
Automated satellite remote sensing of giant kelp at the
Falkland Islands (Islas Malvinas)

Henry F. Houskeeper1*, Isaac S. Rosenthal2, Katherine C. Cavanaugh1, Camille
Pawlak1, Laura Trouille3, Jarrett E.K. Byrnes4, Tom W. Bell5, Kyle C. Cavanaugh1

1 Department of Geography, University of California Los Angeles, Los Angeles, CA,
USA
2 School for the Environment, University of Massachusetts Boston, Boston, MA, USA
3 The Adler Planetarium, Chicago, IL, USA
4 Department of Biology, University of Massachusetts Boston, Boston, MA, USA
5 Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution,
Woods Hole, MA, USA

* hhouskee@g.ucla.edu

Abstract

Giant kelp populations support productive and diverse coastal ecosystems in both
hemispheres at temperate and subpolar latitudes but are vulnerable to changing climate
conditions as well as direct human impacts. Observations of giant kelp forests are
spatially and temporally patchy, with disproportionate coverage in the northern
hemisphere, despite the size and comparable density of southern hemisphere kelp forests.
Satellite imagery enables the mapping of existing and historical giant kelp populations
in understudied regions, but automating the detection of giant kelp in large satellite
datasets requires approaches that are robust to the optical complexity of the shallow,
nearshore environment. We present and compare two approaches for automating the
detection of giant kelp in satellite datasets: one based on crowd sourcing of satellite
imagery classifications and another based on a decision tree paired with a spectral
unmixing algorithm (automated using Google Earth Engine). Both approaches are
applied to satellite imagery (Landsat) of the Falkland Islands or Islas Malvinas (FLK),
an archipelago in the southern Atlantic Ocean that supports expansive giant kelp
ecosystems. The performance of each method is evaluated by comparing the automated
classifications with a subset of expert-annotated imagery cumulatively spanning over
2,700 km of coastline. Using the remote sensing approaches evaluated herein, we present
the first continuous timeseries of giant kelp observations in the FLK region using
Landsat imagery spanning over three decades. We do not detect evidence of long-term
change in the FLK region, although we observe a recent decline in total canopy area
from 2017-2021. Using a nitrate model based on nearby ocean state measurements
obtained from ships and incorporating satellite sea surface temperature products, we
find that the area of giant kelp forests in the FLK region is positively correlated with
the nitrate content observed during the prior year. Our results indicate that giant kelp
classifications using citizen science are approximately consistent with classifications
based on a state-of-the-art automated spectral approach. Despite differences in accuracy
and sensitivity, both approaches find high interannual variability that impedes the
detection of potential long-term changes in giant kelp canopy area, although recent
canopy area declines are notable and should continue to be monitored carefully.
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Introduction 1

Kelp forests make up an important coastal habitat that provides productive and 2

dynamic biotic structure, supports diverse marine ecosystems and fisheries, and supplies 3

resources to coastal communities [1, 2]. These coastal ecosystems are extensive across 4

temperate to sub-polar latitudes of both hemispheres. The largest and most widely 5

distributed canopy-forming kelp is giant kelp, Macrocystis pyrifera. Giant kelp extends 6

along the west coast of North America and throughout much of the southern 7

hemisphere, including along the South American coastlines of Peru, Chile, and 8

Argentina, the southern margins of the African and Australian continents, and various 9

island chains situated at southern temperate and sub-antarctic latitudes [3, 4]. 10

The global distribution of giant kelp is regulated by biotic and abiotic factors, 11

including: the depth and quality of the benthic substrate; the temperature, clarity, and 12

nutrient content of the water; the magnitude and direction of wave energy; the size and 13

connectivity of kelp populations; and the abundance of grazers, notably sea urchins [5–7]. 14

Kelp population responses to specific environmental drivers are nonlinear, and the 15

relative importance of biotic and abiotic controls may vary seasonally and regionally, 16

even across small distances due in part to complex variations in coastline structure and 17

exposure [8, 9]. The sensitivity of kelp to environmental drivers leads to high variability 18

in kelp forest abundance across a variety of space and time scales [6]. This sensitivity 19

also makes kelp ecosystems especially vulnerable to changes in environmental conditions. 20

As a result, regular monitoring is required to detect potential changes in the 21

distribution of giant kelp corresponding with environmental changes, and long-term 22

data sets are needed to separate trends from natural background variability [10]. 23

Global and regional changes in kelp forest distribution 24

Giant kelp forest timeseries observations are geographically patchy, with more research 25

focusing on the northern hemisphere (especially southern Californian waters) [3]. Two 26

recent surveys of kelp forests at the South Atlantic Tristan da Cunha Islands and at the 27

southern tip of Chile reported highly dense kelp forests with ecosystem qualities 28

comparable to those of the well-studied Marine Protected Areas (MPAs) of southern 29

California [11,12]. The forests of the South Atlantic region comprise a significant 30

fraction of the global giant kelp distribution; a subset of key southern hemisphere 31

ecosystems that included Tierra del Fuego, the Falkland Islands (Islas Malvinas; FLK), 32

and the South Georgia Islands was recently estimated to comprise approximately 41% 33

of the global coverage of giant kelp [4]. Despite the significant coverage of giant kelp in 34

the South Atlantic, there are insufficient observations from many southern hemisphere 35

regions – including FLK – to determine whether South Atlantic forests have exhibited 36

long term trends related to climate change [13,14]. 37

The giant kelp forests of the FLK region, which consists of an archipelago situated 38

approximately 600 km east of Tierra del Fuego, are believed to be one of the largest 39

remaining, relatively undisturbed kelp forest ecosystems on the planet [15]. The 40

economic value of these forests was recently estimated at £2.69 billion based on carbon 41

sequestration, coastal protection, and other ecosystem services [16]. Regions like FLK – 42

which do not support large human population centers, have not recently undergone 43

large changes in land-use practices, and have relatively low levels of local pollution or 44

resource extraction – are useful for examining the impacts of climate change because the 45

effects of local environmental stressors are reduced. Despite relatively few modern 46

observations, giant kelp canopies in FLK were among the first kelp forests to be 47

documented by naturalists during the 19th and early 20th centuries [15] and were the 48

subject of a series of physiological and ecological studies during the latter portion of the 49

20th century [17–20]. An update on the status of giant kelp forests within the FLK 50
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region – based on continuous and spatially resolved kelp canopy observations – is timely 51

given uncertainty in the resilience of remote South Atlantic kelp populations and would 52

enable better assessment of long-term variability as well as key regional environmental 53

controls for this valuable region. 54

Advances in observing remote kelp ecosystems 55

Detecting robust long-term change in kelp abundance requires persistent, regular 56

monitoring of kelp forest ecosystems, which is only feasible on small spatial scales when 57

using local surveys, e.g., within a Southern California ecological reserve [21]. For less 58

well-characterized regions, comparison of present conditions with those documented in 59

historical surveys allows for useful point comparisons but cannot resolve interannual 60

variability, the magnitude of which can often overshadow long-term changes. Satellite 61

data improve the temporal and spatial coverage of observations of kelp forest 62

ecosystems [22] and enable historical reconstruction of kelp canopy area spanning 63

multiple decades [10]. Satellite remote sensing has been used to assess environmental 64

drivers [9], understand the importance of decadal-scale processes in the regulation of 65

kelp forests [10], and detect long-term trends [23]. 66

As the proliferation of ocean-viewing, high-resolution satellite imagers have greatly 67

increased the volume of data relevant to observing kelp canopies, improvements in 68

image processing and automation are needed to apply satellite observations across 69

broader geographic areas. Recent technological developments have eased image 70

processing requirements, e.g., the Google Earth Engine (GEE) platform facilitates 71

large-scale data analysis through cloud computing [24]. For example, a global map of 72

kelp forest canopy was recently generated by processing curated, satellite imagery 73

within the GEE cloud platform [4]. 74

Advances in processing satellite datasets have also resulted from novel approaches 75

based on crowd sourcing, in which citizen scientists can accomplish simple, repetitive 76

tasks that would otherwise be too time-consuming for a small research team to 77

complete [25], e.g., manually annotating large sets of satellite imagery. These citizen 78

science annotations can also be used as training and validation data for automated 79

machine learning classification approaches. This concept of including public effort in 80

scientific research also connects the general public with teams of scientists, thereby 81

facilitating general science literacy and engagement [26,27]. In the field of 82

environmental science, crowd sourcing has been utilized for decades, but has also faced 83

concerns regarding the quality and consistency of crowd-sourced data products [28]. 84

These concerns can be mitigated to some extent through optimizing the user-interface, 85

cleaning the data using post-processing tools, expanding the platform’s accessibility, and 86

improving communication between scientists and participants [29]. 87

Kelp canopy floating at the ocean’s surface is often clearly distinguishable to an 88

unskilled human observer, especially for pseudo- or false-color imagery in which the 89

near-infrared (NIR) signal is emphasized. Crowd-sourced kelp annotations of satellite 90

imagery were generated by the Floating Forests (FF) project (floatingforests.org) 91

beginning in 2014 through the Zooniverse citizen science web portal (zooniverse.org). 92

Using validation data from southern California, the FF kelp canopy data products have 93

recently been shown to be comparable in quality to manual, expert annotations when 94

filtered by consensus (a minimum ratio of positive annotations for an individual 95

pixel) [30]. This project has expanded geographically, and as of the writing of this 96

paper, the kelp canopy annotations completed through the FF project span the coastal 97

regions of California, the western edge of Tasmania, and the FLK archipelago. In FLK, 98

over 433 images have presently been classified by citizen scientists. 99

In this paper, we present the first continuous timeseries of giant kelp observations in 100

the FLK region using over three decades of Landsat imagery. We derived canopy area 101
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estimates from imagery based on multiple classification approaches, including citizen 102

science classifications obtained through the FF project, as well as a fully-automated, 103

two-part analytical approach, which pairs a binary decision tree with a spectral mixing 104

model [10]. The addition of the spectral mixing model allows for assessment of partially 105

covered pixels and has been shown to improve detection for canopies with a smaller 106

surface footprint [31]. We evaluated the automated and crowd-sourced kelp 107

classifications using an expert-annotated imagery subset, and we tested for long-term 108

changes in canopy distribution using multisensor timeseries of the FLK region. Finally, 109

we assessed potential environmental drivers of variability in FLK giant kelp populations 110

using independent data products of sea surface temperature (SST) and 111

nitrate-temperature relationships approximated from nearby oceanographic surveys. 112

Materials and methods 113

Site description 114

The FLK region constitutes an archipelago of over 700 south Atlantic islands. The 115

region’s two largest islands, West and East Falkland, are separated by Falkland Sound, 116

which is oriented approximately southwest to northeast along its longest axis. The 117

archipelago is situated in a zone of high wave energy, with maximum wave heights 118

occurring in the austral winter months and approaching from the west [32]. Coastline 119

morphology is strongly affected by wind and wave exposure, with high rates of erosion 120

along the western, windward coastline of many islands, and sediment deposits or 121

formation of dunes more common along the eastern, leeward coastlines [33]. 122

The ocean state of the FLK region is strongly influenced by the flow of the Falkland 123

Current (FC), which supplies cold (∼ 7◦C) water originating in the Antarctic 124

Circumpolar Current (ACC), shown in Fig 1. To the north of FLK, between 125

approximately 30◦ and 50◦, the FC forms a confluence with warmer (∼ 19◦C) and more 126

saline waters of the Brazil Current (BC) [32]. Tidal cycles in FLK are semi-diurnal, 127

with ranges of approximately 1 m [32], and the region’s subtidal zone supports two 128

species of sea urchins that graze kelp [34]. 129

Fig 1. Map of Malvinas or Falkland Islands. The location and coastline of the
Falkland Islands (Islas Malvinas) are shown at increasing scale within panels (A), (B),
and (C). Within panel (B), the generalized location and direction of the Antarctic
Circumpolar Current (ACC) and the Falkland Current (FC) are indicated in blue, and
the Brazil Current (BC) is indicated in red.

Giant kelp is the dominant canopy-forming kelp within the FLK region, with large 130

beds surrounding the island archipelago [17]. Other canopy-forming genera in the FLK 131

region are primarily found in very shallow habitats or as a subsurface canopy 132

interspersed within or on the edges of giant kelp beds [15,34]. For example, Lessonia 133

spp. frequently forms a sub-canopy that rarely reaches the surface except in very 134

shallow waters, and the southern bull kelp Durvillaea antarctica is generally restricted 135

to rocky shore margins or tidally submerged reefs. Giant kelp fronds in FLK exhibit 136

rapid turnover, with a maximum estimated frond lifespan of one year [18], and 137

individuals in nearshore beds have been found to experience nitrogen limitation in 138

summer months [17]. Recent genetic analyses have revealed that giant kelp populations 139

in the FLK region share commonalities with populations of central Chile, suggesting 140

that giant kelp arrived in FLK prior to a recolonization event of southern Chile [35]. 141
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Satellite mapping of kelp dynamics 142

We obtained satellite remote sensing observations of the FLK region using available 143

Landsat 5, 7, and 8 imagery. We extracted kelp canopy area from the Landsat imagery 144

using a citizen-science approach [30], as well as the current state-of-the-art automated 145

method [10]. The two different approaches provided redundancy and also allowed us to 146

compare each method using manual, expert classifications as a validation dataset. 147

Based on the validation results presented in this study, we applied the best performing 148

method to examine variability in kelp abundance across FLK from 1985 - 2021. The 149

satellite imagery and giant kelp data products based on expert, automated, and citizen 150

science classifications are described in more detail below. 151

Expert kelp classification of Landsat imagery 152

Atmospherically corrected surface reflectance observations of the FLK region were 153

obtained from the Landsat satellites via the United States Geological Survey (USGS) 154

Earth Explorer portal (earthexplorer.usgs.gov). Scenes were downloaded from 155

Landsat Collection 1 for the Thematic Mapper (TM), Enhanced Thematic Mapper Plus 156

(ETM+), and Operational Land Imager (OLI) sensors, which were carried aboard 157

Landsat platforms 5, 7, and 8, respectively. Kelp-containing pixels (30 m spatial 158

resolution) were manually classified by a single, skilled technician using pseudo-color 159

(NIR/red/green) imagery for a subset of eight Landsat scenes, cumulatively spanning 160

over 2,700 km of coastline. The manually annotated scenes were primarily cloud-free 161

and with similar representation from each sensor (2 TM, 3 ETM+, and 3 OLI), but 162

were otherwise chosen to be representative of the broader dataset, with dates spanning: 163

a) the austral spring, summer, and fall (winter observations were avoided due to solar 164

zenith angle); b) the majority (1999 − 2018) of the continuous timeseries range 165

(1997 − 2021); and c) a 1.6σ range in the El Niño Southern Oscillation (ENSO), using 166

the Multivariate ENSO Index (MEI). Manual classifications were compared to 167

automated and citizen science classifications by evaluating the number of pixels 168

identified as kelp for the same Landsat scenes, with pixels partitioned into bins 169

corresponding to the nearest 1 km FLK coastline segment. 170

Automated kelp classifications based on a spectral mixture analysis 171

Atmospherically corrected surface reflectance products (tier 1) were obtained for 172

Landsat sensors TM, ETM+, and OLI from the GEE public data catalogue. Within the 173

GEE code editor (code.earthengine.google.com), scenes were masked for land and 174

clouds, and kelp-containing pixels were identified by following a binary classification 175

scheme described in Bell et al., 2020 [10]. The fractional kelp coverage within each 176

kelp-containing pixel was then estimated based on Bell et al., 2020 [10] using Multiple 177

Endmember Spectral Mixture Analysis (MESMA) – a technique for estimating 178

fractional contributions of pure spectral endmembers (e.g., water, glint, or kelp) from 179

individual bulk spectra based on a linear mixing model [36]. The water end-members 180

were derived from the imagery, while a single kelp end-member was chosen a priori. 181

The data products were then post-processed in Matlab (R2020a) by masking pixels 182

in locations that were characterized as follows: located less than 120 m or greater than 183

4.5 km from the coastline, defined by [37]; containing kelp canopy in less than 2% of the 184

timeseries; containing fractional kelp coverage assignments above 300%; indicating 185

strong negative (<−0.25) correlation to tidal cycles estimated from sea surface pressure 186

observations at Port Stanley [38], which were accessed through the University of Hawaii 187

Sea Level Center (uhslc.soest.hawaii.edu); and/or indicating low (<0.2) correlation 188

with nearby (within 5 km) patches. Filtering the automated classifications beyond the 189

post-processing criteria outlined above was not performed, since the objective of our 190
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paper is in part to evaluate the accuracy of an automated remote approach. The 191

fractional cover datasets were converted to binary timeseries (i.e., presence/absence) – 192

based on a fractional coverage threshold of 13% – in order to facilitate comparisons with 193

the expert and citizen science classifications. Previous work has shown that spectral 194

response functions have improved intersensor consistency for non-binary, 195

percent-coverage data products [10]. However, spectral response functions were not 196

applied here because inter-sensor differences were not detected for DTM products, 197

which were binary, i.e., presence-absence rather than fractional. This dataset of binary 198

kelp canopy classifications was re-sampled at seasonal or annual (July - June) intervals 199

using the mean and is hereafter referred to as DTM. The number of observation days in 200

the annual DTM dataset is shown in Supplemental Sect. S1. 201

Another automated approach based on the difference between NIR and red satellite 202

reflectance observations was also processed within the GEE code editor using 203

open-access code (github.com/BiogeoscienceslabOxford/kelp_forests). 204

Atmospherically corrected surface reflectance products were obtained from the GEE 205

public data repository for the MultiSpectral Imager (MSI) aboard the European Space 206

Agency satellite Sentinel-2. Differences between NIR and red reflectance products were 207

converted to binary presence/absence kelp data products based on predetermined 208

thresholds [4]. The open-access code was adjusted to produce annual composites, and 209

this dataset is hereafter referred to as KD. The KD dataset is included for visual 210

comparisons but is not included in the validation analysis, since the algorithm was not 211

applicable to the Landsat imagery on which the manual, expert classifications were 212

performed. 213

Citizen science kelp classifications 214

Crowd-sourced satellite kelp annotations were obtained for TM, ETM+, and OLI 215

Landsat imagery (USGS tier 1) through the FF project (floatingforests.org), in 216

which scenes were spatially subset into smaller tiles (≈ 2.25 km2), and color-stretched 217

tile images (red/green/blue) were annotated by citizen scientists through the Zooniverse 218

citizen science web portal (zooniverse.org), shown in Fig. 2. Each tile was viewed by 219

15 unique, unskilled observers during the period 2014 to 2020, with annotations 220

recorded as shape files. Annotated tiles were combined as rasterized (10 m resolution) 221

data composites containing the summed annotations for each pixel within each spatially 222

subset tile. 223

Fig 2. Zooniverse citizen science web portal. The Zooniverse interface in which
citizen scientists indicate kelp canopy locations for the Floating Forests project. A
representative tile viewing a portion of East Falkland is shown.

Tiles were then post-processed using Matlab by rasterizing the shapefiles and then 224

converting to binary using a consensus classification threshold of 8. The consensus 225

threshold was selected based on visual inspection of scenes as well as optimization of the 226

Matthew’s Correlation Coefficient – a metric that is relatively insensitive to class 227

imbalance [39] – in comparison to expert-annotated imagery. Binary annotations that 228

were on land or that were greater than 4.5 km from the nearest coastline were discarded. 229

In general, oceanic consensus classifications were included without additional filtering, 230

since our objective is in part to evaluate the accuracy of the citizen science data 231

products. However, one tile was determined to contain primarily drifting kelp or marine 232

debris and was manually removed from the dataset during post-processing. Binary 233

rasters were re-sampled to a 30 m grid and to seasonal or annual intervals using the 234

mean. Seasonal or annual composites with insufficient data (less than 25%) were 235

removed from the time series analysis. This dataset of binary kelp canopy classifications 236
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based on the Floating Forest data set and the consensus threshold of 8 is hereafter 237

referred to as FF8. The number of observations days in the annual FF8 dataset is 238

shown in Supplemental Sect. S1. 239

Ocean state estimates 240

Monthly, 9 km composites of sea surface temperature (SST) were obtained from the 241

NASA Ocean Color portal (accessed through oceancolor.gsfc.nasa.gov) using 242

observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) 243

aboard NASA’s Aqua satellite. Observations spanning 2002 to 2021 were averaged 244

within 62◦ to 57◦W and 50◦ to 53◦S. Oceanographic observations of nitrate and 245

temperature were obtained for the same region from the World Ocean Atlas – accessed 246

through the National Centers for Environmental Information (ncei.noaa.gov). A 247

synthetic nitrate proxy was modeled as a function of temperature using linear 248

regression, with estimated uncertainty (RMSE) of 4.6µmol/kg, or 13.1% of the range in 249

nitrate measured in situ (Fig. S2). 250

Results 251

We compared automated and citizen science approaches for estimating giant kelp 252

canopy coverage and evaluated the performance of each method for the FLK region 253

based on validation against expert annotations. We developed kelp canopy time series 254

for the FLK region and tested for associations between giant kelp area and 255

environmental parameters or climate indices using the best performing approach. 256

Finally, we investigated regional relationships by aggregating kelp canopy data products 257

to the nearest 1 km coastline segments. 258

Evaluation of kelp canopy data products 259

Kelp classifications from the automated approach (DTM) matched the expert manual 260

classifications better than the citizen science consensus (FF8). Fig 3 shows similar kelp 261

canopy distributions estimated using DTM data products from separate Landsat sensors 262

OLI and ETM+, shown in panels C and D, respectively. The FF8 citizen science 263

classifications are shown in panel E and indicate decreased spatial granularity as well as 264

decreased sensitivity to small beds. KD data products generated from Sentinel-2 (MSI) 265

imagery are shown in panel F and indicate slightly less sensitivity than the DTM 266

approach, although the DTM and KD methods are approximately similar in shape and 267

in total coverage. 268

Fig 3. Comparison of kelp classification methods. A pseudo-color scene of East
Falkland is shown in the upper left panel with expert kelp classifications indicated in
green. The figure inlays show various automated and manual methods, as well as
non-annotated imagery, for a smaller spatial region, as follows: (A) manual
classifications performed on a single OLI scene by an expert technician; (B)
pseudo-color (NIR/red/green) image; (C) DTM automated classifications of a single
OLI scene; (D) DTM automated classifications of a single ETM+ scene; (E) FF8
consensus classifications of OLI imagery during 2017; and (F) KD automated
classifications of MSI imagery during 2017.

The automated DTM and KD approaches were based on spectral analysis and were 269

not retained for near-shore pixels (i.e., within 120 m or approximately 4 pixel-widths 270

from the coastline), where bottom reflectance or the additions of organic or inorganic 271
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particles (e.g., through resuspension or terrestrial inputs) challenge atmospheric 272

correction [40] and elevate signals in the NIR domain [41]. In some instances, nearshore 273

remote sensing challenges are anticipated to be less problematic when spatial 274

information is also considered (e.g., the trajectory of a runoff plume), and so the FF8 275

annotations were retained within the nearshore zone. Continued research is needed in 276

order to better understand the reliability of spectral methods like DTM and KD for 277

measuring nearshore canopy. The FLK region, in general, contains relatively wide giant 278

kelp canopies that extend away from the shore [15], and improvements for the nearshore 279

zone are particularly important in regions where kelp predominantly forms fringing 280

canopies closer to the shoreline. 281

Quantitative comparison of the DTM and FF8 methods was performed by 282

aggregating kelp-containing pixels to their nearest 1 km coastline segment and 283

comparing the number of classifications within each segment with the corresponding 284

number of expert classifications. Validation results are presented in Fig 4, with the 285

DTM approach shown using the TM, ETM+, and OLI sensors in panels A, B, and C, 286

respectively. Panel D shows the FF8 approach using the TM and OLI sensors overlaid, 287

due to the lower total number of available matchups. No ETM+ matchups were 288

available for coincident FF8 data products and expert-annotated imagery. 289

Fig 4. Validation of automated and citizen science kelp classifications.
Validation scatterplots for expert (vertical) and automated or citizen science consensus
(horizontal) classifications of pixels with kelp present per 1 km of coastline, as follows:
(A) validation of TM matchups using DTM; (B) validation of ETM+ matchups using
DTM; (C) validation of OLI matchups using DTM; and (D) validation of OLI and TM
matchups using FF8.

Across all sensors, the DTM approach produced the highest R2 and lowest RMSE, 290

expressed as a percentage of the range in the expert-annotated coastline aggregates, 291

compared to the FF8 data products. For consistency, the challenging nearshore pixels 292

that were masked for the DTM data products were also removed in the validation of the 293

FF8 aggregates. Biases of the FF8 data products within individual matchup scenes were 294

greater in magnitude than those of the DTM data products, but occurred in both 295

directions across scenes. Optimizing sensitivity and specificity for the citizen science 296

classifications is possible through adjusting the consensus threshold. We found that a 297

consensus threshold of 8 was reasonable within the FLK region, but another study 298

recently found that a consensus threshold of 4 (i.e., more sensitivity) was more 299

appropriate based on annotated imagery of Southern California waters [30]. Different 300

optimization results may be due in part to the increased width and offshore extent of 301

the giant kelp beds in FLK, particularly along the eastern coastline. The different 302

optimization results may also be due to differences in image processing, because the 303

earlier imagery available to Rosenthal et al., (2018) [30] was not atmospherically 304

corrected. 305

Interannual variability in kelp canopy extent (1985 - 2021) 306

Timeseries of total FLK kelp canopy coverage derived from the FF8 and DTM 307

approaches indicate that the spectral and citizen science approaches show similar 308

temporal patterns and trends. Annual composites of total kelp canopy area are shown 309

in Fig. 5, with DTM data products shown for individual sensors TM, ETM+, and OLI 310

in red, blue, and orange, respectively, and for a multisensor composite in gray. FF8 data 311

products are shown as an annual, multisensor composite in green due to the lower 312

amount of available observations. Datasets for individual sensors were combined as 313

multisensor composites based on a weighted mean that incorporated the number of 314
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observations available from each sensor within a single year (see Supplemental 315

Table S1). The earliest DTM observations are from 1985, but coverage during this year 316

only includes the western portion of FLK. 317

Fig 5. Timeseries of kelp canopy extent for the combined FLK region.
Annual mean total canopy area within the FLK region is shown for DTM data products
using TM (red), ETM+ (blue), and OLI (yellow) individual sensors, as well as a
multisensor composite (gray line). FF8 data products are scaled to a separate y-axis
based on the percentage of applicable pixels observed in an individual year, due to
spatial patchiness in the FF8 coverage through time, and are presented as a multisensor
composite (green). DTM observations in 1985 only include the western portion of FLK.
Yearly intervals correspond to July of the preceding calendar year through June of the
listed calendar year.

We did not detect significant long-term linear trends in kelp canopy using either the 318

DTM data products spanning 1985 - 2021 (P = 0.28) or the FF8 data products 319

spanning 1987 - 2018 (P = 0.09). Recent declines in kelp coverage are apparent for the 320

full FLK region during 2017 - 2020, but the magnitude of this recent decline is similar to 321

the range observed in the DTM timeseries between 1985 and 1987. We also tested for 322

regional kelp canopy trends by evaluating timeseries of DTM data products aggregated 323

to their nearest 1 km coastline segments. Considering timeseries results from each 1 km 324

segment by coastline orientation and position, we did not detect cohesive spatial 325

structure for trends in kelp canopy (Fig. S3). Approximately 3.9% and 8.8% of the 1 km 326

coastline partitions indicated significant (P < 0.01) positive and negative linear trends, 327

respectively. 328

We also evaluated potential effects of basin-scale climate indices by testing for lag 329

correlation with annual and seasonal DTM data products. Limiting the lag in the 330

climate index to one year (i.e., because of the rapid turnover expected for giant kelp 331

populations), no significant correlation was detected with MEI or other indices. 332

Using a synthetic nitrate model described in Supplemental Section S2, we found that 333

annual composites of kelp canopy area were positively correlated to nitrate 334

concentration when nitrate was lagged by one year, with r = 0.65 (P < 0.01) for the 335

combined FLK region. Correlations derived between canopy area and synthetic nitrate 336

within individual, 1 km coastline subsets indicated that positive associations between 337

kelp and lagged nitrate were consistent across most FLK coastline segments, shown in 338

Fig. 6. Similar results were obtained for temperature because of the linear model used 339

to estimate synthetic nitrate, but only nitrate is presented because temperatures in FLK 340

are not anticipated to reach levels associated with thermal stress in giant kelp. 341

Fig 6. Spatial variability in correlation between standardized canopy
extent and modeled nitrate concentration. Correlation coefficients for modeled
nitrate concentrations and DTM standardized canopy extents are shown in purple and
green for 1 km coastline subsets. If P ≥ 0.01, coefficients are instead indicated in gray.
Timeseries of select coastline subsets are shown in the figure inlays, with standardized
kelp canopy extent indicated in gray for individual 1 km coastlines and in black for the
combined sub-region, and with modeled annual nitrate shown in red. Years are
indicated on the x-axis. The sub-regions included in the figure inlays are indicated with
a dashed black line, and correspond as follows: Weddell Island and adjacent islands
(upper left); San Carlos waters (upper right); and Lively Island (lower right).

Areas where nitrate correlations were either negative or were not found to be 342

significant (shaded purple or gray, respectively) were typically in regions with very low 343

or ephemeral kelp canopy coverage, e.g., inland seas such as the San Carlos waters, 344
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shown in the upper right subset panel. Some southern portions of West Falkland also 345

recorded fewer instances of significant positive correlation, possibly because differences 346

in coastline morphology, bathymetry, and wave exposure in West Falkland result in 347

narrower, fringing beds closer to the coastline than in East Falkland. For example, 348

nearshore canopy is more likely to be removed by our nearshore mask and may also be 349

more sensitive to wave effects. 350

Discussion 351

Automated approaches for remote sensing of giant kelp 352

The physical and biological characteristics of FLK make this region well suited for 353

satellite monitoring of giant kelp. For example, FLK kelp beds are relatively wide and 354

extend further offshore than beds in many other regions. This is particularly noticeable 355

on the eastern-facing coast, which receives less wave energy and features a broader, 356

shallower shelf than the western-facing coast. The kelp beds in FLK are also dominated 357

by a single species (i.e., giant kelp or Macrocystis pyrifera), although Lessonia spp. is 358

also common within the understory or along the bed edges [15]. Finally, the absence of 359

heavy industry in FLK, combined with low human population density, means that there 360

are few sources of local pollution which can complicate atmospheric correction of 361

satellite imagery through the generation of urban aerosols or the release of effluent into 362

the coastal ocean. 363

The citizen science and automated spectral methods produced kelp classifications 364

that were similar to expert classifications based on visual inspection (Fig. 3) and 365

validation of kelp pixels within 1 km coastline partitions (Fig. 4). Visual inspection 366

revealed that the kelp bed classifications produced by citizen science consensus (FF8) 367

had less granularity than the automated spectral classification (DTM), which more 368

closely resembled the expert classifications in the shape of the classified kelp beds. The 369

difference in granularity between the classification methods was anticipated because the 370

citizen scientists produce shapefiles by drawing vectors around the kelp bed, a process 371

that is more likely to produce rounded, less granular shapes compared to the 372

pixel-by-pixel analysis of automated spectral methods. 373

Validation of the FF8 and DTM methods (Fig. 4) indicated better agreement of the 374

DTM classifications with the expert dataset. Previously, Bell et al., 2020 [10] applied a 375

correction to Landsat 8 (OLI) fractional coverage products to account for differences in 376

spectral response between OLI and earlier sensors. The validation analysis herein did 377

not indicate significant bias or difference in accuracy of kelp classifications between 378

sensors, and applying a similar spectral response function resulted in over-prediction for 379

the OLI products compared to ETM+ and TM. As a result, no spectral response 380

function was applied to DTM for the OLI data products used herein. The difference in 381

intersensor responses between the present study and Bell et al., 2020 [10] is most likely 382

due to the conversion (in this study) to binary products. This would suggest that 383

differences between sensors were less severe for low percent coverage values (i.e., those 384

below the presence/absence threshold of 13%). The consistency between sensors could 385

also be due, in part, to the spectral response correction already applied during USGS 386

default processing, in which spectral reflectances are derived for central wavelengths. 387

Despite differences in accuracy between the citizen science and spectral automated 388

methods, considering time-series using each of the FF8 and DTM data products 389

provides useful redundancy. For example, the methods use different information from 390

the satellite imagery, and therefore are susceptible to different causes of classification 391

errors. The spectral automated method, which is derived pixel-by-pixel, does not 392

incorporate spatial information (except by some filtering rules applied during 393
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post-processing), whereas the human viewers who produce the citizen science 394

classifications recognize shape patterns, and therefore are significantly relying on spatial 395

information. The spectral automated approach often produces false positives in 396

individual pixels where the NIR domain is brightened (e.g., as caused by wave facets or 397

suspended sediment). These errors are significantly mitigated by post-processing of the 398

DTM data products, e.g., by removing pixels which rarely contain kelp or which are not 399

significantly correlated with adjacent, kelp-containing pixels. As an alternate example, 400

the citizen science approach falsely classified a large field of drifting debris as kelp 401

canopy, despite a different spectral shape within the debris field. 402

The automated spectral method generated kelp classifications that were similar to 403

the KD dataset [4], although with slightly better sensitivity, shown in Fig. 3. Differences 404

in sensitivity are most likely due to the combination in DTM of the decision tree and 405

the spectral unmixing methods. By pairing two approaches, the DTM dataset can use a 406

more sensitive criteria (spectral unmixing detects fractional coverage) after rejecting 407

pixels that are unlikely to contain kelp and therefore may generate false positives. Other 408

reasons for the improved sensitivity of the DTM method include the increased number 409

of spectral channels for the Landsat sensors compared to the Sentinel-2 sensor MSI, as 410

well as the increased signal-to-noise characteristics for the former [42]. 411

Long-term variability in FLK giant kelp canopy 412

Recently, a global meta-analysis of regional kelp forest trends found that more kelp 413

forests were decreasing in area than were increasing, but that regional variability was 414

high [13]. Global observations of kelp forests are geographically and temporally patchy, 415

with more research focusing on northern hemisphere regions (especially Southern 416

Californian waters) despite evidence that kelp forest ecosystems within less studied 417

regions of the southern hemisphere are anticipated to be similarly productive and highly 418

dynamic [3]. For example, kelp forest declines in the Atlantic Ocean have primarily 419

been reported from northern hemisphere sites, but there are insufficient observations 420

from southern hemisphere regions to determine whether the southern Atlantic Ocean 421

forests are more resilient than their northern Atlantic Ocean equivalents [14]. Improving 422

the automation of kelp classification in satellite imagery (e.g., using the citizen science 423

or automated spectral approaches tested herein) can expand the geographical extent of 424

kelp canopy datasets and provides globally consistent observations dating back 425

approximately three and a half decades (based on Landsat 5 imagery). These global 426

observations support time-series analyses of previously under-studied regions in order to 427

test whether these ecosystems have experienced sustained changes in canopy coverage. 428

For example, regions like FLK in the southern Atlantic Ocean were not included in the 429

Krumhansl et al., 2016 [13] global meta analysis due to a lack of kelp forest observations 430

in those systems. 431

The timeseries presented herein using DTM (1985 to 2021) and FF8 (1997 to 2017) 432

data products did not indicate significant trends in giant kelp canopy within the FLK 433

region. Specifically, both the DTM and FF8 time series indicated slight (non-significant) 434

declines, with P = 0.28 and P = 0.10, respectively. DTM canopy area binned within 435

1 km coastline segments also did not produce cohesive spatial structure in the direction 436

or magnitude of trends (Supplemental Fig. S3), and therefore the potential role of wave 437

exposure or coastline orientation was not revealed by our time-series analyses. Stable 438

giant kelp canopy area in the FLK region is consistent with recent work – in which 439

imagery from satellites (2015-2020) as well as uncrewed (2019-2020) and crewed (1973) 440

aircraft were compared with records from Charles Darwin and contemporaries 441

(1829-1834) – that found that the locations of kelp beds recorded in the late 20th and 442

early 21st centuries were in most instances consistent with those from 19th century 443

logs [15]. These results are also consistent with a recent report from the nearby Tierra 444
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del Fuego region of South America, in which present-day giant kelp density was found 445

to be similar to that observed in a 1973 diver survey [43]. 446

Although the timeseries did not provide evidence for a sustained decline in giant kelp 447

canopy, the DTM dataset does capture a recent decrease in giant kelp canopy beginning 448

approximately in 2017 and persisting through the end of the time series. The recent 449

decrease leads to the lowest observed canopy area occurring during the final year of 450

observations, and monitoring of this system should continue in order to detect potential 451

further declines. However, the DTM dataset also indicates that a canopy area decline 452

between 1985 and 1987 was similar in magnitude to the more recent decline, although 453

there were many fewer observations during this earlier time period (see Supplementary 454

Table S1), and observations in 1985 were only available from the western portion of the 455

FLK region. The ability to identify historical precedent in the magnitude of the recent 456

decline demonstrates the importance of obtaining long-term records when observing 457

species like giant kelp with high interannual variability. For example, the DTM dataset 458

included the 1987 low kelp observations and produced a higher P-value than the shorter 459

FF8 dataset, which did not include observations before 1997. However, there was no 460

historical precedent in either of our datasets for the lowest total canopy area recorded in 461

2021. 462

Environmental drivers of giant kelp variability in FLK 463

Physical and biological factors that regulate the growth and survival of giant kelp 464

include the temperature, nutrient content, and turbidity of the water, as well as the 465

abundance of grazers [5]. Among these environmental drivers, temperature is routinely 466

measured by ocean-viewing satellites at a variety of spatial and temporal scales. Grazer 467

dynamics were not included in this study, which focused on continuous, spatially 468

resolved datasets, but grazer population changes, e.g., of sea urchins that inhabit the 469

FLK subtidal zone [34], have contributed to large kelp forest declines in other systems 470

[44, 45]. 471

Because of the latitude and oceanography of the FLK region, water temperatures are 472

not anticipated to reach values associated with thermal stress in giant kelp, although 473

local thermal adaptations can increase sensitivity to heat stress for individual 474

populations [46]. We identified a positive correlation between synthetic nitrate and 475

giant kelp canopy area, with the variability in giant kelp canopy lagging nitrate by one 476

year. Overall, the correlations between nitrate and giant kelp canopy were not strongly 477

dependent on coastline orientation, indicating that nitrate availability is important for 478

giant kelp growth across the FLK region, and the effects were not severely diminished 479

by variability in finer-scale, nearshore processes. Seasonal nitrate limitation has been 480

reported for giant kelp beds within the FLK region [17], and a synthetic nitrate product 481

derived from satellite SST was developed based on in situ relationships between 482

temperature and nitrate measurements (Supplemental Fig. S2). Based on reports of 483

nitrate limitation as well as low water temperatures, we present positive correlation of 484

synthetic nitrate to lagged kelp canopy (P<0.01 for the full FLK region) rather than 485

negative correlation with temperature, although our nitrogen estimate is derived as a 486

linear model of satellite SST. 487

Marine heatwave events (MHW) – high temperature episodes that coincide with 488

lower nutrient availability and can facilitate the spreading of disease and non-native 489

species [47] – have often preceded regional declines in canopy-forming kelp [44,45,48–50]. 490

We did not detect a sustained trend or large annual anomalies in satellite estimates of 491

nitrate or temperature during the period spanning 2002 to 2021 (SST data from the 492

MODIS Aqua satellite began in 2002), which is consistent with our time-series analysis 493

that did not detect changes in giant kelp canopy area. The one-year lag detected in the 494

relationship between kelp canopy and synthetic nitrate suggests that adequate nutrient 495
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availability increases the health and reproductive success of individuals in order to seed 496

the subsequent year’s population. The time lag is also consistent with the lag detected 497

between ENSO variability and giant kelp in the Tierra del Fuego region [43]. 498

Source waters to the FLK region are supplied primarily by the FC (Fig. 1), which 499

transports cold ACC water northward. Stable oceanographic conditions in FLK during 500

the observation period were likely due to the state of the FC, as well as, perhaps, the 501

large distance separating the FLK region from the northward confluence of the FC with 502

the warmer, more nutrient-poor BC waters [32]. For comparison with another region on 503

a western subpolar ocean margin, a recent die-off of giant kelp in Tasmania coincided 504

with a restructuring of oceanographic currents, which temporarily changed the source 505

waters for the region such that nutrient availability decreased, temperatures increased, 506

and an invasive species of sea urchin was introduced, which increased grazing on giant 507

kelp fronds [44]. 508

We did not detect an association between giant kelp canopy and ENSO, contrary to 509

findings in the nearby Tierra del Fuego region in which kelp coverage was found to be 510

negatively correlated to ENSO when lagged by one year [43]. Despite the proximity of 511

eastern Tierra del Fuego and FLK (approximately 600 km), this difference may be due 512

to regional variation in current exposure. We also did not detect a significant 513

association between kelp canopy and the Southern Annular Mode (SAM), despite the 514

importance of this climate oscillation on atmosphere and ocean processes at latitudes 515

spanning the FLK region. The SAM strongly influences temperatures and storm 516

systems across the southern hemisphere, and long-term trends have been reported for 517

the SAM during the second half of the 20th century [51]. Although we did not detect a 518

relationship between giant kelp canopy and the SAM, potential effects should be 519

investigated further because of the coarse temporal resolution of the data products used 520

in our analysis (e.g., quarterly or annual averages). 521

Conclusion 522

Reports of kelp population declines have most often been associated with trailing 523

range-edge populations, or those nearest the equator, because low latitude kelp forests 524

are most likely to experience thermal stress and nutrient limitation related to climate 525

warming [14]. However, mid-range populations are also susceptible to present and future 526

warming trends [52], for example because of the introduction of invasive species that 527

graze kelp [44], or because ecotypes can develop intraspecific thermal adaptations that 528

increase sensitivity to temperature fluctuations [46]. Due to the complex effects of 529

climate change, methods to improve the geographical coverage of kelp forest 530

observations are needed in order to produce consistent, global-scale observations that 531

include remote and understudied kelp forest environments. 532

Our study evaluated approaches for automating classification of giant kelp within 533

Landsat imagery to enable more geographically expansive remote observations of kelp 534

forests. We found that, despite differences in granularity, a citizen science consensus 535

approach (FF8) and a spectral approach based on a decision tree paired with a spectral 536

unmixing algorithm (DTM) each provided similar perspectives of kelp forest canopy 537

variability in the FLK region. Based on differences in the types of information used in 538

each approach (e.g., humans recognize spatial patterns, whereas DTM classifies 539

individual pixels), future advancements that can incorporate spatial structure with a 540

complete set of spectral information would be beneficial, e.g. computer vision. 541

We applied the automated methods to test for sustained changes in giant kelp within 542

the FLK region and did not find evidence of long-term trends in canopy area using 543

either approach. Our results were consistent with other recent work that included the 544

FLK region [15], as well as work in the nearby Tierra del Fuego region [43], which also 545
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did not find evidence of long-term changes within these southern Atlantic Ocean kelp 546

forest ecosystems. The regularity of satellite observations allowed for comparisons with 547

ocean state variables, which revealed that strong associations between temperature or 548

synthetic nitrate and giant kelp canopy lagged one year. Based on the region’s low 549

maximum temperatures, these results suggest that nitrate variability is an important 550

control of giant kelp canopy area in FLK. 551

Resources for in situ monitoring of coastal environments are less available for regions 552

that are distant from major human population centers. Fewer observations are available 553

from the south hemisphere in general, particularly from the southern Atlantic Ocean, 554

despite the high productivity and the expansive area of giant kelp forests in these 555

regions. Satellite imagery enables continuous and sustained observations of kelp forests 556

at a global scale, but making use of these large datasets requires improvements in 557

automation and image processing. Automated kelp classification tools – using citizen 558

science annotations or a decision tree paired with a spectral unmixing algorithm – can 559

provide accurate and routine observations of giant kelp canopy to test for environmental 560

change in understudied coastal environments. 561

Acknowledgments 562

Support for this work was provided by the National Aeronautics and Space 563

Administration as part of the Citizen Science for Earth Systems Program (grant 564

#80NSSC18M0103), and by the National Science Foundation through the Santa 565

Barbara Coastal Long-Term Environmental Research program (grants OCE #0620276 566

& #1232779). We are extremely grateful for valuable feedback provided by (in 567

alphabetical order): Paul Brewin (South Atlantic Environmental Research Institute), 568

Neil Golding (Aquarius Survey and Mapping), and Michael Harte (Oregon State 569

University). 570

Supporting information 571

S1. Annual observation days. Number of scenes observed during annual intervals 572

(July - June) from the automated spectral (DTM) and citizen science (FF8) datasets.

Year† DTM FF8 Year† DTM FF8 Year† DTM FF8

1985 1 1‡ 2004 47 21 2013 34 0‡

1987 5 6‡ 2005 61 38 2014 71 46
1997 4 5 2006 55 22 2015 80 57
1998 6 4 2007 60 29 2016 70 50
1999 13 10 2008 33 4 2017 79 65
2000 42 12 2009 46 8 2018 82 26
2001 37 9 2010 32 0‡ 2019 70 0‡

2002 49 19 2011 24 0‡ 2020 80 0‡

2003 29 1‡ 2012 33 0‡ 2021 34 0‡

573

† Year corresponds the interval spanning July of the preceding calendar year through June of the listed 574

calendar year. 575

‡ FF8 years with insufficient spatial coverage of classifications were not included in the timeseries 576

analysis. 577

S2. Derivation of synthetic nitrate. In situ nitrate and temperature 578

measurements were obtained from the World Ocean Atlas within the region spanning 579
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57.0◦ to 62.0◦W and 50.0◦ to 53.0◦. A synthetic nitrate model was derived from the in 580

situ values using least-squares linear regression, and negative synthetic nitrate values 581

were set to zero.

Nitrate and temperature relationship for the FLK region.
Nitrate and temperature measurements obtained from the World Ocean Atlas are shown
as solid blue dots, and the synthetic nitrate model is overlaid as a solid black line.

582

S3. Regional trends in giant kelp canopy Spatial variations in canopy trends 583

were evaluated by aggregating annual DTM data products to their nearest 1 km 584

coastline segments and testing for long-term trends within the data products assigned to 585

each segment.

Trends in canopy extent partitioned to 1km coastline subsets. Significant
(P < 0.01) linear trends in annual mean canopy coverage based on DTM data products
are shown in green and red. Coastline subsets wherein trends are not significant
(P ≥ 0.01) are indicated in gray. Timeseries of select coastline subsets are shown in the
insets for regions indicated with a dashed black line, with year shown on the x-axis, as
follows: Weddell Island and adjacent islands (upper left); San Carlos waters (upper
right); and Lively Island (lower right).

586
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