 293T. 
Briefly, equal amount of plasmids were transfected with lipofetamine 2000 for 24 hours before 
selecting with 800 ng/ml puromycin for 2 days. Cells were then grown in regular medium without 
puromycin for a week before clonal selection. 

Renilla Luciferase Assay System (Promega, #E2810) was used to assess luciferase activity 
in the clonal reporter cell lines. The line with highest luciferase activity after hIntS11 knock down 
was selected. To test the role of IPMK in Integrator’s function, the reporter cell lines were seeded 
in 24-well plate and knocked down twice with siRNAs as described. Luciferase activity was 
measured according to manufacturer’s protocol. Background luciferase activity of each sample 
was calculated by interpolation and subtracted. Briefly, scatterplot and trendline were plotted by 
protein quantity versus luciferase activity obtained from the same amount of reporter cell line 
lysate, and increased amount of the lysate were measured. The bars represent the average of 
triplicate biological repeats. 

RT-qPCR quantification and analysis. Data were analyzed using the DDCt method with 
Rps17 as the reference gene and LacZ dsRNA-treated cells as the control, as described previously 
42.  
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Figure Legends 

Figure 1. An IP6 binding site in the IntS4-IntS9-IntS11 complex (ICM). (a). Domain 

organizations of Drosophila IntS4, IntS9 and IntS11. The domains are named and given different 

colors. The domains of IntS9 are shown in slightly darker colors compared to IntS11. Residues 

observed in the structure of the IntS4-IntS9-IntS11 complex are indicated with the red lines. The 

vertical bars in blue represent positively charged residues in the IP6 binding site. ICM: Integrator 

cleavage module; NTD: N-terminal domain; MD: middle domain; CTD: C-terminal domain. (b). 

Gel filtration profile of Drosophila IntS4-IntS9-IntS11 complex. Inset: SDS gel of the purified 

complex. (c). The overall structure of the Drosophila IntS4-IntS9-IntS11 complex. The domains 

are colored as in panel a and labeled. The IP6 molecule is shown as stick models (black for carbon 

atoms). (d). Cryo-EM density for IP6. (e). Detailed interactions between IP6 and the ICM. Ionic 

interactions between the phosphates of IP6 and ICM are indicated in dashed lines (red). (f). 

Electrostatic surface of ICM near the binding site for IP6. (g). Alignment of selected sequences for 

IntS9 and IntS11 residues in the IP6 binding site. Residues that have ionic interactions with the 

phosphate groups on IP6 are indicated with the red dots. Dm: D. melanogaster; Aa: Aedes aegypti; 

Hs: H. sapiens; Xt: Xenopus tropicalis; Dr: Danio rerio. (h). Cryo-EM density for IP6 in human 

ICM (EMDB 12159) 19. An IP6 molecule was built into the density and subjected to real-space 

refinement. (i). Overlay of the structures of Drosophila ICM (in color) and human ICM (gray) near 

the IP6 binding site. The human ICM structure likely has a registering shift of 2 residues for 

residues 504-509 of IntS9. Arg504, Lys508 and Arg509 of Drosophila IntS9 would actually be 

equivalent to Ala506, Lys510 and Arg511 instead of Val504, Pro508 and Phe509 of human IntS9, 

which would also be consistent with the sequence conservation in this region (panel g). The 

structure figures were produced with PyMOL (www.pymol.org) unless otherwise indicated. 

Figure 2. IP6 is required for Integrator Cleavage Module assembly and function. (a). Western 

blot analysis of input nuclear extracts (left) and IP (right) from DL1 cells stably expressing FLAG-

tagged proteins as indicated. IP conducted using anti-FLAG affinity resin was normalized to 
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FLAG signals in each IP. (b). Western blot analysis of DL1 cell lysates derived from cells treated 

with either control or IntS11 dsRNA. Rescues were conducted in cells depleted of IntS11 through 

inducible expression of RNAi-resistant cDNA. (c). RT-qPCR analysis of selected genes identified 

to be upregulated upon IntS11 depletion using RNA-seq. Results are shown from biologically 

independent replicates, depicting averages and standard deviations (mean±SD, n=3). (d). Western 

blot analysis of input nuclear extracts (left) and IP (right) from DL1 cells stably expressing FLAG-

tagged proteins as indicated. (e). Western blot analysis of DL1 cell lysates derived from cells 

treated with either control or IntS9 dsRNA. Rescues were conducted in cells depleted of IntS9 

through inducible expression of RNAi-resistant cDNA. (f). RT-qPCR analysis of selected genes 

identified to be upregulated upon IntS11 depletion using RNA-seq. Results are shown from 

biologically independent replicates, depicting averages and standard deviations (mean±SD, n=3). 

(g). Schematic of the U7snRNA reporter systems, where the U7 gene is cloned upstream of GFP 

or luciferase. Top: in WT cells, the ICM drives RNA Pol II termination and prevents GFP/luc 

expression. Bottom: upon loss of ICM function through IPMK depletion, RNA Pol II productively 

elongates through the GFP/luc ORF, yielding expression. (h). Western blot analysis of 293T cell 

lysates treated with siRNA as labeled as well as the U7-GFP reporter. The levels of IntS11 and 

IPMK depletion are shown as well as the level of GFP expression from the reporter. (i). Similar 

experiment as in panel h except the U7-luc reporter was used and light units were measured in 

each case.  
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