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ABSTRACT

Kidney Precision Medicine Project (KPMP) is building a spatially-specified human tissue atlas
at the single-cell resolution with molecular details of the kidney in health and disease. Here, we
describe the construction of an integrated reference tissue map of cells, pathways and genes
using unaffected regions of nephrectomy tissues and undiseased human biopsies from 55
subjects. We use single-cell and -nucleus transcriptomics, subsegmental laser microdissection
bulk transcriptomics and proteomics, near-single-cell proteomics, 3-D nondestructive and
CODEX imaging, and spatial metabolomics data to hierarchically identify genes, pathways and
cells. Integrated data from these different technologies coherently describe cell types/subtypes
within different nephron segments and interstitium. These spatial profiles identify cell-level
functional organization of the kidney tissue as indicative of their physiological functions and map
different cell subtypes to genes, proteins, metabolites and pathways. Comparison of transcellular
sodium reabsorption along the nephron to levels of mMRNAs encoding the different sodium
transporter genes indicate that mRNA levels are largely congruent with physiological
activity.This reference atlas provides an initial framework for molecular classification of kidney
disease when multiple molecular mechanisms underlie convergent clinical phenotypes.


https://doi.org/10.1101/2020.07.23.216507

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216507; this version posted September 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

INTRODUCTION

The kidney has one of the most diverse cellular populations in the human body, and it is
critical in maintaining the physiological homeostasis by regulating fluid and electrolyte balance,
osmolarity and pH. The basic unit of organization in the kidney is the nephron embedded in the
interstitium; the human kidney has between 210,000 to 2.7 million nephrons (1). There are
multiple cell types in the nephron and the interstitium including those that comprise the blood
vessels and capillaries (such as endothelial cells and vascular smooth muscle cells) and many
types of immune cells. From the development of a structure based standard nomenclature (2),
to a recent review (3), there has been a sustained effort to develop a detailed understanding of
structure-function relations within the kidney tissue to understand its physiology and
pathophysiology.

Over the past decade, with the advent of single-cell (sc) RNAseq technologies, substantial
advances have been made in enumerating the different cell types in the human and mouse
kidney (4-17). Computational analyses and modeling of single-cell transcriptomic data, and other
types of omics data are starting to provide rich and deep insight into different kidney disease
processes including kidney cancers (17) and fibrosis (9). These studies demonstrate the power
of omics technologies in developing atlases that map structure-function relationships at the
single-cell level within tissues.

Data sets from different omics technologies provide an unparalleled opportunity to
understand how the diversity of cell types and their constituents underlie physiological functions
and how they are altered in different disease states. The Kidney Precision Medicine Project
(KPMP) is a consortium funded by the National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK). Using kidney biopsies that are ethically and safely obtained from participants
with kidney disease, KPMP aims at the creation of a kidney atlas in health and disease. Such
an atlas can allow the identification of critical cells, pathways, and targets for novel therapies
and preventive strategies (18, 19). To identify and understand disease states, it is necessary to
have a detailed atlas of tissues that do not show disease phenotype by standard clinical
histological evaluation. We call such an atlas a reference atlas. Using multiple kidney reference
sources, different groups in the consortium have generated diverse types of data. Among these
are single-nucleus (20) and single-cell (21) transcriptomics, regional bulk transcriptomics,
proteomics and metabolomics as well as multiple complementary types of imaging methods. We
have analyzed and integrated these different data types obtained from reference kidney tissue
specimens, as evaluated by standard pathology analysis, from 55 human subjects. We have
constructed maps of the different cell types in the kidney and the molecular entities as well as
functional pathways within these cell types to develop an early version of a reference human
kidney atlas. To determine if the molecular details in the atlas enables new insight into
physiological activity we compare the transcellular sodium reabsorption along the nephron that
is important for the maintenance of normal blood pressure in individuals with hypertension (22,
23). We find substantial congruence between physiological activity and the sum of the mRNA
levels of different sodium transporters indicating that these such a molecular atlas can provide
deep insight into molecular and cellular basis of physiological processes. This atlas is now
available to serve as a starting point from which datasets emerging from disease states can be
used to project into the integrated functional context and to drive new molecular classification of
kidney diseases.
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RESULTS

The KPMP Consortium conducted different types of omics as well as low throughput
immunohistochemistry experiments at different sites for these reference atlas studies. Although
it is impossible to definitely characterize tissue as healthy, clinical pathologists adjudicated that
specimens used in this study show no signs of disease manifestations. Nevertheless, since we
use unaffected tissue regions from nephrectomies as well as biopsies from both living donors
and transplant recipients (i.e., surveillance biopsies), we use the general term reference tissue
(Suppl. Table 1). In future studies, these can be compared to diseased tissue specimens.

There were four transcriptomic, two proteomic, two imaging-based, and one spatial
metabolomics tissue interrogation assays deployed on the shared tissue samples. These assays
yielded 3 to 48 different datasets obtained from 3 to 22 subjects per assay for a total of 55
different human subjects (Suppl. Table 1). The assays and their detailed tissue pre-analytical,
tissue processing, data acquisition and analytical data processing pipelines are schematically
depicted as a flowchart in Figure 1. We also summarize, in the integration segment of our
flowchart, the steps by which the data sets from the different assays were integrated and
harmonized. This is shown in the upper right side of this descriptive map.

Integration of multiple transcriptomic interrogation techniques shows agreement and
technological synergy between assays

Separate as well as integrated analysis of single-cell (sc), multiplexed single-cell and single-
nucleus (sn) transcriptomic datasets confirmed all known major kidney tissue cell types of the
nephron (20, 21) and multiple immune cells (Figure 2A). Clustering algorithms used to separately
analyze the sc and sn RNAseq data identified multiple subtypes for several cells. We observed
differences between the numbers of subtypes in the sc versus sn data as different cutoffs were
used in the initial analyses (20, 21). Nevertheless, when sc and sn RNAseq data were analyzed
in an integrated manner, all major cell types were identified, as shown in the central panel in
Figure 2A. Here, combined processing of 17,529 and 13,130 cells along with 17,657 nuclei
yielded 16 main clusters (note that some clusters contain multiple closely related subtypes).
These clusters were annotated to 14 cell types based on cluster specific marker gene
expression. Each cluster contained cells and nuclei from every dataset, documenting
consistency of our transcriptomic datasets (Suppl. Figure 1). To provide spatial context with
respect to different regions of the nephron, we compared the sc and sn transcriptomic datasets
with nephron segment specific bulk transcriptomic datasets that were obtained after Laser
Microdissection (LMD) of kidney segments (24) (Suppl. Table 2). Cross-assay Pearson
correlation analysis allowed us to map each single cell and nucleus to the nearest LMD segment
(Figure 2B). We find that there is strong concordance across the data obtained by the different
technologies, whereby the majority of the cells and nuclei from each cluster were assigned to
the correct corresponding LMD subsegment in an unbiased manner. For example, proximal
tubule (PT) cells were assigned to the PT subsegment, while podocytes were assigned to the
glomerular subsegment.

The total numbers of cells analyzed are small by current standards and hence we
determined, if other independent orthogonal technologies support our overall atlas framework.
Hence, we used integration of different omic technologies as well as posthoc power analyses to
determine the validity of the atlas.
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Proteomic and transcriptomic assays produce biologically complementary descriptions
of subsegmental molecular composition

In addition to transcriptomic profiles, we obtained subsegment specific protein expression
profiles using two different proteomic assays. These assays identify protein expression in the
glomerulus and the tubulointerstitium (LMD proteomics) or proximal tubule (Near Single Cell,
NSC, proteomics) (Suppl. Tables 3 and 4, respectively). We then compared the proteomic data
sets with the transcriptomic data sets. For an unbiased cross-platform comparison, we focused
on podocyte/glomerular and proximal tubule (PT) cells and subsegments in the four
transcriptomic datasets. To reduce assay related biases, we calculated, for each subject within
each assay, the logarithmic ratios of gene or protein expression values for the glomerular versus
tubular cell types or subsegments (Suppl. Figure 2A). Pairwise correlation of these logarithmic
ratios, followed by hierarchical clustering, resulted in grouping of the data sets by appropriate
regions of the kidney (Figure 3A). Within this broad classification, the subgroupings by different
assays could be readily identified and are shown (Right side labels in Figure 3A). From this
clustering, we conclude that irrespective of the assay, we can readily identify groups of genes
or proteins associated with the appropriate anatomical region (i.e. glomerulus versus
tubulointerstitium). This pattern is observed with or without removal of genes or proteins that are
not identified by all technologies (Suppl. Figure 2B). In contrast, if we cluster by absolute
expression values, the clustering is primarily driven by the assay used rather than the anatomical
region. This is irrespective of whether we use datasets with and without removal of genes or
proteins not detected by all technologies (Suppl. Figure 2C and 2D, respectively). These results
suggest that rather than absolute presence or absence of the different genes or proteins, the
relative expression levels are more indicative of the corresponding anatomical region of the
kidney. It documents the high quality of our data, since technological bias can be overcome by
a relatively simple algorithm. Correlation analysis of averaged logz fold changes between all
combined RNAseq datasets and combined proteomic datasets further supports the conclusions
that similar entities are identified by different assays (Figure 3B). The 0.6 correlation value that
we obtain is in agreement with the canonical value across mammalian tissues as described (25),
though our comparison is based on fold changes and not absolute mRNA and protein
abundancies. As such, integration of multiple datasets increases accuracy of the results, since
integrated RNAseq and proteomic datasets show a higher correlation with each other than any
individual RNAseq and proteomic datasets. Nevertheless, correlations between the same
technologies when the assay was conducted at different sites is quite high (Figure 3C).

Imaging-based molecular data and non-spatial proteomic and transcriptomic assays
together produce spatial marker expression signatures.

Imaging assays can provide spatial specification of omics data, such as bulk proteomics (26)
and confirm contextual framework for cell types inferred through sc transcriptomics (27). Those
with well-characterized markers can identify the spatial localization of individual cells, which can
be independently identified from gene expression patterns. By analyzing the relationship
between cells identified from sc/sn sequencing technologies and CODEX imaging of canonical
markers, we establish the concordance between the assay types for independently identifying
cell types and inferring molecular profiles for spatially localized cells. We constructed a mapping
matrix to transform the cell-type specific protein (i.e., marker) expression profiles measured
using CODEX to cell type-specific gene expression profiles measured using sc and sn
transcriptomic assays (Suppl. Figure 3). An entry in the mapping matrix is high if the
corresponding imaging cell type is highly weighted in the linear combination of imaging cell type
expression profiles that approximate the expression profile of a cell type in the single-cell
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transcriptomic dataset. We find that this mapping approach performs well for cell types with well-
characterized cell type-specific canonical markers in the imaging dataset, such as endothelial
cells and podocytes (Figure 4).

Both the mapping of single cell and nucleus expression profiles to LMD segments and the
mapping of single cell and nucleus expression profiles to the imaging assays allow assignment
of single cells and nuclei to anatomical regions within the kidney. Using these comparisons we
can arrange the cells along the nephron and in the interstitium, allowing documentation of the
order by which they encounter the glomerular ultrafiltrate.

Integrated pathway enrichment analysis enables identification of functional capabilities
of different cell types of the kidney

After establishing the consistency between transcriptomic, proteomic and imaging datasets,
we used these integrated data to identify the cell-type specific functional pathways and network
modules. Pathways and modules give rise to subcellular processes that together produce whole
cell-level biochemical and physiological function. This pathway based approach that connects
genes to cell level physiological function will serve as the basis for molecular classification of
disease states. We started by using individual analyses of the sc and sn RNAseq datasets and
identifying the pathways inferred from the expressed genes (20, 21) (Suppl. Figure 4A and B,
respectively). In contrast to our integrated analysis of these datasets described above, the
individual analyses used more relaxed quality control cutoffs such as allowing up to 50%
mitochondrial gene expression so the cell subtype and type specific gene expression obtained
by the single cell RNAseq dataset was based on 22,264 cells instead of 17,529 cells. These
single cell technology analyses also allowed us to ascertain that all of the cell types could be
observed independently of the method by which the reference tissue was obtained. We find that
all major kidney cell types can be identified in nephrectomy, living donor biopsy and transplant
surveillance biopsy tissues (Suppl. Figures 4A and 4B). An exception to this finding is that
immune cells were mostly identified only within the sc RNAseq dataset, while only one cluster
of the sn RNAseq dataset that contained less than 1% of all nuclei was annotated to an immune
cell type, i.e. immature macrophage (Suppl. Figure 4B).

Individual analyses of sc and sn transcriptomic data ensure that these two related
technologies do not computationally influence the ranking of combined pathways in ways that
are not fully identifiable. Most cells identified from sc or sn RNAseq data sets in the individual
analyses were annotated to the same cell types as in the combined analysis (Suppl. Figure 4C
and 4D, respectively) and mapped to the appropriate LMD segment as well (Suppl. Figure 4E
and 4F, respectively). A less stringent cutoff for mitochondrial gene expression (50% instead of
20%) allowed consideration of additional cells that were excluded from the combined analysis.

Post hoc power analysis documents consistent cell-type detection

Before focusing on cell-type specific functions that we predict from pathway enrichment
analysis and module mappings, we evaluated how many reference subject samples need to be
processed to obtain consistently reproducible results. 24 and 47 libraries obtained from 22 and
15 subjects were subjected to sc (21) and sn (20) RNAseq, yielding 22,264 cells and 12,100
nuclei after quality control (Suppl. Table 1), respectively. We separately subjected both RNAseq
datasets, with and without random and progressive removal of libraries, to a standardized sc
and sn RNAseq analysis pipeline (Suppl. Figure 5A). Results obtained for the down sampled
datasets were compared to those obtained for the complete datasets (Suppl. Figure 5B). Our
results indicate that for a consistent detection of podocytes and mesangial cells (i.e. in at least
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95% of all down sampled datasets with the same library counts), at least 9 (~8,250 cells) or 7
libraries (1,837 nuclei) are needed if subjected to sc RNAseq (Figure 5A) or sn RNAseq (Figure
5B), respectively. The observed higher identification rate by the sn RNAseq assay is in
agreement with a previous report that compared sn and sc RNAseq results obtained from mouse
kidneys (16). Proximal tubule cells, thick ascending limb cells, principal cells, intercalated cells,
T-cells were always detected in the downsampled sc RNAseq datasets. Macrophages were
consistently detected, if 3 libraries (2,843 cells) were analyzed. In the sn RNAseq datasets we
consistently detected proximal tubule cells, thick ascending limb cells, principal cells and
intercalated cells in 4, 7, 9 and 6 libraries (1,013; 1,832; 2,323 and 1,527 nuclei), respectively.
For additional cell types, see Figures 5A and 5B. Additionally, our results suggest that the
accuracy of sc or sn assignments to the selected cell types is relatively stable as documented
by the low number of cells that are assigned as different cell types or mapped to an unrelated
tissue subsegment in the downsampled sc and sn datasets (Suppl. Figures 5C and 5D,
respectively). Similarly, pearson correlation between cell type specific DEGs in the down
sampled and full datasets follow the same trend. These analyses establish the rigor with which
we are able to assign pathways and physiological functions to the different cell types.

Pathway enrichment analysis and module identification

The top 300 significant gene and protein markers of each cell type or subtype and
subsegment (Suppl. Table 5) were subjected to dynamic enrichment analysis using the
Molecular Biology of the Cell Ontology (MBCO) (28) (Suppl. Table 7). In many cases, less than
300 markers were significant (Suppl. Table 6) and we consequently used only those for our
downstream analysis. Dynamic enrichment analysis is a novel enrichment algorithm that
considers dependencies between functionally related subcellular processes (SCPs), thereby
addressing a limitation of standard enrichment analysis (29). In contrast to standard enrichment
analysis that determines if a set of experimentally observedgenes enriches for genes annotated
to a single SCP, dynamic enrichment analysis determines if gene set enriches for genes
annotated to multiple functionally related SCPs. We comparatively assigned mRNAs (cognate
proteins) to functionally related pathways enabling the formation of subnetworks that underlie
subcellular processes (SCPs) that give rise to whole-cell physiological function (28). Functional
relationships are defined in the MBCO network of subcellular processes that are predicted based
on prior knowledge from primary literature of functional activities. Cell type and corresponding
segment specific networks were merged. Non-glomerular and glomerular metabolites (Suppl.
Table 8) were subjected to pathway enrichment analysis using MetaboAnalyst (30) (Suppl.
Figure 6A and 6B, respectively). For the top eight predicted pathways, we manually determined
if pathway specific metabolites in the metabolomics data sets could be identified. When at least
one metabolite could be selectively associated with the predicted pathway, we added the
pathway to the SCP network identified from the transcriptomic and proteomics datasets. We
added two pathways that do not exist in MetaboAnalyst after curation of identified metabolites
(Suppl. Figure 6A). This pathway-based integration process allowed us create maps of
biochemical and physiological functions of all major cell types in the kidney, setting up the
framework for the development of molecular classification of kidney diseases.
Significant mMRNA and protein markers were used for community clustering in a kidney-specific
functional network using HumanBase (31, 32) (Suppl. Table 9). In this network-based module
detection analysis, genes are partitioned based on their connectivity in tissue-specific functional
networks using a community clustering approach. These tissue-specific functional networks are
constructed by integrating thousands of public genomic datasets using a regularized Bayesian
framework to predict the probability that every pair of genes in the genome is related in a specific
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tissue context. Thus, module detection provides a global, data-driven view of which genes are
likely to participate in shared functions, pathways, and processes. Enrichment analysis is
performed only after this data-driven partitioning, improving power to detect signals in the data
and to implicate additional genes in biological processes based on their network connectivity.
Thus our approaach uses multiple ontologies to fully map genes to functions.

Cells of the kidney
Proximal tubular cells

Merged proximal tubule SCP networks predict a high level of metabolic activity dependent
on [(B-oxidation of lipids, ammonium metabolism as well as absorption of ions, ion-dependent
glucose reabsorption and detoxification mechanisms (Figure 6A). These SCPs, as shown by the
different colors, are inferred from multiple technologies. The size of the SCP circle reflects the
number of technology types that support the prediction of the SCP, while pie slices represent
the individual technologies. In some physiology functions, cases of multiple pie slices are shown
for the same technology indicating that this technology predicts the same SCP for multiple
subtypes of the PT cells. The solid lines indicate connections between SCPs predicted by MBCO
relationships and the dashed lines indicate additional well-known relationships between SCPs.
Typically, these edges can represent functional relationships such as enzyme-substrate
relationships or cotransport of molecules by symporters. It should be noted that most SCPs
consist of multiple gene/gene products/metabolites of which only some are experimentally
determined. Both the LMD proteomics and spatial metabolomics assays only distinguish
between glomerular and tubulointerstitial regions in the kidney. SCPs that were predicted by
these two assays either overlapped with or described similar functions as the SCPs that were
identified by the proximal tubule cell or segment-specific datasets (Suppl. Figure 7). This agrees
with the observation that most tubulointerstitial cells were proximal tubule cells (Suppl. Figure
4A/B). Consequently, we added all SCPs identified by LMD proteomics and spatial
metabolomics to the proximal tubule network as well. The identified predictions are in agreement
with the well-established physiological functions of PT cells that include ATP-dependent
reabsorption of ions, glucose and other small molecules like amino acids and mono- and
dicarboxylates (e.g., lactate or oxalate) (33). The pathways also highlight the important role of
PT cells in ammonium excretion, drug clearance (34) and iron homeostasis pathways (35). The
latter - among other functions - mitigate kidney damage during AKI (36). The prediction of
glucose, fructose and glutamine metabolism from integration of transcriptomic, proteomic and
metabolomics assays is in agreement with the high levels of PT gluconeogenesis activity (37,
38). Beta-oxidation, which is the central pathway for energy generation in the PT cells (39, 40),
is predicted by four out of six technologies. The identified genes and proteins document
involvement of both mitochondrial and peroxisomal beta- oxidation (Suppl. Table 7). These
findings support the notion that peroxisomes could be a target in kidney injury (41) .

Both proteomic datasets of the PT subsegments highlight mitochondrial carnitine shuttle
pathway that describes a central transport mechanism involved in both peroxisomal (42) and
mitochondrial (43) beta-oxidation. We identify by spatial metabolomics the central carrier
molecule carnitine, as well as acetyl-carnitine and palmitoyl-carnitine that are involved in
transport processes during peroxisomal and mitochondrial beta-oxidation, respectively. The
identification of carnitine biosynthesis and the carnitine precursor 3-Dehydroxycarnitine predicts
that adult kidney - besides apical reabsorption of carnitine - also has the biosynthetic capacity
for local carnitine production, as shown for human fetal kidney (44). Loss of beta-oxidation and
consequently ATP synthesis is a significant contributor to tubulointerstitial fibrosis (45). Hence
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mapping of the variations in these pathways in different patient populations can provide a basis
for molecular stratification of kidney fibrosis. Our data indicate the importance of beta-oxidation
for proximal tubule function, since the prediction of local carnitine synthesis suggests an
alternative carnitine source to dietary carnitine intake that might gain importance under a strictly
vegetarian diet (46). Prediction of high levels of ATP generation and turnover rate is supported
by the spatial metabolites that enrich for a pathway involved in the biosynthesis and degradation
of adenine nucleotides. The ability of proximal tubule cells to significantly contribute to
gluconeogenesis, especially in states of starvation (47) is documented by the identification of
many enzymes involved in gluconeogenesis in our datasets. Glycolysis-specific enzymes were
not detected, as described by others and in agreement with the low potential for glycolysis in the
proximal tubule (38). Only a few pathways describing general cell biological functions (such as
ECM dynamics, cell adhesion and translation) were predicted by one technology (Suppl. Figure
8).

Consequently, our analyses show that the different technologies describe the same biology,
even though they might detect different genes or proteins and analyzed samples from the
overlapping and non-overlapping participants (Suppl. Table 1).

Community clustering of PT marker genes in a kidney-specific functional network (Figure 6B)
identifies four modules enriched for functions including translation (M2), cellular response to
metal ion (M4), mitochondrial organization (M1), brush border assembly (M3), and anion
transport (M3). The marker genes were identified across five distinct technologies (sc/sn/LMD
transcriptomics, and two independent proteomics datasets), and include genes with a corrected
p-value of less than 0.01 in each technology. Genes are shaded per number of technologies
identifying each marker. Five genes (ALDH2, ANPEP, LRP2, PDZK1, and SHMT1) were
identified as PT markers across all five technologies. Fifty-four genes were identified as PT
markers by four of the five technologies, and 106 genes were identified as PT markers by three
of the five technologies. Functional enrichments in module clustering provide a picture consistent
with the SCP enrichments: key processes enriched in network modules and also identified in
SCP enrichments include fatty acid beta-oxidation (M1, M4), ammonium ion metabolic process
(M3), glucose metabolic process (M3), detoxification (M1), anion transport (M3), and cellular
response to metal ion (M4). While we did not separate between male and female samples in this
study, sex specific differences in proximal tubule cells have been described recently (8).

Glomerular cells

In agreement with a previous study focusing on human and mouse glomerular cells (7) we
detected all four different glomerular cell types, podocytes, mesangial cells, endothelial cells and
parietal epithelial cells. The sc and sn transcriptomic datasets (Figure 2) lead to four glomerular
cell type specific SCP-networks. We separately analyzed the LMD transcriptomic and LMD and
NSC proteomics and spatial metabolomics datasets (that were obtained from the whole
glomerulus thus lacking cell type specificity) and identified glomerular SCP networks (Suppl.
Figure 9A). Analyzing the overlap between the glomerular SCP networks with each of the three
cell-type specific SCP-networks allows us to assign glomerular SCPs to podocytes, mesangial
cells or glomerular endothelial cells (Figure 6C). Ten of the 19 glomerular SCPs are also
predicted for at least one glomerular cell-type based on the sc/sn transcriptomic datasets. Seven
other SCPs we identified map to particular cell types per functional relationships predicted from
the sc/sn RNAseq datasets. These SCPs were added to each of the individual cell type specific
SCP-networks. Podocyte SCPs (Figure 6D) focus on cell-cell/cell-matrix adhesion, glomerular
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basement membrane (GBM) and extracellular matrix (ECM) dynamics as well as actin dynamics.
All these pathways are required for foot process maintenance and formation of the glomerular
filtration barrier (48-50). Metabolomics data identify sphingolipid metabolism that could be
involved in cell-cell adhesions as shown in other cell types (51-54). LMD segmental proteomics
and transcriptomics identified key pathways involved in actin dynamics as well as cell-cell and
cell-matrix adhesion. Multiple technologies identify tight junction organization, focal adhesion
organization and lamellipodia organization. The glomerular slit diaphragm between mature
podocytes develops from epithelial tight and adherens junctions (55). It contains many of these
junctional protein components and was suggested to be a specialized form of either tight
junctions (56) or adherens junctions (57, 58). This explains the prediction of these two structures
from our data, thought they are not morphologically observed in healthy podocytes. We show
WNT signaling as a central modulator of podocyte function (59). The pathway “Retinol
metabolism” was predicted for both sc and sn RNAseq dataset as a regulator of tight junction
similar structures. In agreement, retinoic acid has a regulatory effect on tight junctions in the
epidermis (60) and plays a significant role in mitigating podocyte apoptosis and dedifferentiation
during podocyte injury (61).

Community clustering of podocyte marker genes in a kidney-specific functional network
identifies six modules (Figure 6E). Functional enrichments in these modules included glomerulus
development (M4), vasculature development (M3), cell-substrate adhesion (M1), cell-cell
adhesion (M1), and actin cytoskeleton organization (M1). Thirteen genes (AHNAK, CLICS5,
FERMIT2, GOLIM4, IQGAP2, NES, NPHS2, PDLIM5, PODXL, PTPRO, SLK, SYNPO, and
TJP1) were identified as podocyte markers by all five technologies surveyed. Forty-one genes
were identified by four of the five technologies and 108 genes were identified by three of the five
technologies.

Our datasets identify one mesangial and one transitional mesangial/VSMC cell type from the
sn and sc RNASeq assays, respectively (Figure 2). LMD transcriptomics and proteomics and
NSC proteomics along with sc and sn transcriptomics data identify SCPs involved in actin
cytoskeleton dynamics, ECM dynamics, cell adhesion and amyloid plaque generation in these
mesangial cells (Figure 6F). Our results are in agreement with their well-known function in blood
vessel contraction and ECM support (62). In addition, one glomerular endothelial cell type was
identified by the sc RNAseq data (Figure 2). Its SCP-network derived from integration of LMD
proteomics and transcriptomics and NSC transcriptomics along with sc transcriptomic data
identify cytoskeletal, trans-endothelial immune cell migration and antigen presentation pathways
(Figure 6G). The assignment of “integrin-mediated leukocyte rolling” to endothelial cells is
supported by the presence of the related “leukocyte transmigration through endothelium” SCP
by sc and LMD RNA transcriptomics. Sn and sc RNAseq assays identified one parietal epithelial
and one parietal epithelial cell type that also shows characteristics of loop of Henle cells,
respectively (Figure 2). Parietal epithelial SCP networks contain pathways involved in cell-cell
and cell-matrix adhesion and intermediate filament dynamics (Suppl. Figure 9B).

Loop of Henle

We identified one descending limb cell subtype by each sc and sn RNAseq assay (Figure 2).
SCP networks from sc and sn RNAseq data for the descending limb cells identify cell adhesion
functions and cytoskeleton dynamics (Suppl. Figure 10A). The presence of “tight junction
organization” is in agreement with barrier formation in the descending limb that can allow for
paracellular water reabsorption (63) but not for reabsorption of ions such as sodium or chloride
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(64). Community clustering of descending limb marker genes in a kidney-specific functional
network identifies six modules enriched in functions including cell-cell adhesion (M6), epithelium
development (M3), tube development (M3), response to endoplasmic reticulum stress (M5), and
water homeostasis (M6) (Suppl. Figure 10B).

Three thin ascending limb (ATL) cell subtypes are identified by sn RNAseq although only
one type was identified by sc RNAseq (Figure 2). SCP-networks obtained for ATL cells from
these two technologies describe functions such as cell adhesion, cytoskeleton dynamics and
translation (Suppl. Figure 10C). Overall, these SCP networks agree with the known functions of
these cells that initiate the formation of dilute urine by the establishment of a water impermeable
barrier that is permeable to low levels of ions (65). Community clustering of ATL marker genes
in a kidney-specific functional network identifies seven modules enriched in functions including
translation (M1), kidney morphogenesis (M6), and cell-cell adhesion (M4) (Suppl. Figure 10D).

Sc and sn transcriptomics identified one and two thick ascending limb (TAL) cell subtypes,
respectively (Figure 2). TAL cell SCPs indicate sodium, potassium and chloride transport
capabilities as detected by sc, sn and LMD transcriptomic technologies (Figure 6H).
Tubulointerstitial SCPs identified by the LMD Proteomics and Spatial Metabolomics assays
provide evidence for functional capabilities of the SCPs networks (Suppl. Figure 7). These
findings are in agreement with the known transcellular reabsorption of sodium and chloride that
is initiated by the furosemide sensitive sodium chloride potassium symporter NKCC2 and
supported by apical potassium recycling (66). The “tight junction organization” SCP is involved
in the establishment of a physical barrier that makes this region impermeable to water and thus
allows the dilution of urine (67). Among the tight junction associated genes are CLDN10 and
CLDNA16 that are involved in the paracellular reabsorption of sodium or calcium/magnesium (66,
68), respectively, which supports the well-known physiology of this nephron segment.
Involvement of “retinol metabolism” suggests that retinol regulated transcription can play an
important role in TAL tight junction maintenance, similarly to its contribution to podocyte integrity.
SCPs involved in the late secretory and early endocytic pathway support the known morphologic
observation of vesicles below the plasma membrane that contain the furosemide sensitive
NKCC2 (66, 69) allowing its mobilization and retrieval on demand (70-72).

The high energy demand of the TAL cells is reflected by the identification of SCPs involved
in mitochondrial energy generation from LMD transcriptomics and proteomics. Spatial
metabolomics that identify purine metabolites in the tubulointerstitium also support this
conclusion. Community clustering of TAL marker genes in a kidney-specific functional network
(Figure 61) identifies six modules enriched in functions including regulation of ion transport (M6),
calcium ion import (M6), sodium ion transport (M6), translation (M1), and mitochondrion
organization (M2).

Distal convoluted tubules

One distal convoluted (DCT) cell subtype was identified based on each of sc and sn RNAseq
assays (Figure 2). Predicted SCPs for the DCT cells from sc, sn and LMD transcriptomics
converge on sodium and chloride transmembrane transport (Suppl. Figure 11A). Our results
agree with the well-known sodium and chloride reabsorption by this cell type via the thiazide
sensitive sodium chloride symporter NCC (73). Additionally, sc/sn transcriptomics highlight
reabsorption of calcium, potassium, bicarbonate and phosphate. Community clustering of DCT
marker genes in a kidney-specific functional network (Suppl. Figure 11B) identifies three
modules enriched in functions including regulation of ion transport (M3) and metal ion
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homeostasis (M2). A recent study focusing on the cells in the distal nephron purified by FACS-
enrichment of mouse kidney cells further classifies the DCT cells into multiple subtypes (4).

Connecting tubules

Each sn and sc assay identified one connecting tubule (CNT) subtype (Figure 2). Both sn
and sc transcriptomic datasets for CNT cells indicate that SCPs for sodium, potassium and
calcium transmembrane transport activities are enriched (Suppl. Figure 12A), supporting its
function in fine tuning electrolyte balances (74-76). Other SCPs indicate signaling, endoplasmic
reticulum and energy functions in this cell type. Community clustering of CNT marker genes in
a kidney-specific functional network (Suppl. Figure 12B) identifies three modules enriched in
functions including ion transport (M2), receptor-mediated endocytosis (M3), and mitochondrion
organization (M1).

Collecting duct

Sc and sn RNAseq show two and three principal cell subtypes, respectively (Figure 2). The
principal cell SCP networks were obtained by merging the principal cell specific SCPs predicted
from sc and sn transcriptomics with the collecting duct (CD) specific SCPs predicted from LMD
transcriptomics (Suppl. Figure 12C). Overlapping or functionally related SCPs identified by LMD
Proteomics and Spatial Metabolomics were added as well (Suppl. Figure 7). Both sc and sn
technologies identified “Potassium-* as well as “Sodium-transmembrane transport” SCPs for the
principal cells. The SCP ‘Water transmembrane transport’ was identified by both sn and sc
RNAseq assays as well, though with a lower rank for sn RNASeq assays that did not pass our
applied cutoff. The LMD transcriptomics and proteomics data identified the energy generation
SCPs required for the various transport SCPs identified by the sc and sn transcriptomic data.
The spatial metabolomics data sets provided support for energy generation pathways identified
by the LMD technologies.

Principal cells play an important role in fine tuning ion and water reabsorption and thereby
regulate systemic electrolyte and water balance (76). The anti-diuretic hormone working with
prostaglandins regulates the levels of AQP2 on the apical plasma membrane (77, 78) stimulating
water reabsorption by the principal cell. Apically reabsorbed water is exported by basal water
transporters AQP3 and AQP4. We detect both AQP2 and AQP3 in our datasets. Sodium
reabsorption is regulated by the amiloride-sensitive sodium channel EnaC whose expression
and protein turnover is regulated by aldosterone (79). The aldosterone-stimulated reabsorption
of sodium is coupled with secretion of potassium (80), as highlighted by our data. Additionally,
we show calcium transmembrane transport for one cell subtype by both sn and sc RNAseq
assays. Both sc and sn technologies identify SCPs involved in drug and toxin transmembrane
movement in one of the subtypes of the principal cell, although drug excretion is generally
described to occur in the proximal tubule (34). Furthermore, community clustering of PC marker
genes in a kidney-specific functional network (Suppl. Figure 12D) identifies seven modules
enriched in functions including ion transport and homeostasis (M7), regulation of vesicle-
mediated transport (M4), and water homeostasis (M6).

We identified multiple subclusters of intercalated cells that could be assigned to IC-A, IC-B
and one transitionary subtype, tPC-IC, as well as IC-Al, IC-A2 and IC-B in the sc and sn
transcriptomic datasets, respectively (Figure 2). SCPs networks were identified by merging sc
and sn transcriptomic data with LMD transcriptomic data obtained from the collecting duct
(Suppl. Figure 12E). Additionally we added overlapping or functionally related SCPs predicted
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by LMD Proteomics and Spatial Metabolomics (Suppl. Figure 7). We find the SCP “Bicarbonate
transmembrane transport” in all three sc subtypes and one sn subtype (Suppl. Figure 12E),
documenting the importance of the intercalated cells in the regulation of systemic acid-base
homeostasis (81). Apical and basolateral bicarbonate transport is driven by exchange for
chloride (81), as indicated by the “Chloride transmembrane transport” SCP identified for one
subtype in both sn and sc RNAseq datasets. Community clustering of IC marker genes in a
kidney-specific functional network (Suppl. Figure 12F) identifies six modules enriched in
functions including regulation of body fluid levels (M3), translation (M1), mitochondrion
organization (M2), bicarbonate transport (M5), and cell-cell adhesion (M4). Enrichment analysis
using Gene Ontology predicts phagocytic activity (phagosome maturation and acidification)
based on subunits of the vacuolar H*ATPase (81) (Suppl. Figure 12G). In combination with the
prediction of SCP involved in actin cytoskeleton our data supports the recent observation of
phagocytic activity of the intercalated cells (82, 83).

Interstitium and the vasculature

Endothelial Cells: We find four types of endothelial cells by sn transcriptomics and two by sc
transcriptomics, in addition to glomerular endothelial cell identified sc transcriptomics (Figure 2).
SCP networks for endothelial cells identified from sc and sn transcriptomic data sets contain
pathways involved in cellular adhesion, trans-endothelial migration, actin cytoskeleton
dynamics, caveolin-mediated endocytosis, signaling and antigen presentation (Suppl. Figure
13A).

Vascular smooth muscle cells: We identified a single type of VSMC by sn RNAseq assay
(Figure 2). The sc transcriptomic technology identified a variant of mesangial cells that has
VSMC markers. We classified this subtype as a glomerular cell subtype. SCP networks from sn
technology highlight cell contraction capabilities for the VSMC (Suppl. Figure 13B).

Fibroblasts: We identified a single type of fibroblast from sc and sn RNAseq assays (Figure
2). SCPs in fibroblasts identified from sc, sn and LMD transcriptomics data describe pathways
related to ECM dynamics, cell adhesion, cytoskeleton dynamics and the complement pathways
(Suppl. Figure 14). The proteomic assays did not detect ECM components related SCPS among
the highly ranked pathways.

Immune cells: Four types of immune cells are detected by sc or sn RNAseq technologies.
These include natural killer cells, three types of T-cells, B-Cells and three types of macrophages
and monocytes (Figure 2). SCP-networks for macrophages contains pathways involved in
antigen presentation, actin cytoskeleton dynamics and translation (Suppl. Figure 15A).
Connection of the SCPs involved in actin cytosekeleton dynamics to the SCP ‘Macrophage
migration inhibitory factor (MIF) signaling pathway indicates the potential for chemotactic activity.
Macrophage migration is driven by rearrangements in the actin cytoskeleton that are activated
by stimulation of the MIF receptor proteins CD74 and CXCR4 (84, 85) as identified in our data.

The SCP ‘Cellular iron uptake and export’ documents the central role of macrophages in
iron homeostasis (86). It is predicted based on SLC39A8, a transmembrane transporter involved
in transport of multiple divalent metal ions including iron (87) and the scavenger receptor CD163
that is also involved in removing hemoglobin or haptoglobin-hemoglobin complexes by splenic
red pulp macrophages and Kupffer cells (88). This SCP and the SCPs involved in actin dynamics
are also identified by LMD transcriptomics of the interstitium. SCPs in the natural killer cells
identify antigen presentation, cell migration and actin cytoskeleton dynamics (Suppl. Figure
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15B). Similarly, SCP-networks predicted for B-cells and T-cells contain pathways involved in
antigen presentation and the immunoproteasome and translation (Suppl. Figure 15C and 15D,
respectively). A detailed study of immune cell zonation of the human kidney has been published
(14), while another single cell sequencing study characterized twelve myeloid cell subtypes
associated with progression and regression of kidney disease in an animal injury model (6).

Since immune activity was documented for all cell types along the nephron (14), we analyzed
the fraction of cell type and subtype specific marker genes and proteins that were annotated to
immune pathways in Gene Ontology. In agreement with the indicated study, about 5-15% of all
marker genes participate in immune cell functions (Suppl. Figure 16). We want to emphasize
that in the immune zonation study (14) the highest immune activity was predicted for epithelial
cells of the pelvis, while our samples do not contain tissue from the pelvis.

Using the atlas to understand the molecular basis of physiological functions.

Using a similar approach to our post hoc power analysis, we investigated the robustness of
the SCP-identified cell biological functions by randomly downsampling libraries from the sc/sn
datasets. We subjected the top 300 DEGs of each cell type and subtype in each downsampled
dataset to dynamic enrichment analysis. Predictions were ranked by significance. Investigation
of the ranks that were obtained for those SCPs in the down-sampled datasets that are among
the top seven predictions in the full dataset allows to estimate which SCPs are consistently
predicted and probably describe biological core functions. The most consistently predicted SCPs
share a high overlap with those SCPs that are predicted from multiple datasets, as described
above. In case of the proximal tubule cells, most of the consistently identified SCPs by the sc
(Suppl. Figure 17A) or sn RNAseq data (Suppl. Figure 17H) are related to cellular metabolism
and energy generation, reabsorption and detoxification. In the case of the podocytes, the
consistently identified SCPs are involved in cell-cell and cell-matrix adhesion. ‘Tight junction
organization’ and ‘Hemidesmosome organization’ are consistently identified based on the sc
(Figure 17B) and ‘Tight junction organization’ and ‘Adherens junction organization’ on the sn
RNAseq assay (Figure 171). These results document the central importance of the glomerular
slit diagram that is described as a specialized form of both tight junctions (56) and adherens
junctions (58). Supplementary figure 17 also shows the results obtained for the other cell types.

Comparison of variation of oxygen supply and inferred levels of energy metabolism help
understand sites of kidney injury

To identify energy generation pathways in the different cells along the renal tubule of the
nephron, we generated a focused ontology of metabolic pathways (Suppl. Figure 18A). Our
ontology focused on the design of small pathway units that distinguished between reactions
specific for a particular pathway (e.g., enzymatic reactions that participate in glycolysis, but not
in gluconeogenesis) and reactions shared by two or more pathways (e.g., enzymatic reactions
shared by glycolysis and gluconeogenesis). The different pathway units converged on more
general parent pathways that contained all set of reactions involved (e.g., specific and shared
reactions involved in glycolysis). Pathways were populated by literature curation, parent
pathways inherited the genes of their children. Enrichment analysis of cell type, subtype and
segment specific marker genes and proteins. Using this ontology allowed us to distinguish
between aerobic and anaerobic as well as catabolic and anabolic pathways (Suppl. Figure 18B).
To rigorously define the groups, we only considered a parent pathway if its child contains the
reactions specific for that pathway among the predictions.
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The patterns of expression of different pathways involved in aerobic and anaerobic energy
generation along the nephron (Figure 7, Suppl. Table 11) and the varying levels of oxygen
availability in the different regions of the nephron (89) are shown. This comparison helps us
identify potential regions with differential susceptibilities towards hypoxia induced kidney injury.
Missing capability for anaerobic energy generation as predicted by the transcriptomics data in
humans (Suppl. Figure 18B) and observed in animal experiments (90) combined with low pO2
suggests S3 segment of the proximal tubule as a site for hypoxia based injury. This reasoning
is in agreement with experimental observations (89). High levels of capacity for aerobic energy
generation activity in the medullary TAL (mTAL), a region with low oxygen supply, is
complemented by high capacity for anaerobic energy generation, as also documented in animal
experiments (90). When the output of the anaerobic energy generation is depleted then the
mismatch between oxygen availability and aerobic glycolysis can lead to the accumulation of
intermediates that can damage the region. Thus, our conclusions on TAL agrees with the
experimental observation that mTAL injury during hypoxia depends on epithelial transport
activity (89). It can be readily seen that molecular profiles of metabolic pathways in the atlas
provide a basis for understanding and predicting kidney injury due to hypoxia.

Although podocytes are capable of generating energy by anaerobic glycolysis (91), we did
not identify any podocyte marker genes involved in any of the analyzed energy generation
pathways. Since maker genes were determined by comparing cell subtype, type or segment
specific gene expression to expression profiles in all other cells or segments, our analysis does
not document that these genes are absent in podocytes, but only that they are not expressed
in podocytes at higher levels as compared to other kidney cells.

Comparision of the physiological activity along the nephron and mRNA levels of transporters
provide an understanding of the molecular basis for differential physiological activity.

Physiological experiments allow us to determine how much of a filtered ion or small molecule
is reabsorbed in a particular nephron segment. Results of these experiments are described in
standard medical school physiology textbooks. Typically, the results shown in these textbooks
specify the percentage of a filtered ion or molecule reabsorbed in a particular nephron segment
(such as the proximal tubule) or finally excreted into the kidney pelvis and ureter. Sodium
reabsorption is important for blood pressure control and hence we focused on sodium
reabsorption as an example of how a cell level tissue atlas that details levels of the various
sodium transporter genes can help us understand physiological homeostasis.

We obtained sodium reabsorption profiles from 4 different standard physiology text books
(67, 92-94) and averaged the reabsorption percent values for each ion or molecule (Figure 8A-
1). An estimated fraction of 1/3 to 2/3 of the total sodium reabsorbed in the proximal tubule is
reabsorbed by passive paracellular mechanisms (95). Ablation of the tight junction protein
claudin2 that facilitates paracellular sodium transport reduces sodium reabsorption in the
proximal tubule by 37% (96). Paracellular sodium reabsorption in the Loop of Henle is estimated
to be below 50% based on electrophysiological considerations (95), approximately around 30%.
Since we wanted to compare the experimentally determined reabsorption profiles with mRNA
levels of the different sodium transporters that mediate transcellular reabsorption, we removed
37% and 30% from the experimental reabsorption profiles for the proximal tubule and Loop of
Henle, respectively. Obtained physiology experimental values were readjusted to sum up to
100% to document how much of transcellularly reabsorbed sodium is reabsorbed in each
nephron segment (Figure 8A-2). We then calculated the sum of all mMRNA levels of plasma
membrane transporter genes for sodium for all cells in each segment of the renal tubule of the
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nephron, using an ontology of kidney sodium transmembrane transport that we generated from
prior knowledge (Suppl. Figures 19A/B/C). To determine if results are consistent across data
sets, we calculated the mRNA levels from three sn RNAseq datasets, our sn RNAseq dataset
(20) and two additional sn RNAseq (97, 98) datasets from the Humphries laboratory. We
hypothesized these sums to represent the total sodium transport capacity for each segment.
Detailed methods and assumptions underlying this hypothesis are provided under Methods. We
compared the mRNA levels from the sc and sn transcriptomic experiments with the
experimentally measured reabsorption profiles of sodium along the nephron without (Figure 8B-
1) and with (Figure 8B-2) removal of paracellular sodium reabsorption. There is agreement
between the levels of sodium reabsorption seen in physiology experiments with the mRNA levels
in the different cell types along the nephron. We see differences mainly in the Loop of Henle.
Under consideration that there is most likely spare capacity for sodium reabsorption in the Loop
of Henle (66, 69-72), our data documents a good agreement between the calculated sodium
reabsorption capacities and the experimentally measured reabsorption profiles. Since some
nephron segments, such as Loop of Hele and collecting duct contain multiple cell types with
different reabsorption mechanisms (66, 99) we decided to focus on the different cell types to
determine the contribution of different gene products to the overall inferred transport capacity.
The relative distribution of mMRNAs encoding the different transporter proteins for sodium is
shown in Figure 8C. Since some of the mMRNA mapped to SCPs that are involved in blood-to-
lumen transport (Supp. Table 12), we defined these mRNA levels as negative to account for the
opposite direction when compared to lumen-to-blood transport. Consequently, when we add the
MRNA levels of all of these individual transporters along each nephron segment, we obtain the
total fraction of inferred sodium transport capacity of each segment as documented in figure 8B.
A significant contribution of sodium channels to the fine-tuning of sodium reabsorption in the
collecting duct (22) could explain, why the mRNA levels associated with sodium transporter
involved in blood-to-lumen transport are higher than the levels involved in lumen-to-blood
transport in this subsegment.

Calculation of the reabsorption capacities after inclusion of sc RNAseq dataset along with
the sn RNAseq data, slightly decreased the match with the physiological reabsorption profiles
and mRNA levels (Figure 8D). This is mainly due to the high mRNA levels associated with the
basolateral amino acid transporter gamma+LAT1 that exports cationic amino acids into the blood
in exchange for flow of large neutral amino acids and sodium into the cell (100, 101) (Figure 8D).

Regarding the transport mechanisms involved in sodium reabsorption (Figure 8B/D), we
highlight two details here. The proximal tubule is the primary region of the nephron for absorption
of many metabolites including different amino acids, organic anions and sugars. Often this
absorption is coupled to sodium transport. We identified a large number of distinct gene products
that that are responsible for these transport processes. We have grouped these transporters
together based on the SCP hierarchy for total transcellular sodium transport. It is this sum of all
the mMRNA levels that matches the total transcellular sodium transport. Thus, the cell level atlas
provides a detailed picture that was up to now not attainable. The second noteworthy feature is
that NKKC2 is the major sodium transporter in the TAL cells of the Loop of Henle (66). In
agreement with this cell physiological knowledge, MRNA encoding NKCC?2 is the predominant
species of sodium transporter in the TAL cells.

The distribution of mMRNAs for the various transporters agrees well with the known levels of
reabsorption activities identified in physiological experiments. This agreement suggests that the
levels of transporter mRNAs at the single cell level can provide an indication of transcellular
transport capacity of the cell type. In support of this conclusion, we find that glucose transport
along the nephron agrees with glucose transporter mMRNAs (Suppl. Figure 19D/F) and is mainly
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mediated by SGLT2 (Suppl. Figure 19E/G) that is responsible for = 80% of filtered glucose
reabsorption in the proximal tubule (102).

DISCUSSION

The integration of multiple types of omics data allows us to describe in depth multiple
subcellular processes and pathways at cell level resolution. From such description we can
hypothesize key functions, that when perturbed define disease states. Such disease states could
have convergent clinical phenotypes even though the underlying molecular changes are
different. Thus, our detailed characterization described here can provide the starting point for a
new framework for molecular classification of kidney diseases. For example, the identification of
both mitochondrial and peroxisomal 3-oxidation and carnitine transport and local biosynthesis
pathway in PT cells suggest how individual variations in any of these SCPs can contribute to the
effects of kidney injury including fibrosis (9). Thus, a convergent clinical phenotype can arise
from very different molecular changes related to energy metabolism. Mapping these changes in
individual patients may allow for better classification of disease states.

Integrated view of kidney cellular functions

One advantage of the presented multiomics data integration strategy is the ability to infer
how different classes of biomolecules may enable complex multicellular functions leading to
potentially predictive biomarkers. Spatial metabolomics identifies N-Palmitoylsphingomyelin (SM
d18:0/16:1) as a spatial correlate of glomerular kidney segments (correlation coefficient > 0.9;
Figure 9A), as described previously (103, 104). To identify the cell types involved in its synthesis,
we screened all glomerular cell types for expression of genes involved in ceramide,
sphingomyelin and sphingosine metabolism (105, 106). Transcriptomics identify SERINC5
(serine incorporator 5) and CERS6 (ceramide synthetase 6) as specifically expressed in
podocytes or in podocytes and mesangial cells, respectively (Figure 9B). SERINCS incorporates
serine into the membrane of the endoplasmic reticulum, making it available for ceramide and
phosphatidylserine synthesis (105). CERSG6 is identified by all transcriptomic assays in the
podocyte. CERSG is one of six ceramide synthases that converts sphingosine and acyl-CoA into
ceramide. In contrast to the other five ceramide synthases, it has a high substrate specificity
towards palmitoyl-CoA (C16:0) (106), thereby generating ceramides with the correct acyl chain
length to be converted into SM d18:0/16:1. Only one technology, sn RNAseq, shows CERS6 to
be expressed in mesangial cells as well, albeit at lower level of significance (rank 293 in
mesangial cells vs 116 and 126 in podocytes; Suppl. Figure 20). Transcriptomic datasets also
predict the expression of enzymes involved in sphingomyelin synthesis in non-glomerular cells.
In general, only one specific enzyme of this pathway is expressed per cell type. Consequently,
podocytes (and mesangial cells) are the most likely synthesis site for this particular
sphingomyelin as demonstrated by the spatial metabolomics data. Altered metabolism of
multiple sphingolipids including sphingomyelin and its metabolites is observed in several
glomerular diseases (107). Cellular sphingomyelin is predominantly localized at membranes
derived from the trans-Golgi and plasma membrane (108). It is involved in multiple functions,
including cell signaling (109), lipid rafts formation (110), caveolar endocytosis (108) and
apoptosis (111). Additionally, it has long been known that sphingomyelin (as part of lipid rafts)
is enriched in desmosomes (51, 110) and tight junctions (54). Given the central importance of
foot process interactions between neighboring podocytes, the potential importance of this
metabolite in making different types of cell-cell contacts and the enzymes involved in its
biosynthesis in podocytes can be readily appreciated. Five technologies that focus on genes
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and proteins identify cell-cell/cell-matrix adhesion as podocyte key functions, and the sixth
technology identifies a specific metabolite that we consequently predict would be involved in the
same key functions thus providing integrated support for the role of sphingomyelins in podocyte
cell-cell interactions. Sphingomyelin with very long (C24) acyl chains, but not palmitoyl (C16)
sphingomyelin is the predominant species associated with tight junctions (54). Tight and
adherens junctions are morphologically only observed in developing or diseased podocytes (55,
112), while in healthy podocytes they have morphed into the glomerular slit diagram (55). These
observations indicate that we may be able to use decrease in levels of C16 SM and increase in
long chain SM as a predictive biomarker for disease progression even prior to changes in
glomerular filtration rates. Such hypotheses may be tested in the future.

The value of areference tissue atlas

There have been several valuable studies focused on sc transcriptomic analyses of human
kidney tissue (8-10, 13, 15, 17) in the context of different diseases. Although each of these
studies have provided substantial insight into disease processes, their mapping of undiseased
kidney tissue has often been limited and focused on cell types relevant to the disease of interest.
In contrast, in this study, we have studied only human kidney specimens without disease; we
use multiple omics technologies, including regional and sc/sn transcriptomics, proteomics and
spatial metabolomics in conjunction with imaging assays to obtain an extensive, near
comprehensive spatial map of the human kidney at the single-cell resolution. Our experiments
identify all known major cell types in the kidney as well as recapitulating several known subtypes.
Additionally, we are able to identify different types of endothelial cells, vascular smooth muscle
cells, fibroblasts and different circulating immune cells. Together, these different cell types and
subtypes provide a detailed picture of the cellular and molecular composition of the human
kidney. Here, we have extended our bioinformatics analyses beyond ranked lists of genes and
associated pathways to identify coherent networks of pathways that give rise to function (Table
1). We have developed our model in a systematic manner such that we identify key functions for
each cell type and subtypes. These physiological roles identified through pathways and marker
gene lists enable the development of a multiscale atlas that connects expression patterns to
whole-cell and tissue level physiological functions. The proteomics and metabolomics as well as
the spatial imaging data from CODEX allows for the mapping of the sc/sn RNAseq based cell
type identification to canonical cell type markers and appropriate spatial regions. This exercise
provides independent orthogonal validation of both the cell type and the spatial localization within
the nephron (Figs 2A and 7).

Limitations and future refinements

Several limitations of our study should be noted. Not all cell types are identified with the same
certainty and depth, although our cell types agree well with other published studies (9, 14, 17,
97, 113, 114) Additionally our single cell and sn mRNA — Seq assays contain a relatively low
number of cells by current standards. However, this is compensated for by use of multiple omic
and other technologies, all which provide convergent conclusions in the identification of cell
types.

As different cell types exist within the kidney tissue at various levels the numbers of cells for
the various types of sc and sn RNAseq assays also vary widely. When fewer cells are detected,
typically, we also identify a lesser number of marker genes and SCPs. Currently, we do not know
if the relative number of cells we detect in the sc/sn RNAseq assays reflect the proportions in
situ. Further experiments are needed to resolve this issue. It appears likely that to map SCPs to
same depth in all cell types, additional subjects are needed. Nevertheless, for the major cell
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types of kidney, the post hoc power analyses indicate that we have sufficient power to map the
core cell-level functions from SCPs. In addition, the number and functional identity of major cell
subtypes need to be further studied. Currently, subtype identification is based on statistical
reasoning used for the clustering algorithms. How many subtypes there are for a given kidney
cell and whether these subtypes exist in all individuals requires further studies using spatial
imaging technologies. Studies in other tissues, such as brain (115) and heart (116), have
identified multiple subtypes of paraventricular interneurons and ventricular myocytes. Hence, it
is likely that kidney cell types may also contain major subtypes. In spite of these limitations, this
study provides a detailed functional view of a kidney map at single-cell resolution which can be
used to understand major aspects of kidney physiology as demonstrated by the two examples
described above.

Information becomes knowledge only when it is deliberately and systematically cataloged
such that new cohesive insights can readily be drawn, as shown above for sphingomyelin related
functions in podocytes. Ontology is an ideal tool that can logically represent the data and
metadata in a human- and computer-interpretable manner. It can enable the generation of new
knowledge, especially when such knowledge involves multiscale relationships between
molecules, cell types and their subtypes and tissue level physiological function. In addition to the
integrated analytics presented here, KPMP is also building a community-based Kidney Tissue
Atlas Ontology (KTAO) (117). KTAO will systematically integrate different types of information
(such as clinical, pathological, cell and molecular) into a logically defined tissue atlas, which can
then be further utilized to support various applications. Taken together, the final knowledge
environment and the kidney tissue atlas constructed by KPMP, which is available at
www.atlas.kpmp.org, should be able to help molecularly characterize cellular types and subtypes
in the kidney; improve patient care by providing new disease classifications; and may ultimately
lead to new patient-specific novel therapeutic approaches.
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Figure 1. Graphic outline of KPMP data integration and harmonization procedures. The
“subway map” representation of the experimental and analytical protocols used within KPMP is
shown in operational flow from kidney biopsy to the integrated multimodal data represented in
this manuscript. The kidney biopsy, which is processed through three different tissue processing
methods, is shared among TISes that generate the data. Four key modalities of molecular data
are generated: transcriptomic (red), proteomic (blue), imaging (yellow) and metabolomic (green).
Biopsy core 2 and 3 are used for the molecular analysis, biopsy core 1 (not depicted) is used for
histological analysis.
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Figure 2. Integrated transcriptomic analysis reveals coherent cell-type-specific
signatures. (A) Scheme showing the major nephron segments as identified in our datasets. Sc
and sn datasets were either analyzed separately (20, 21) or combined. UMAP documents the
results of the combined analysis. Cell subtype counts were obtained from the separated
analyses (Suppl. Figure 4A/B). The corresponding LMD segments shown include the markers
used to identify each subsegment: Phalloidin — FITC labeled phalloidin for dissection of glomeruli
and other structures; LRP2 — Megalin with AlexaFluor 568 secondary (red); UMOD - directly
conjugated AlexaFluor 546 Ab to uromodulin (red); fluorescein labeled PNA — Peanut Agglutinin
labels collecting ducts (green); DAPI included for nuclei (blue). (B) Each cell or nucleus in the
combined transcriptomic sc/sn analysis is mapped to the closest subsegment (subsegment with
highest Pearson correlation of gene expression) in the LMD RNAseq data. To compute the
Pearson correlation between the gene expression profiles of cells and LMD segments, the gene
profiles were restricted to genes shared between the two datasets and showing variable
expression in the single-cell dataset. Correlations were computed between the logarithm of the
mean ratio vector for each LMD segment and the scaled expression profile of each cell in the
sc/sn dataset. For each sc/sn cluster and LMD subsegment, the number of cells/nuclei from that
cluster assigned to the corresponding segment is displayed in the heatmap. The heatmap is
colored according to the number of cells/nuclei assigned to each LMD subsegment, scaled so
each column has mean of 0 and standard deviation of 1. For the overlap between cell type
annotations in the combined and integrated analyses see Supplementary Figure 4C/D and for
the LMD mappings based on the separated analyses see Supplementary Figure 4E/F.
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Supplementary Figure 1: Coloring of cells and nuclei by dataset documents that each cell
cluster contains cells and nuclei from each dataset.
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Figure 3. Correlation analyses demonstrate concordance across different omics
technologies. Logz(fold changes) between podocyte (or glomerulus) and proximal tubule cells
(or tubulointerstitium) were calculated for each subject based on each assay. Common
genes/proteins identified by each assay subjected to comparative analysis. (A) Hierarchical
clustering of pairwise correlation coefficients between the logz(fold changes) groups samples
based on cell type/segment. Heatmap shows up- and downregulated genes/proteins of each
sample in red and blue, respectively. Genes and proteins were rearranged according to the
clustering results. White spots indicate undetected genes or no expression differences. Genes
and proteins that are not consistently detected across all six technologies were removed.
Nevertheless, observed grouping of samples by anatomical region is independent of this
removal (Suppl. Figure 2B). (B) Logz(fold changes) obtained by the same assay were averaged
across all subjects, followed by averaging of the results across all four transcriptomics and two
proteomics assays. Positive (negative) logz(fold changes) indicate podocyte/glomerular
(PT/tubulointerstitial) expression. In arbitrarily selected cases we replaced the dots by the official
NCBI gene symbols. (C) Pairwise correlations between the sc/sn RNAseq and proteomic
datasets document highest concordance between both proteomic and single-cell assays.
Positive (negative) logz(fold changes) indicate podocyte/glomerular (PT/tubulointerstitial)
expression.
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Supplementary Figure 2: Cross-platform comparison of gene and protein expression. (A)
Pipeline for correlation analysis across different omics technologies. See methods for details.
(B) Hierarchical clustering of pairwise correlation coefficients between all samples based on the
logz(fold changes) without removal of those genes and proteins that are not consistently detected
across all assays also groups the samples by anatomical region and not technology. In contrast,
pairwise correlation and hierarchical clustering based on logarithmized absolute expression
values groups samples by technology, (C) with or (D) without removal of the not consistently
detected genes and proteins.
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Supplementary Figure 3: lllustration of method used for mapping of single cells/nuclei
to CODEX.
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Figure 4. Imaging-based and transcriptomic assays show consistent cell-type-specific
marker signatures. Mapping matrix showing relationship between markers characterizing
CODEX cell-type clusters and transcriptomic cell-type clusters. Colorbars to the top and left of
the heatmap show broad segmental/cell-type categories (red = endothelial, gray =

fibroblast/mesangial, turquoise = podocyte, orange = tubular, gold = immune). See figure 2A for
cell type abbreviations.
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Supplementary Figure 4: Separated and integrated analysis of sc and sn RNAseq
datasets generate consistent cell type mapping. Cell types and subtypes identified by the
separated analyses of the (A) sn and (B) sc RNAseq datasets. Bars indicate the percentage of
all cells that mapped to a particular cell type or subtype, colors indicate the tissue collection
method each particular cell was obtained by. Cell type assignments of separate clusters from
(C) sn and (D) sc RNAseq datasets were compared to those obtained by the integrated analysis.
Numbers indicate nuclei/cell counts; fields are colored by the percentage of cells within each
field compared to the row margins. Note that in separated analyses of the sc RNAseq dataset,
the applied cutoff for mitochondrial gene expression was higher (£50% instead of <20%);
consequently, some of the cells that were removed in the combined analysis were assigned to
cell types in the separated analysis. Similarly, mapping of the (E) nuclei and (F) cells to LMD
segments documents that the annotations obtained from the separated analyses map to their
correct anatomical origin, as observed for the integrated analysis. All heatmaps are colored
according to the number of cells assigned to each LMD subsegment, scaled so each row
has mean of 0 and standard deviation of 1. See figure 2A for cell type abbreviations.
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Figure 5: Single-cell/nucleus transcriptomic post hoc power analyses show that nine
libraries are sufficient to identify most major kidney cell types. Subject libraries (or samples)
were randomly and progressively removed from (A) the sc (24 libraries) and (B) sn (47 libraries)
RNAseq to generate at max 100 non-overlapping random groups for the remaining samples. Sc
and sn datasets were subjected to an automated data analysis pipeline (Suppl. Figure 5A). To
assign cell types to the identified clusters we compared cluster specific markers of each analysis
with literature curated cell type specific genes (Suppl. Figure 5B). We counted how many
analyses based on the same number of remaining libraries that have identified a particular cell
type. Horizontal dashed lines mark the 95% plateau; vertical dashed lines indicate the minimum
number of libraries needed to identify a given cell type with a probability of 95%. See Suppl.
Figure 5 for complete post hoc power analysis results. See figure 2A for cell type abbreviations.
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Supplementary Figure 5. Complete results of single-cell/nucleus transcriptomic post hoc
power analysis. Subject libraries or samples were randomly and progressively removed from
the sc (24 libraries) and sn (47 libraries) RNAseq to generate at max 100 non-overlapping
random groups for each number of remaining libraries. (A) Sc and sn datasets were subjected
to an automated sc/sn data analysis pipeline. (B) Results were averaged for each number of
subject libraries and compared between the downsampled and full datasets as indicated. Post
hoc power results of the (C) sc and (D) sn RNAseq datasets. ‘Cell type detected’: This plot
documents how often (in percent) a particular cell type was detected in dependence of the
number of analyzed libraries. ‘Significance of cell type’: To assign cell types to each cluster
we subjected cluster specific marker genes to enrichment analysis using Fisher’s Exact test and
a list of literature curated cell-type specific essential genes. For each cluster predicted cell types
were ranked by significance and the top ranked cell type was assigned to that cluster. The plot
shows the -logio(p-values) of the first (i.e. the selected) and the second ranked cell type.
Comparison of both p-values allows an estimation of the reliability of a particular cell type
assignment. The larger the difference between both -logio(p-values), the more certain is that
particular cell type assignment. ‘# clusters’ documents how many clusters were assigned to
that particular cell type. ‘element/not element of Reference cluster’: Cells/nuclei that were
assigned to the same (above abscise, positive values, full circles) or to a different cell type (below
abscise, negative values, open circles) as in the full dataset were counted in each downsampled
dataset. ‘element/not element of indicated LMD subsegment’: Using cell and nuclei
mappings presented in Suppl. Figure 4E/F we counted how many cells/nuclei of a particular cell
type mapped to the indicated LMD subsegment (above abscise, positive values, full circles) or
to a different LMD subsegment (below abscise, negative values, open circles). ‘DEGs log(fc)’:
Correlation between the log fold changes of cell type specific markers obtained for the
downsampled and full dataset. Notify that all comparisons were only done, if a particular cell
type was detected (as indicated in the first diagram). See figure 2A for cell type abbreviations.
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Supplementary Figure 6: Pathway enrichment analysis of spatial metabolomics data. All
(A) Non-glomerular and (B) glomerular metabolites obtained from the three nephrectomy
samples were subjected to pathway enrichment analysis using MetaboAnalyst. Some pathways
were predicted from metabolites that are general precursors for the synthesis of multiple
products and participate in multiple pathways. To exclude such unspecific and consequently
uncertain pathway predictions, we focused only on those pathways that were predicted from a
pathway specific metabolite (see methods for details). To merge the metabolic pathways with
the MBCO SCP-networks, we mapped the MetaboAnalyst pathways
‘Glycolysis/Gluconeogenesis’ and ‘Glycerophospholipid metabolism’ to the MBCP SCPs
‘Glycolysis and Gluconeogenesis’ and to ‘Phosphoglyceride biosynthesis’, respectively. Based
on identified metabolites, we added the MBCO SCPs “Carnitine shuttle” and “Carnitine
biosynthesis and transport” to the predicted MetaboAnalyst pathways (see methods for details).


https://doi.org/10.1101/2020.07.23.216507

.

Carnitine |  Fructose
biosynthesis | and mannose

and transport “ metabolism

Glycolysis and
Gluconeogenesis

o Citric
Eicosanoid | Carnitine Beta- | acid cycle
metabolism | Shuttle oxidation \

@ @
Fatty acid Peroxisome
omega- proliferator-activated
hydroxy- receptor alpha
lation signaling Glutamate and
glutamine
. metabolism
@ C
Galactose Transamination | T
metabolism athways ||/
P y :I\L Urea cycle
® | P
Metabolism of L/ Aspartate
branched-chain ¥ I and arginine
amino acids ___-"." | metabolism
@—===""__~
D-Arginine and Proline

D-ornithine metabolism  metabolism

translation

M3

carbohydrate

metabolic process

anion transport

urate transport

brush border assembly
ammonium ion metabolic
process

M4

cellular response to metal ion
cargo loading into vesicle
fatty acid beta-oxidation

/E‘I;:r‘o‘n\‘ @ SN RNASeq (4 subtypes)
I Calcium Potassium
tra::r;sa;i):rt : transmembrane Y transmembrane .SC RNASeq (7 subtypes)
| oy
_/, transport transpy (LMD RNASeq
':::“I? ——— (LMD Proteomics
metabolism Chloride .
" transmembrane . NSC Proteomics
Sodium transport : :
Serotonin transmembrane :)/ @Spatlal metabolomics
transport O

inactivation Bicarbonate
transmembrane
transport

Hydrogen
transmembrane
transport

Catecholamine
metabolism

Phosphoglyceride
biosynthesis

Non-vesicular
phospholipid
transport

Zinc transmembrane

transport Gluthatione

. conjugation
Drug and toxin

Cholesterol
export via membrane

Cellular transport

iron transport proteins by lipoproteins
Cellular iron Fiasa|
uptake biotransformation
storage  and export

Acute-phase
response

via cytochrome P450

mitochondrion organization
drug metabolic process
nucleoside monophosphate
metabolic process

organic acid catabolic process
fatty acid beta-oxidation
cellular oxidant detoxification

M1

Number of sources
supporting marker

1 4
2 5
3

Figure 6

El human


https://doi.org/10.1101/2020.07.23.216507

GLOMERULUS

(%)
>
-
2
o
L
=
o
-
O
S~
i
-
>
O
o
(o]
o
o

Mesangial

Podocytes
cells

SCPs predicted based on
bulk RNASeq/proteomics

LMD Proteomics |Glomerulus

LMD RNASeq
NSC Proteomics

SN RNASeq POD

SC RNASeq POD

SC RNASeq vSMC/MC

SN RNASeq MC

SC RNASeq PEC/LOH |PEC*

SC RNASeq EC [Endothelial cells

Gap junction organization-

Hydrogen transmembrane transport-

Tight junction organization-

Natriuretic peptide receptor signaling- 6

Basement membrane assembly and organization- 7
Focal adhesion organization-

Semaphorin signaling-

Lamellipodium organization-| &

Actin filament bundling and crosslinking-

Actin filament nucleation and branching-

Inhibition of amyloid aggregation, amyloid degradation and uptake-
Thin myofilament organization-

Connection of muscle sarcomere to plasma membrane-
Connection of muscle sarcomere to extracellular matrix-
Myofibril formation-

Integrin receptor signaling-

Integrin-mediated leukocyte rolling-

Leukocyte transmigration through endothelium-
Vascular endothelial growth factor receptor signaling-

*PEC = Parietal epithelial cell
GM BM and ECM dynamics

Cell-cell adhesion

Parietal
SCPs

! —
Podocyte
epithelial cell

SCPs

SCPs

Mesangial

Endothelial
SCPs

Desmosome
organization

Collagen fiber
crosslinking

Hydrogen
transmembrane
transport

Fibronectin
synthesis and
extracellular
assembly

Retinol
metabolism

Gap junction . ; . Adherens Hemidesmosome
organization Tight junction junction organization Integrin
organization izati Basement
g organization receptor
p - membrane
Basement membrane signaling

®
Sphingolipid
metabolism

i Amyloid precursor
L Erotein cleavage
@
Inhibition of
amyloid aggregation,
amyloid degradation
and uptake

assembly and

attachment to cell organization

WNT-Beta-catenin surface

signaling pathway

organization
Cell-matrix

Actin filament adhesion

nucleation and
branching

Actin filament
bundling and
crosslinking

Actin dynamics

—@

Natriuretic peptide
receptor signaling

Phosphoglyceride
biosynthesis

o @ SN RNASe
\ 4 q
i C RNA
L llivodi Sz:;ig:;:gn Focal adhesion .S Seq
amevipacium organization OLMD RNASeq

(LMD Proteomics
‘NSC Proteomics

@ spatial metabolomics

Figure 6


https://doi.org/10.1101/2020.07.23.216507

innate immune response
response to interferon-gamma M2
immune effector process

antigen processing and presentation . M3 regulation

M6 . o of vasculature
actomyosin structure . ‘ development
organization L :
regulation of °
vasculature development M4

. o glomerulus
4] 2T Y . development
o) . e o ., .
5' o ) ° circulatory
o o' ® « Ssystem process
Ll ® . y/ °
S ° : .. o . *y CAMI.’-
o M5 . k A mediated
(_D' protein localization . . o* s, signalling
< to plasma membrane e ®
E regulation of cell projection .
C assembly :
o endomembrane system organization
8 cell junction organization . P
o Y ‘ A
. ' L]
’ SR Number of sources
M1 o a° ..... . . - *‘oe supporting marker

cell-substrate adhesion L] . o0 e X ¢ 1 . 4

actin cytoskeleton organization ° e (X 2 . 5

cell morphogenesis " °,°®

cell-cell adhesion *e%e%% @ .3

vasculature development ®. 0% LA

E humanbase

Figure 6


https://doi.org/10.1101/2020.07.23.216507

MESANGIAL CELL/GLOMERULUS

(%)
o}
=
o
o
L
=
o
—
O
=
-
|
Ll
(O]
-
<
-
L
o
[
o
(a]
<
L

signaling

Amyloid precurs

Amyloid plaque

organization

Amyloid

Macrophage
migration
inhibitory facto

signaling

Recycling
endosome
dynamics
[&]
Caveolin-
mediated
endocytosis

Notch receptor

protein cleavage

Fibrillar collagen
core structure
organization

Cell-matrix adhesion

Discoidin
domain
receptor signaling

\\
or \_
Inhibition of
amyloid aggregation,
amyloid degradation

and uptake

. ®
Basement Connection of muscle Phosphoglyceride
membrane sarcomere to " .

. biosynthesis
attachment extracellular matrix

to cell surface

Focal adhesion
organization

@ SN RNASeq
Connection of muscle
Semaphorin sarcomere to plasma @5SC RNASeq
signaling membrane (LMD RNASeq

Lamellipodium
organization

r

© ® QLMD Proteomics
Filopodium Sphingolipid
organization metabolism . NSC Proteomics

@ spatial metabolomics

Actin
polymerization

Actin filament
bundling and
crosslinking

O
Vascular endothelial
growth factor
receptor signaling

Cytoskeleton

Connection of
muscle
sarcomere to
extracellular

matrix

Thin myofilament
organization

]
Actin filament
severing and
depolymerization

Myofibril formation

Actin filament

Equatorial RhoA  pycleation and

Thin myofilament

activation branching organization
Actin dynamics
BM dynamics
@ SN RNASeq
@
Bgewment membrame Phosphoglyceride .SC RNASeq

assembly and

organization biosynthesis

(LMD RNASeq

O (LMD Proteomics
=T Sphingolipid .
| Integrin receptor N 4, 3 - o Exosome @ NSC Proteomics
i signaling secretion . .
i .Spatlal metabolomics
o

Connection of muscle
sarcomere to plasma
membrane

Myofibril
formation

Hydrogen Antigen presentation Antigen presentation

Integrin-mediated transmembrane via MHC class Il via MHC class |
leukocyte rolling transport molecules molecules
-
b
Gap junction Immunoproteasome
I_(_mkocNization Antigen organization
transmigration ( presentation

Protein

Tight junction rotein
polyubiquitination

organization

through endothelium

Transendothelial
migration

Figure 6


https://doi.org/10.1101/2020.07.23.216507

THICK ASCENDING LIMB

e
=
=
O
<
=
2
Ll
O
(%)
<
N
4
T
-

lon reabsorption

Vesicle traffic

@
Bicarbonate ’ 5
Chloride Sodium
transmembrane
transmembrane | transmembrane
transport
transport transport

Cardiomyocyte

Potassium A
repolarization
transmembrane 3 3
during action
transport

potential and
hyperpolarization

O
Parathyroid hormone
receptor signaling

Tight junction
organization

@ SN RNASeq (2 subtypes)
@ SC RNASeq

()LMD RNASeq

(LMD Proteomics

Early endosome
dynamics

Recycling
endosome
dynamics

@ spatial metabolomics

4
Vesicle fusion with
plasma membrane

Translation

Translation
elongation

Large ribosomal
subunit organization

Clathrin-mediated
vesicle traffic from
TGN to endosomal
lysosomal system

Small ribosomal
subunit organization

Translation
initiation

Retinol Energy Chaperone
metabolism & O-——----——- @ mediated protein Er':s“'::;ieda’t’l:‘x:'“
Barrier Citric Electron Purine folding in ER Sl
acid cycle transport chain metabolism
o o » .
L — - ¢ Basement membrane Syndecan
Glycolysis and ||)p| KR Heagon Ir_ecep of assembly and receptor
Gluconeogenesis 1eganse signaiing organization signaling
o )
e, X ’
N L LY R T
6 NG R
regulation oMn X M4 .
. . acyl-CoA metabolic
transport P AT process
kidney development ene .a . .
L - o generation of precursor
calcium ion import it T X .
sodium ion transport R metabolites and energy
. .. . .. . .
o0° o M Py N n.
o *e .. o, & . oL, . M2
e ) ’ O’. - mitochondrion
® . 0% . -
) 5 ¥ ® organization
M3 . : ®+ generation of
regulation of glycoprotein **° oo o precursor
metabolic process metabolites and
response to organonitrogen . energy
compound . e
regulation of vesicle-mediated A
transport . ALK .
[ ]
Number of sources y
supporting marker M5
1 organic acid catabolic process M1
translation
0 .
®:
El human

Figure 6


https://doi.org/10.1101/2020.07.23.216507

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216507; this version posted September 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 6. Enrichment analysis of markers for proximal tubule and glomerular cells and
segments predicts cell well known functions. Nephrectomy tissues were subjected to single-
nucleus (SN) and single-cell (SC) RNAseq, laser microdissected (LMD) RNAseq and
proteomics, near single cell (NSC) proteomics and spatial metabolomics. (A) DEGs or DEPs of
each PT cell subtype or subsegment were subjected to dynamic enrichment analysis using the
Molecular Biology of the Cell Ontology (MBCO). Subcellular processes (SCPs) that were among
the top seven predictions were connected by dashed lines, if their interaction was part of the top
25% inferred MBCO SCP interactions, and by dotted lines, if their functional relationship was
curated from the literature. Supplementary figure 8 shows additional predicted SCPs involved in
cell adhesion and translation. Metabolites associated with non-glomerular compartments were
subjected to MetaboAnalyst enrichment analysis (Suppl. Figure 6). Any pathway among the top
eight predicted pathways that was predicted based on metabolites specifically for that pathway
was mapped to MBCO SCPs, if possible, and integrated into the PT SCP network. MBCO SCPs
“Carnitine shuttle” and “Carnitine biosynthesis and transport” were added to the predicted
MetaboAnalyst pathways, since four and two involved metabolites were among the non-
glomerular metabolites (see methods for details). (B) Humanbase analysis of DEGs and DEPs.
(C) SCPs predicted by dynamic enrichment analysis for the glomerular segment by the LMD
RNAseq and Proteomics and NSC Proteomics assay were mapped to one of four detected
glomerular cell types, because they were either detected in that cell type as well or related to
SCPs detected for that cell type. Numbers indicate at which rank a particular SCP was detected.
Notify that dynamic enrichment analysis can predict single SCPs or combinations of up to three
SCPs, and consequently the same rank can be given to multiple SCPs. SCP network predicted
for (D) podocytes, (E) mesangial cells and (F) glomerular endothelial cells by the sn and sc
RNAse(q datasets were merged with those SCPs that were predicted by the glomerular segment-
specific datasets and assigned to each cell type as described above. (G) Podocyte specific
modules were predicted by combined analysis of the podocyte sc and sn markers and the
glomerular DEGs and DEPs. Predicted (H) SCP-network and (I) modules for the thick ascending
limb cells/segment.


https://doi.org/10.1101/2020.07.23.216507

|V
o |3
eel - S
— = |~ g 8 =
© =
Q [oY0] g @] c—_—
ES clal © [ 5
X O of b= 20 | o
a ¥ ol 0 c| .
wnl|E Q 8 =
Clel 8 E|3
O TI'c o >
c |+~ -
< |
=)
=
L))
— _ 2
o o [
TTNPTROE gl LG < Qls]e o
Ul ] [ (O] =N G T SN E] E K
D_D_D_D_D_D_D_U-EU-DOD..._._U-_E_Q
UUUUUUU%O%UUUUU%UOE
mmmmmmm<m<mmmmm<mgm
o o o n o on o un "6 g n 0 n l‘.ﬂOE
<ss<<ss<z o2l < < < 2|8 =
ZZ2ZZZ2ZZZ2Zrxol|lx|Z|IZ2 22 ZX|1ZI0 ©
EXXXEELEQ o[ ¥ X q|dq S
ZOO0O0O0O0O0s=a|slolzoo SzZ|E o
NIV VOV aV]a v
Galactose metabolism
Fructose and mannose metabolism
Aspartate and arginine metabolism
D-Arginine and D-Ornithin metabolism
Transamination pathways
Urea cycle
Beta-oxidation
Carnitine biosynthesis and transport
Carnitine shuttle

Glycolysis and Gluconeogenesis
Glutamate and glutamine metabolism

Citric acid cycle
Electron transport chain
Purine metabolism

?’hosphoglyceride biosynthesis

Proximal tubule
Collecting duct/Principal cell
Thick ascending limb

Supplementary figure 7


https://doi.org/10.1101/2020.07.23.216507

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216507; this version posted September 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplementary Figure 7: Mapping of tubulointerstitial SCPs to cell types. SCPs predicted
by dynamic enrichment analysis for the tubulointerstitial segment by the LMD Proteomics and
spatial metabolomics assays were mapped to one of three detected glomerular cell types,
because they were either detected in that cell type as well or related to SCPs detected for that
cell type. Numbers indicate at which rank a particular SCP was detected. Notify that dynamic
enrichment analysis can predict single SCPs or combinations of up to three SCPs, and
consequently the same rank can be given to multiple SCPs. When an SCP was predicted by
multiple cell subtypes, the highest rank is visualized in this figure.
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Supplementary Figure 8: Enrichment analysis of differentially expressed genes and
proteins in proximal tubule cells and subsegments. See Figure 5 for details. SCPs that were

among the top seven predictions based on dynamic enrichment analysis of PT DEGs and DEPs
and were removed from the main figure for space reasons.
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Supplementary Figure 9: Enrichment analysis for glomerular datasets. (A) DEGs and
DEPs identified by LMD RNAseq and Proteomics and NSC Proteomics were subjected to
dynamic enrichment analysis. (B) SCP network predicted for parietal epithelial cells by the sn
and sc RNAseq datasets were merged with those SCPs that were predicted by the glomerular
segment-specific datasets and assigned to this cell type (Figure 5C).
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Supplementary Figure 10: Enrichment analysis for the Loop of Henle. (A/B) Descending
limb cell specific DEGs were subjected to dynamic enrichment (A) and module analysis (B).

(C/D) Similarly, thin ascending limb cell specific DEGs were subjected to dynamic enrichment
(A) and module analysis (B).
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Supplementary figure 11: Enrichment analysis for the distal convoluted tubule. (A/B)

Distal convoluted tubule cell and segment specific DEGs were subjected to dynamic enrichment
(A) and module analysis (B).
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Supplementary Figure 12: Enrichment analysis for the collecting duct. (A/B) Connecting
tubule cell specific DEGs were subjected to dynamic enrichment (A) and module analysis (B).
(C/D) Principal cell and collecting duct specific DEGs were subjected to dynamic enrichment (C)
and module analysis (D). (E/F) Intercalated cell and collecting duct specific DEGs were
subjected to dynamic enrichment (E) and module analysis (F). (G) Enrichment analysis of the
marker genes for 4 different intercalated cell subtypes from sn and sc RNAseq using Gene
Ontology Biological Processes identifies the pathways ‘Phagosome acidification’ and
‘Phagosome maturation’.
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Supplementary Figure 13: Enrichment analysis for vascular cells. (A) Endothelial cell
specific DEGs were subjected to dynamic enrichment. (B) Similarly, vascular smooth muscle
cell specific DEGs were subjected to dynamic enrichment analysis.
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Supplementary Figure 14: Enrichment analysis for interstitial cells. (A) Interstitial fibroblast
cell and segment specific DEGs were subjected to dynamic enrichment analysis.
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Supplementary Figure 15: Enrichment analysis for immune cells. (A)

Macrophage/Monocyte, (B) Natural Killer cell, (C) B-cell, and (D) T-cell specific DEGs were
subjected to dynamic enrichment analysis.
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Supplementary Figure 16: Expression of immune related genes in the kidney cell types.
Using all genes that are assigned to the Gene Ontology Biological Process “immune system
process” or any of its children processes based on the “is_a” or “part_of” relationships, we
documented the percentage of immune system related genes (orange) in all cell type, subtype
and segment-specific marker genes and proteins. See figure 2A for cell type abbreviations.
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Supplementary Figure 17: Cellular key functions are most consistently predicted by
downsampled sc and sn RNAseq datasets. To analyze the reliability of predicted cell type-
specific biology we subjected the top 300 cell-type specific marker genes that were obtained
from the full or down-sampled sc and sn RNAseq datasets (Suppl. Figure 5C and 5D,
respectively) to dynamic enrichment analysis. SCPs that were among the top 7 predictions for
the full sc and sn RNAseq were identified. We identified the dynamic enrichment ranks of these
SCPs in the down-sampled datasets and averaged them across all datasets with the same
number of libraries. Color scale ranges from 1 (dark green/orange/purple) to 21 or higher (white).
Notify that SCPs predicted for the full datasets are not necessarily the same as the one
documented in figure 6, since the 2124, 4447 and 721 individual full and downsampled datasets
were analyzed using an automated pipeline that did not allow manual ad hoc optimization. The
first set of subfigures shows the predicted SCPs identified from the sc RNAseq dataset for (A)
proximal tubule cells, (B) glomerular cell types, (C) cell types of the Loop of Henle, (D) of the
distal convoluted tubule, (E) of the collecting duct, (F) vascular cells and (G) non-immune and
immune interstitial cells. The second set of subfigures shows the predicted SCPs identified from
the sn RNAseq dataset for (H) proximal tubule cells, (1) glomerular cell types, (J) cell types of
the Loop of Henle, (K) of the distal convoluted tubule, (L) of the collecting duct and (M) vascular
cells.
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Figure 7: Aerobic and anaerobic energy generation profiles and oxygen supply accurately
highlights sites of hypoxia induced injury. To compare energy generation profiles with
experimentally determined oxygen supply in the different nephron regions, we generated an
ontology that allows the separation of aerobic and anaerobic pathways involved in energy
generation. Enrichment analysis of cell type, subtype and subsegment marker genes with this
ontology predicts high dependency of proximal tubule cells on aerobic energy generation,
suggesting S3 as a primary injury site during hypoxia (marked by two explosions) because of its
low oxygen supply under basal conditions. Enrichment results predict a high aerobic energy
generation activity for the medullary TAL that can be compensated by anaerobic energy
generation. In combination with the already low oxygen saturation in that segment under normal
conditions our results suggest that mTAL is the second, though less likely, injury site during
hypoxia (marked by one explosion). Enrichment results are combined from those shown in
Suppl. Figure 17B. Numbers in boxes indicate pO2 in mmHg taken from (89), NA: not available.
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Supplementary Figure 18: Prediction of cellular dependencies on aerobic and anaerobic
metabolic pathway activities. (A) We designed a small ontology that allows distinguishing
between aerobic and anaerobic as well as catabolic and anabolic reactions. Shown is the
annotated pathway hierarchy. Colored pathways indicate parent and child pathway pairs, where
the child contains only enzymes that are specifically involved in the function of its parent and of
any other parent. Pathways were populated with genes by literature curation. Parents are
populated with all genes of the child pathways. (B) Top 500 cell type, cell subtype and
subsegment specific marker genes and proteins were subjected to enrichment analysis using
the leaf pathways shown in A. Initial enrichment results determined with pathways were used for
the analysis shown in figure 7. For each cell type, subtype and subsegment we only considered
a higher level pathway, if the child pathway that contains the enzymes specifically involved in
the higher level pathway activity was also predicted (as indicated by the colored pathway pairs
in A). Cell types that contain many cells obtained from medullary samples are marked. See figure
2A for cell type abbreviations.
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Figure 8: Predicted sodium transport capacities match with experimentally determined
reabsorption profiles. (A) Sodium reabsorption profiles that document the percentage of the
glomerular filtered sodium in each segment of the nephron were obtained from four different
standard physiology and medical text books (92-94, 120), followed by calculation of the mean
and standard deviation values. These values for total reabsorption are shown in (1). About 37%
of the sodium reabsorbed in the proximal tubule is paracellular(96, 134), while paracellular
sodium reabsorption in the Loop of Henle is estimated to be below 50% (95). Since we want to
compare the experimentally determined sodium reabsorption profiles with mRNA levels involved
in transcellular sodium reabsorption, we subtracted 37% and 30% paracellular transport values
from the total sodium reabsorption values in the proximal tubule and Loop of Henle, respectively.
Profiles were readjusted, so that they sum up to 100%, followed by calculation of means and
standard deviations for each segment. These values are shown in (2). (B) To compare predicted
reabsorption capacities from mRNA levels with those from physiological experiment derived
reabsorption profiles, we generated an ontology that assigns genes to the different subcellular
processes responsible for sodium movement by different transporter proteins. All transport
processes were integrated into a hierarchy that finally converges on lumen-to-blood and blood-
to-lumen transport for sodium. For each of three different sn RNAseq datasets (one from KPMP
(20, 21, 135) and two from the Humphrey laboratory(97, 98)) obtained for reference tissue we
calculated the sum of all mMRNA counts that mapped to genes involved in lumen-to-blood or
blood-to-lumen transport of Na+ for each segment of the renal tubule. The net reabsorption
capacity for sodium was determined by calculating the difference between both mRNA count
levels. Segment specific net reabsorption capacities are expressed in percent of total
reabsorption along the nephron, followed by calculation of mean and standard deviations.
Physiological experiment derived reabsorption profiles determined in (A) with (I) and without (I1)
paracellular sodium reabsorption in the proximal tubule are shown in gray. (C) Cell type specific
transport capacities for sodium. Segment associated single cell or nucleus read counts were
summed up for selected transport processes involved in sodium transmembrane transport,
followed by normalization of the results towards the net lumen-to-blood transport capacity (see
figure (B) for details). Normalized transport capacities from the single cell and single nucleus
RNAseq datasets were averaged. All transport capacities that described lumen-to-blood or
blood-to-lumen transport were assigned to be positive or negative, respectively. Notify that the
positive bars documented in (C) are the sums of all (positive) lumen-to-blood and (negative)
blood-to-lumen mRNA levels of each segment. Parent-child relationships between shown
subcellular processes (SCPs) are documented in the legend, where children SCPs are written
below their parent SCPs and shifted to the right. Parent SCPs only contain mRNA levels
mapping to genes that are not assigned to any of the documented children SCPs. For a proper
documentation of the SCP hierarchy, we added all offspring SCPs of every selected SCP to the
legend, even if the offspring SCPs were not selected. Unselected offspring SCPs whose mRNA
levels are not shown in the bar diagrams are not annotated to a color in the legend. Their mMRNA
levels are part of the next selected ancestor SCP. Notify that in case of multiple parent SCPs we
only show one parent in the legend that was arbitrarily selected (Supplemental Table 3). (E)
Comparison between reabsorption profiles and reabsorption capacities that were predicted from
the 3 sn RNAseq datasets used above and the KPMP sc RNAseq dataset. (F) Sodium
reabsorption mechanisms were predicted based on all 4 datasets. See figure 2A for cell type
abbreviations.
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Supplemental figure 19: Generation of an ontology for transmembrane ion and molecule
movements. (A) Flow chart documenting the steps involved in the generation of the ontology.
(B) Shown are example transporters (gray) involved in sodium and glucose lumen-to-blood
(L2B) transport and how they integrate into the hierarchy to finally converge on sodium and
glucose lumen-to-blood transport. Symporter mechanisms are colored in orange, antiporter
mechanisms in blue. (C) The figure illustrates SCPs involved in sodium blood-to-lumen (B2L)
transport and their integration into the SCP hierarchy. (D) Reabsorption capacities for glucose
transmembrane transport were calculated using the three sn RNAseq datasets as described in
figure 8 and compared to experimentally determined glucose reabsorption profiles. Since only
one physiology text book (94) documented the glucose reabsorption profiles, there is no
standard deviation for the experimental values. Facilitated glucose transporters were excluded.
(E) As for sodium, we analyzed the transport mechanisms involved in glucose reabsorption. (F)
We compared the reabsorption capacities that were calculated using the three sn and the sc
RNAseq datasets with the experimental reabsorption profiles, (G) followed by visualization of
the individual transport mechanisms for glucose.
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Figure 9: Podocytes are the synthesis site for glomerular sphingomyelin (SM)
d18:0/16:1. (A) Matrix-assisted laser desorption/ionization mass spectrometry imaging reveals
that the ion distribution of SM 18:0/16:1, [M+Na]*, correlates with the glomerular kidney
regions. (B) Podocytes express two genes involved in sphingomyelin synthesis including the
genes CERSG6 that is identified by both sn and sc RNAseq datasets and the LMD RNAseq
dataset. CERS6 specifically generates C16 ceramides, the direct precursor for SM
d18:0/16:1. (C) CERSG is also expressed in mesangial cell, though only detected by the sn
RNAseq dataset. Glomerular expression of the gene SERINC2 is detected by the LMD RNAseq
assay.
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Supplementary Figure 20: Expression of genes involved in sphingomyelin synthesis and
sphingosine metabolism in all kidney cell types and segments. Expression of curated

enzymes was detected in the indicated cell types/segments. Genes were ranked by significance
and ranks were added to the figure.
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# Cell

Cell type Abbreviation |subtypes Cell type marker genes Cell type specific SCPs
SC | SN
. MC 1 . . "
Mesangial cells vome me 11 CALD1, PDGFRB, FRZB, NRGN, A2M contraction/actin cytoskeleton, ECM synthesis
Podocytes POD 101 PODXL, NPHS2, CLICS, NES, PTPRO cell-cell adhesion, cell matrix adhesion,
fibronectin assembly
Glomerular GC-EC 1 IGFBP5, EMCN, IFI127, MGP, CRHBP actin cytoskeleton, paracellular cell migration
endothelial cells
. . PEC, CTGF, SPATA22, CFH, PAMR1, CTD- paracellular cell migration, Antigen presentation,
Epithelial cells 1]1 .
PEC/LOH 3037G24.3, TNNT2 contraction
beta oxidation, energy generation,
. gluconeogenesis, protein/ammonium
Proximal tubule cells PT 7| 4 PDZK1, PDZK1IP1, LRP2, ANPEP, GPX3 . . .
metabolism, toxin and drug clearance, ion and
molecule reabsorption
Descending limb cells DTL 1|1 VCAM1, CRYAB, CLU, TNFSF10, KRT18 barrier formation, cytoskeleton
Thin asc:;i'”g limb ATL 13 C8ORF4, SPP1, KRT7, VMPL, SAT1 cell adhesion, cytoskeleton
Thick ascending limb TAL 113 SLC12A1, UMOD, GP2, EGF, CLCNKA ion reabsorptlon,gly.colysw, gnergy generation,
cells vesicle traffic
Distal convoluted DCT 1| 1| SLC12A3, EMXL, EGF, TMEMS52B, WNK1 ion reabsororption, vesicle traffic
tubule cells
c°"“e°ct;'|’lgs tubule CNT 1| 1| CALBL, SLC8AL TEX4L, PIK3C2G, WNKL lon reabsororption
Principal cells CNTPC | 1 SCIN, SCNN1G, HSD11B2, RALBP1, AQP2 water/ion reabsorption,barrier formation,
PC 13 detoxification
tPC-IC 1 SCIN, ATP6VOD2, PLCG2, ATP6V1C2, bicarbonate/chlorid exchange, cell adhesion,
Intercalated cells
IC 2|3 ATP6V1G3 energy, cytoskeleton
Vascular smooth VSMC 1 | MYH11, NTRK3, LDB3, PDZRN4, MCAM cellular contraction
muscle cells
Endothelial cells EC 2| 4 TCF4, EGFL7, EPAS1, PTPRB, TIMP3 paracellular cell migration, antigen presentation
Fibroblasts FIB 1)1 COL6A3, C1R, AEBP1, CALD1, COL1A2 ECM synthesis, complement system
. antigen presentation, cell migration/actin
Natural killer cells NKC 1 GNLY, NKG7, CCL4, GZMB, CCL3
cytoskeleton
T-cyt, T- . .
T cells 3 CXCR4, BTG1, CD69, ZFP36L2, CD52 antigen presentation
mem, T-act
B cells B cell 1 CD79A, MS4A1, 1GJ, CD79B, VPREB3 antigen presentation
MON 1 . . . . .
Macrophages, MM 1 SRGN, HCLSL, SMAP2, TBXASL, SLCIA3 antigen presentation, cell mlgr'atlon./actm
Monocytes MAC 1 cytoskeleton, macophage signaling

Table 1
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TABLE CAPTIONS
Table 1. Overview of cell type specific marker genes and pathway activities.

SUPPLEMENTARY TABLE CAPTIONS

Supplementary Table 1. Samples used for different analytical pipelines.

Supplementary Table 2. Laser microdissected (LMD) RNAseq gene expression
Supplementary Table 3. Laser microdissected (LMD) Proteomics protein expression
Supplementary Table 4. Near Single Cell (NSC) Proteomics protein expression

Supplementary Table 5. Top 2,000 marker genes and proteins predicted by each assay for
each analyzed cell subtype, cell type and tissue subsegment. Marker genes and proteins are
differentially expressed genes (DEGSs) and proteins (DEPSs) that were obtained by comparing
each cell type, cell subtype or subsegment to all other cell subtypes, types or subsegments.
Initially, we duplicated all subsegmental datasets and added them to each data integration term
that describes a cell type localized in that particular segment. For cell type specific assignments
of the subsegmental data see results section, Figure 5C and Supplementary Figure 8.

Supplementary Table 6. # of significant marker genes that were subjected to dynamic
enrichment analysis.

Supplementary Table 7. Dynamic enrichment analysis results of the top 300 marker genes and
proteins. We duplicated all predictions based on the subsegment specific LMD RNAseq and
Proteomics and the NSC Proteomics and added them to each integration term that describes a
cell type localized in that particular segment. From these results we assigned cell type specificity
to the predicted pathways as described in the results sections and documented in Figure 5C and
Supplementary Figure 8. Notify that the columns “Experimental_symbols count” and
“Scp_symbols_count” contain the experimental and scp genes after removal of all those genes
that are not part of the background list of genes (See methods for details). Hence, they can be
smaller than the gene counts documented in supplementary table 6.

Supplementary Table 8. Spatial metabolomics metabolite correlations for subjects 18-139 (A),
18-142 (B) and 18-342 (C).

Supplementary Table 9. Gene Ontology enrichments for modules in the kidney-specific
functional network of top DEGs and DEPs in PT, podocytes, and principal cells.

Supplementary Table 10. Literature curated cell-type specific essential genes used for cell type
identification.

Supplementary Table 11. Enrichment analysis of the top 500 significant marker genes and
proteins using the generated metabolic ontology.

Supplementary Table 12. Sodium transporters identified in the sc and sn RNAseq datasets and
their function in kidney sodium reabsorption.
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SUPPLEMENTARY INFORMATION

Omics and imaging assays used within KPMP target different types of molecular components
with different resolution, sensitivity and precision. An important function of the KPMP Central
Hub is to integrate the different types of data using a set of analytical techniques. This process
is summarized in Figure 1. Throughout the paper, we consistently use the same continuous
color-code to identify different assays or cell types. The experimental assays that generate the
raw data and all their technical details including standard operating procedures are detailed
under ‘Data generation and initial analysis’ and publicly released with all their technical details
and  version-controlled release  dates on the KPMP  protocols.io  page
(https://www.protocols.io/groups/kpmp/publications).

Identification of differentially expressed genes, proteins and metabolites

We analyzed data from four types of transcriptomic, two proteomic, one imaging-based and
one metabolomic tissue interrogation assays. The pilot data presented for each assay comprises
3 to 48 different datasets that are obtained from 3 to 22 subjects (Suppl. Table 1). Kidney tissue
was procured from a spectrum of tissue resources including from unaffected parts of tumor
nephrectomy specimen (n=38), living donor preperfusion biopsies (n=3), diseased donor
nephrectomies (n=5), and normal surveillance transplant (n=5) and native kidney biopsies (n=4).
Single cell and nucleus transcriptomics clusters were obtained from previous analyses (20, 21).
Within each assay we generated lists of differentially expressed genes (DEGS), proteins (DEPS)
and metabolites that describe those genes, proteins or metabolites that are upregulated or
enriched in a particular single cell cluster, single nucleus cluster or kidney subsegment, if
compared to all other clusters or subsegments.

For pathway enrichment analysis and module identification, cluster-specific differentially
expressed genes (DEGs) were obtained from published analyses from PREMIERE TIS
(Michigan, Princeton, Broad) single-cell RNA sequencing (RNAseq) (21) and UCSD/WU TIS
single-nucleus RNAseq (20) datasets. We excluded the clusters PT cells-3 and principal cells-2
from the single-nucleus RNAseq dataset, since these clusters showed an inflammatory or a
stress response. Similarly, we excluded the cluster “Unk” from the single nucleus and the
clusters “Pax8positivecells” and “LOH/DCT/IC” from the single cell RNAseq assays. Laser
microdissected (LMD) RNAseq and proteomics (OSUIU), near-single-cell (NSC) proteomics
(UCSF) and spatial metabolomics (UTHSA-PNNL-EMBL) datasets were individually processed
as described in supplementary methods. Only DEGs and DEPs that indicate genes and proteins
that are higher expressed in a particular cell subtype, type or segment were considered for all
analyses.

Ranking of differentially expressed genes and proteins

In the case of the DEGs and DEPs that were used for dynamic enrichment analysis, (28)
module identification, (32) and post hoc power analysis, single nucleus and single cell DEGs
were first ranked by adjusted p-value and then by decreasing fold changes (i.e., fold changes
were used as a tiebreaker). Top ranked 300 entities with a maximum adjusted p-value of 0.05
were subjected to downstream analysis. Similarly, DEGs and DEPs obtained for each kidney
subsegment based on LMD bulk RNAseq (24), or LMD and NSC proteomics, were ranked first
by p-value and decreasing fold changes and the top ranked 300 DEGs and DEPs with maximum
nominal p-value of 0.05 were subjected to pathway enrichment analysis or module detection
(see below).
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Dynamic enrichment analysis

Top DEGs and DEPs for each podocyte cluster/glomerulus, PT cell cluster/tubulointerstitium
and principal cell cluster/collecting duct subsegment were separately subjected to dynamic
enrichment analysis using the Molecular Biology of the Cell Ontology (MBCO, version 2021)
level-3 subcellular processes (SCPs) (28) that can be found at github.com/SBCNY/Molecular-
Biology-of-the-Cell and www.mbc-ontology.org. The annotated interconnected hierarchy of
MBCO is enriched using a unique algorithm that infers weighted relationships between
functionally related SCPs. For all analyses we consider the top 25% weighted relationships.
Dynamic enrichment analysis uses the top relationships to generate context-specific higher-level
processes by merging functionally related SCPs that contain at least one DEG or DEP. The
context specific higher-level SCPs contain all annotated genes of the original SCPs and are
added to the annotated ontology to generate a context specific ontology. The context specific
ontology at this point contains single and merged SCPs. This list is then used for enrichment
analysis of the DEPs or DEGs using Fisher’s Exact test. All SCPs that are among the first seven
predictions are connected based on the top inferred relationships, using solid lines. All networks
for a particular cell type and the corresponding segment were merged and each SCP was color-
coded according to the source assay(s) that initiated its dynamic enrichment. SCPs predicted by
multiple assays contain multiple slices that are color coded accordingly. SCP size is determined
by the number of assays that identified a particular SCP. Multiple subtypes or a particular cell
type (e.g., PT cells) are all color coded by the same assay specific color. If an SCP was predicted
for more than one subtype, it contains multiple slices colored with the assay specific color. SCPs
predicted by different assays for the same cell type or corresponding segment were connected
based on the top 25% inferred MBCO relationships, using solid lines. Additional well-known
functionally related SCPs were connected using dashed lines.

We used the right-tailed Fisher's Exact test to calculate the likelihood of obtaining the
observed or a higher overlap between a list of DEGs/DEPs and a list of genes/proteins annotated
to a particular SCP. To calculate this likelihood, we consider which genes or proteins have a
chance to be identified as differentially expressed. Only genes/proteins that are detected by a
particular assay and are statistically analyzed for differential expression can be identified as
DEGs/DEPs. Consequently, only these genes/proteins are considered as the experimental
background set for the Fisher’'s Exact test. Similarly, the ontology background set only contains
genes that have a chance to be assigned to a given SCP. In the case of the single cell (21) and
nucleus (20) RNASeq datasets, all genes that are part of the UMI (Unique Molecular Identifier)
read count matrices comprise the experimental background genes. In the case of the LMD bulk
RNASeq, and the LMD and NSC proteomics datasets, the experimental background
genes/proteins were all genes/proteins that were statistically analyzed for differential expression
(Suppl. Tables 2, 3 and 4, respectively). MBCO contains an SCP that is labeled ‘Background
genes’ and contains all genes that were identified during its population via text mining. The
intersection of the experimental and ontological background genes/proteins is called background
genes/proteins and is different for every assay and ontology combination. For additional
statistical accuracy we removed all genes and proteins that were not part of the background
genes/proteins from the lists of DEGs, DEPs and SCP genes before each enrichment analysis.

Module detection

In parallel to enrichment analyses, we also performed another network-based pathway
enrichment technique, identifying modules of cell-type specific marker genes within the kidney-
specific functional network using the HumanBase interface (hb.flatironinstitute.org). For each
cell type, module detection was performed using all cell-type-specific DEGs detected by single
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cell and single nucleus RNAseq (adjusted p-value <0.01) and segment-specific DEGs and DEPs
detected by the other 4 technologies (nominal p-value < 0.01). Module detection is a network-
based approach described in Krishnan et al., and construction of the functional networks is
described in Greene et al. (31, 32). In contrast to the prior knowledge-based MBCO networks,
the kidney-specific functional network is constructed using a data-driven regularized Bayesian
framework based on the information in thousands of datasets, which include co-expression,
transcription factor binding, protein-protein interactions, and other data types. Modules are
detected using a community clustering algorithm based on connectivity between genes in the
kidney-specific functional network, and enrichment analysis is subsequently performed to
identify functional enrichments in each module.

Enrichment analysis for metabolites

All glomerular and nonglomerular metabolites that were identified for the three subjects were
merged and subjected to pathway enrichment analysis using MetaboAnalyst (30). Pathway
analysis with the selections: Hypergeometric Test, Relative-betweeness Centrality, Homo
Sapiens (KEGG), website version 3/22/2021. We analyzed which metabolites were part of the
top six predicted metabolic pathways. We removed those pathways among the top 8 predictions
that were predicted based on metabolites that are shared substrates in multiple pathways and
consequently unspecific for the identified pathway (i.e. we ignored the glomerular pathways
‘Linoleic acid metabolism’, ‘alpha-Linoleic acid metabolism’, 'GPIl-anchor synthesis’ and
‘Arachidonic  acid metabolism’ that were predicted based on the lipids
‘Phosphatidylethanolamine’ and ‘Phosphatidylcholine’ and the pathway ‘Phenylalanine, tyrosine
and tryptophan biosynthesis’ that was predicted based on the central precursor ‘3-(4-
Hydroxyphenyl)pyruvate’). We mapped the kept MetaboAnalyst pathways onto MBCO pathways
whenever possible; if those pathways did not have a corresponding MBCO pathway, the original
pathway names were preserved. Since the non-glomerular metabolites contained multiple
carnitine derivates we added the MBCO pathways “Carnitine shuttle” (based on L-
Acetylcarnitine, Malonyl-Carnitine, L-Palmitoylcarnitine and L-Carnitine) and “Carnitine
biosynthesis and transport” (based on L-Carnitine and 3-Dehydroxycarnitine) to the pathways
predicted from spatial metabolomics, assigning the ranks 9 and 10, respectively.

Integration of single-cell/single-nucleus transcriptomics

In contrast to bulk mMRNA sequencing, where the gene expression measurements reflect an
average across all captured cell types, single-cell or single-nucleus mRNA sequencing allows
the measurement and comparison of comprehensive gene sets obtained from individual cells.
This approach enables mapping of cellular heterogeneity with high throughput. In the first phase
of the project, three KPMP Tissue Interrogation Sites (TISes) performed this approach to
generate single cell/single nucleus expression data from normal adult kidney tissue. In addition
to locally acquired kidney tissue samples, each TIS also used a set of common KPMP pilot tumor
nephrectomy tissue samples to generate the expression data. Single-cell transcriptomic data
was produced by PREMIERE (24 libraries from 22 subjects) (21) and UCSF (10 libraries from
10 subjects), whereas the single-nucleus data was made by UCSD (47 libraries from 15
subjects) (20). Following is a brief description of the integration of the data from the three sites.

Data from each site were first processed using the Seurat 3.0 R package (118). As a quality
control step, nuclei/cells with less than 500 and more than 5,000 features and more than 20%
mitochondrial genes were removed. The processing steps included normalization and
identification of highly variable genes. We then removed potential doublets using DoubletFinder
(119) from each dataset. Next, we used the integration algorithm embedded in the Seurat R
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package to perform combined analysis of single-cell/single-nucleus transcriptomic data. The
integration algorithm first identified a set of anchor genes in each processed dataset. These
anchor genes were then used to harmonize the datasets. The downstream process included
scaling, principal component analysis, batch integration using harmony, dimensionality reduction
using Uniform Manifold Approximation and Projection (UMAP), and unsupervised clustering. The
clustering was performed at a low resolutions (clustering granularity of 0.5). Enriched genes for
each cluster compared to all other clusters were identified using the Wilcoxon rank sum test.

Integration of single-cell, single-nucleus and laser capture microdissection bulk
transcriptomics

To integrate single-cell sequencing, single-nucleus sequencing, and LMD bulk transcriptomic
datasets, we first determined the overlap between genes identified both in the LMD dataset and
in the corresponding single-cell transcriptomic dataset. From this set of shared genes, we
restricted further analyses to a subset of genes showing variable expression in the single-cell
dataset. We then computed the Pearson correlation between each individual cell in a scaled
single cell/single nucleus dataset and the LMD transcriptomic dataset. For this correlation, we
used the logarithmized mean fold change that was obtained by dividing the average expression
of each gene within a subsegment by the average expression of the same gene within all other
subsegments. Using this approach, we can assign each cell to the appropriate LMD segment
that shows the highest correlation value. To evaluate the overall segment assignments for
individual cell clusters, we examine the normalized distribution of cells assigned to each LMD
segment within a given single-cell cluster and present this as a normalized heatmap that
represents overlap between different transcriptomic assays.

Proteomic-transcriptomic co-expression analysis

LMD and NSC proteomic datasets identified protein expression in two kidney subsegments:
glomeruli and tubulointerstitium for LMD and glomeruli and proximal tubule (PT) for NSC. Here,
we did not combine sequencing and proteomic results of multiple subjects to generate DEGs
and DEPs, but compared the results obtained for each individual person. Since only one dataset
per segment was generated from each individual person by the LMD and NSC technologies, we
could not calculate p-values in this analysis. Furthermore, both proteomic technologies only
generated results for 2 subsegments, i.e. the glomerular and PT segments for NSC proteomics
and the glomerular and tubulointerstitial subsegments for the LMD proteomics. Consequently,
we collectively calculated the fold changes between podocyte/glomeruli and PT/tubulointerstitial
cells or subsegments for each individual subject.

For the single cell and nucleus transcriptomic datasets, we identified technology and subject
specific cluster gene expression, using the “Average Expression” functionality embedded in the
Seurat R package (RNA assay, counts slot) on the cells/nuclei assigned to the same clusters in
the integrated single cell and nucleus RNAseq data analysis described above. The gene lists of
all PT clusters of an individual subject and technology were merged (Suppl. Figure 2). If a gene
was identified by more than one cluster, we defined the highest expression value as the merged
expression value for that gene. For each technology we characterized all genes/proteins that
were identified in at least one cluster or subsegment of at least one subject and defined these
genes/proteins as a technology specific background set. The intersection of all background sets
was defined as the set of common genes. Subject-specific podocyte or glomerular gene and
protein expression was calculated by dividing gene and protein expression in podocytes, or
glomeruli, by gene and protein expression in PT cells or PT/tubulointerstitial subsegments, after
adding 1 to prevent division by 0. Ratios were inverted to describe PT/tubulointerstitial specific

4


https://doi.org/10.1101/2020.07.23.216507

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.216507; this version posted September 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

gene expression. Logio absolute expression values and logz(ratios) of all genes/proteins or all
common genes/proteins were subjected to pairwise correlation, followed by hierarchical
clustering. Logz ratios were averaged over each subject within each technology and pairwise
Pearson correlation coefficients were determined between the different technologies using the
set of common genes. Mean log: ratios were averaged across the four RNAseq platforms and
the two proteomic platforms, followed by determination of the Pearson correlation coefficient
using the set of common genes.

Comparison of cell type-specific imaging and transcriptomic expression data

To integrate cell type-specific imaging and transcriptomic data, we first constructed matrices
with average expression values for each gene in each cell type cluster for both the set of 16
normalized integrated transcriptomic clusters and the CODEX clusters. We normalized each
gene in both transcriptomic and CODEX matrices to have a mean of 0 and standard deviation
of 1. We then filtered both datasets to include only genes represented in both the transcriptomic
and the imaging datasets and computed the average expression of each gene/protein in each
cell type. We next considered the problem of constructing a matrix to computationally map
transcriptomic cell clusters to the imaging cell clusters. Specifically, let A be the N x k1 matrix of
average protein expression values by imaging data clusters, C be the N x k2 matrix of average
gene expression values by transcriptomic clusters, and M be the k1 X k2 matrix that maps A to
C. We want to find M such that AM = C. We can approximate M by taking the Moore-Penrose
pseudoinverse of A, denoted A+, with M = (A+)(C). M then provides a set of weights that map
the imaging cell types to the transcriptomic cell types, with a large value for an entry in M in
position (i, j) indicating that the imaging cell type i makes a large contribution to approximating
the expression vector of transcriptomic cell type j as a linear combination of imaging cell types.
Before visualizing matrix M as a heatmap, we first normalized each row to have mean of 0 and
standard deviation of 1 in order to identify the transcriptomic cell types that are weighted most
heavily in the mapping to each imaging cell type.

Post hoc power analysis

The single-cell RNAseq and single-nucleus RNAseq datasets were obtained from 22 and 15
subjects, respectively, whose samples were sequenced in 24 and 47 libraries. We used these
datasets to assess the reproducibility and reliability of both assays in a post hoc power analysis.
This analysis compares results by the full datasets with the results by down-sampled datasets
where libraries are randomly and systematically removed from the full data.

Both full datasets were separately subjected to a standardized Seurat pipeline for the
identification of single-cell (or -nucleus) clusters and DEGs. Nuclei and cells with less than 500
and more than 5,000 features as well as more than 50% mitochondrial genes were removed.
‘SCTransform’ was used for data normalization and scaling (based on top 2,000 features),
followed by principal component analysis. The first 30 principal components were used for
dimensionality reduction before identifying single nucleus/cell clusters (resolution = 0.8).

Top 300 DEGs of each cluster were identified (adjusted p-value: 0.05) and compared with
literature-curated cell-type specific essential genes (Suppl. Table 10) using Fisher's Exact test
to assign a kidney cell type to each cluster. The assigned cell type is that cell type whose
essential genes had the most significant enrichment among the DEGs of that cluster. To
document the reliability of that cell type assignment we compared its p-value to the p-value of
the second prediction (that cell type whose essential genes had the second most significant
enrichment among the DEGs of that cluster). The larger the distance between both p-values, the
more reliable the cell type assignment. The number of clusters that were assigned to each cell
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type was documented. Nuclei and cells that were assigned to a particular cell type and map or
do not map to the corresponding LMD tissue subsegment were counted as well, based on the
subsegmental correlation analysis as described above. The top 300 DEGs were subjected to
dynamic enrichment analysis using MBCO. All SCPs among the top seven predictions were
further investigated.

We progressively and randomly removed libraries from the full (reference) datasets to
generate 100 non-overlapping downsampled datasets for each number of remaining subjects.
Downsampled data was subjected to the same analysis pipeline and results were compared with
the reference results. We calculated the percentage of downsampled datasets for each number
of remaining libraries that identified a particular cell type. If a particular cell type was identified in
a down-sampled dataset we counted how many of its nuclei/cells were assigned to the same or
to a different cell type in the reference analysis. To visualize both counting results in the same
plot, we defined those cell counts that mapped to a different cell type to be negative, so these
counts are plotted below the abscissa. Similarly, we counted how many nuclei/cells of a
particular cell type mapped and did not map to a particular tissue subsegment that is indicated
in the title of the plot. Here, we also defined those cell counts that mapped to a different
subsegment to be negative. We calculated the Pearson correlation between the DEGs of each
cell type in the downsampled datasets and the reference datasets based on logz(fold changes).

Pathway enrichment analysis normally involves identification of the most significant pathways
irrespective of their p-values. To document the reliability of the identified SCPs we identified the
ranks of the SCPs that were among the top seven predictions in each downsampled dataset.
Ranks were averaged for each SCP and number of analyzed libraries.

Documentation of cellular metabolism

We generated a small ontology that contains the major metabolic pathways involved in
energy generation and sphingomyelin synthesis. We defined parent-child relationships, where
child pathways described sub-functions of their parent pathways (Suppl. Figure 17A). Pathways
were populated with genes curated from the literature, parent pathways also populated with the
genes of their child pathways. The ontology is publicly available at
github.com/SBCNY/Molecular-Biology-of-the-Cell and mbc-ontology.org.

We subjected the top 500 significant marker genes and proteins (sc/sn RNAseq: adjusted p-
value 0.05, LMD RNAseq, LMD/NSC proteomics: nominal p-value 0.05) to enrichment analysis
using this ontology and Fisher’s Exact Test. Investigation of the predicted pathways that are
specific for a particular reaction allowed to decide in which reaction(s) those enzymes participate
that are shared by multiple pathways. Child pathways that specifically describe the function of
their parent pathways are visualized in the same color in supplementary figure 17A. If only
pathways that contained the shared reactions of multiple parent pathways were predicted, we
assumed that they participated in the default parent pathways “Glycolysis”, “Keton body
catabolism” or “Aerobic glycolysis”.

Since the sc RNAseq data was derived from cortical, medullary and mixed samples (Suppl.
Figure 4B), we distinguished between medullary (DTL, ATL1-3, TAL-1, PC-3 and IC-A2) and
cortical cell types (all other cell types of the renal tubule of the nephron). All other datasets were
assigned as cortical. Enrichment result negative logio(p-values) were first averaged across the
different cell subtypes of the same cell type and then across the different transcriptomic datasets.
In case of the sc and sn RNAseq assays, we considered the amount of cells assigned to each
subtype of a particular cell type. The averaged negative logio(p-values) is representative of the
cell counts of each cluster.
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Comparison of experimental reabsorption and gene expression profiles

Experimentally determined reabsorption capacity profiles that describe what percentage of a
filtered sodium or glucose is reabsorbed in a particular nephron segment were curated from
standard medical and physiological text books (92-94, 120), followed by averaging of the curated
numbers for each ion or molecule. As these are widely used medical school textbooks, we
assumed that the information is correct and did not further track down the values given in these
books to the primary papers from which these values were obtained. Also we assumed
conversation of physiological processes across mammalian species and we did not ascertain if
all values were derived from the same species or more than one species.

Generation of a transmembrane _transport ontology

Since human single cell and single nucleus RNAseq datasets (20, 21, 97, 98) contain gene
expression profiles in all major nephron cell types, we reasoned we could compare segment
specific gene expression levels of the transporter or channel of interest with these physiologically
measured reabsorption profiles. Using Gene Ontology /, Molecular Biology of the Cell Ontology
(28), Wikipedia articles and selected reviews as sources (66, 99, 121-124), we generated a
comprehensive ontology of transmembrane transporter at the plasma membrane (Supplemental
Figure 19A). Within GO we focused on all Biological Processes and Molecular Functions that
were children of "sodium ion transport”, "sodium ion transmembrane transporter activity" as well
as "glucose transport”, "glucose transmembrane transporter activity", as defined by the “is_a”
and “part_of” relationships. From MBCO we added all genes assigned to the subcellular
processes (SCPs) "Sodium transmembrane transport”. The initial list of transporter candidates
was manually investigated to validate their transporter activity. True positives were assigned to
de novo subcellular processes (SCPs) that describe the movement mechanism (i.e., transport
via symporter or antiporter), the movement direction (i.e. lumen-to-blood or blood-to-lumen) and
all ions or molecules that are transported by that mechanism. In case of antiporters, we specified
which ions or molecules move in opposing directions by separating them with the term ‘vs’. If the
protein translated from a particular gene had a unique name that is commonly used and is
different from the official NCBI gene symbol, we assigned the gene to that particular protein
name (e.g., SLC12A1 and SCL12A3 were assigned to NKCC2 and NCC, respectively). Here,
we did not describe the activity mediated by that protein (e.g., “Sodium potassium chloride
transport by the symporter NKCC2”), since this would create unnecessarily long names in our
figure legends. Nevertheless, in all analyses these proteins were processed as if they were
SCPs. Consequently, whenever we use the term SCP in the manuscript, we refer to these
proteins as well. Each SCP-gene association was supported by at least one reference that could
be the NCBI gene summary, UniProt gene summary or a PubMed ID for a supporting article
(Supplementary Table 12). To allow systematic analysis and grouping of transmembrane
movements, we integrated all SCPs into a SCP hierarchy of parent and children SCPs
(Supplementary Figure 19B) using a strategy we have described for the MBCO ontology (28).
This hierarchy converges children on parent SCPs that describe more generalized shared
transport mechanisms. For example, the SCP “Sodium potassium chloride symporter” (that is
the parent of the SCP “NKCC”) is the child of the two parent SCPs “Sodium chloride symporter”
and “Sodium potassium symporter”. We left out the SCP “Potassium chloride symporter”, since
here we focused on sodium and glucose transmembrane transport. These SCPs are then
connected to the higher-level SCP “Sodium lumen-to-blood transport by symporter”. For both
sodium and glucose all SCPs finally converge on either one of two different overall parent SCPs
describing transcellular lumen-towards-blood transport and transcellular blood-towards-lumen
transport. Discussed example of SCP relationships and two additional examples are shown in
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supplemental figure 18B. Supplemental figure 18C shows the hierarchical organization of all
SCPs involved in sodium lumen to blood and blood to lumen transport. All parent SCPs were
populated with the genes of all of their children SCPs. Finally, we kept only those genes in the
ontology that localize to the plasma membrane based on the jensenlab human compartment
ontology with  a minimum confidence score of 4 (out of maximal 5)
(www.compartments.jensenlab.org)

Calculation of predicted reabsorption capacities

Besides our own single cell (sc) and nucleus (sn) RNAseq dataset (20, 21), we utilized two
different ShnRNA seq datasets that were generated from undiseased tissue as well (97, 98). All
datasets document how many mRNA molecules are transcribed from each gene in each
individual cell. These numbers are described as UMI (Unique Molecular Identifier) counts (125),
but in this study we use the term mRNA counts or levels to indicate that it is a quantitative
measure of mMRNA levels of a certain species. The cells and nuclei in the sc and sn RNAseq
data sets were previously grouped into clusters using standard software packages (Seurat XX),
followed by identification of cluster specific marker genes and cell type and subtype annotation
(20, 21, 97). We analyzed the raw UMI matrix (GSE114156) (98) using the seurat package (as
outlined in Suppl. Figure 5A) and annotated kidney cell types based on cell type specific gene
expression (Suppl. Table 10).
We assumed that that mMRNA molecule counts (i.e., UMI counts) of each transporter or channel
in each cell reflect the capacity of that particular cell for transmembrane movement of that
particular ion or molecule. The following explanation of how we predicted movement capacities
from those mRNA levels is summarized in supplemental figure 18A. We initially processed all
four datasets, i.e., one sc RNAseq and three sn RNAseq datasets, independently. For each
dataset and SCP of our transmembrane movement ontology we summed up all mRNA
molecules that are expressed in all cells of a particular cell type or nephron segment and map
to genes involved in that SCP. It should be noted that we documented total and not mean
capacities, because we did not divide the mRNA count sums by the number of cells in each
particular cell type or segment. If a particular cell type or nephron segment contains more cells,
it is assumed to contribute more to the reabsorption of a particular ion or molecule, if the
appropriate transporter is present. Measured physiological reabsorption profiles describe net
lumen-to-blood transport values in each segment. To account for the different transport
directions predicted from SCPs that are involved in lumen-to-blood and blood-to-lumen
transport, we defined all MRNA levels mapping to blood-to-lumen transport SCPs as negative.
This allowed the calculation of net lumen-to-blood transport capacities by adding up all mMRNA
counts involved in lumen-to-blood transport and all (negative) mRNA counts involved in blood-
to-lumen transport of each ion or molecule. Since the physiological profiles document how much
percent of a particular ion or molecule is reabsorbed in a particular nephron segment, we
expressed all SCP capacities in percent of the net lumen-to-blood transport capacities of the
corresponding ions or molecules. Consequently, the sum of all predicted transport capacities
along the nephron is 100% for both sodium and glucose (MRNA levels assigned to blood-to-
lumen transport are still defined as negative), allowing the direct comparison of mMRNA levels
and reabsorption profiles. Any SCPs that mediate the transport of multiple ions or molecules,
were normalized independently for each ion and molecule to calculate the relative contribution
of that SCP to the total reabsorption capacity of each ion or molecule. Final percentages of the
same SCPs predicted by the three single nucleus RNAseq datasets or all 4 datasets were
averaged.
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Identification of cell-type markers

Marker genes and proteins of each cell subtype or segment were ranked as described above.
If multiple cell subtypes were identified based on the single cell or single nucleus RNAseq
datasets, we calculated the average rank for that cell type. Original or averaged ranks were
averaged again over the different assays for each cell type and selected segment, followed by
re-ranking. Top five re-ranked genes/proteins were selected as cell type markers in Table 1.

Generation of nephron schema
We used BioRender.com to create the nephron schema in Figure 7.

Data generation and initial analysis

Seven different RNAseq, proteomics, metabolomics and imaging datasets were generated
and analyzed by five different TISes. The PREMIERE TIS (composed of Michigan, Princeton,
Broad) generated single cell RNASeq data, the USCD/WashU TIS generated single-nucleus
data, the UCSF TIS generated single-cell RNASeq, near-single-cell proteomics and Codex
imaging data, the I[U/OSU TIS generated laser microcapture dissection (LMD) RNASeq and LMD
proteomics data and the UTHSA-PNNL-EMBL TIS generated spatial metabolomics data.

Single-nucleus RNAseq (UCSD/WashU) and Single-cell RNASeq (PREMIERE)

UMI count matrixes and list of differentially expressed genes were downloaded from
published analyses for the PREMIERE TIS (composed of Michigan, Princeton, Broad) single-
cell RNA sequencing (RNAseq) (21) and UCSD/WashU TIS Single-nucleus RNAseq (20)
datasets. We excluded the PT cells-3 and principal cells-2 clusters from the single-nucleus
RNAse(q dataset, since these clusters showed an inflammatory or a stress response.

Subsegmental LMD Transcriptomics (IlU/OSU)

A comprehensive Laser MicroDissection (LMD) protocol is published on protocols.io
(https://www.protocols.io/view/laser-microdissection-8rkhv4w). Briefly, 12 um frozen sections
are obtained from an Optimal Cutting Temperature (OCT) preserved tissue block and adhered
to LMD membrane slides (Leica, Buffalo Grove, IL). Tissue undergoes a rapid staining protocol
involving acetone fixation, washes with RNAse-free PBS, and antibody incubation in 10% bovine
serum albumin. Slides undergo dissection with a Leica LMD6500 system with pulsed UV laser.
After collecting a minimum tissue area of 500,000 um? in an RNAse-free micro-centrifuge tube,
RNA is isolated using the PicoPure RNA IsolationKit according to manufacturer’s instructions
(Applied Biosystems, Cat# KIT0204). RNA quality is assessed by bioanalyzer, ribosomal RNA
is depleted, and cDNA libraries are prepared using the SMARTer Universal Low Input RNA Kit
(Takara, No. 634938). Sequencing was conducted on an lllumina HiSeq4000. Mapping was
performed using STAR (v2.5.2b) and read counts were quantified with featureCounts (subread
v.1.5.0). Total read counts mapping to each gene were generated with edgeR, normalized, and
converted to expression ratios.

Segment specific gene expression was compared to the gene expression in all other
subsegments using an unpaired ttest with equal variance. Subsegment specific gene expression
ratios were calculated similarly.

Subsegmental LMD Proteomics (IU/OSU)

A comprehensive Laser MicroDissection (LMD) proteomics protocol is published on
protocols.io  https://www.protocols.io/view/laser-microdissection-for-regional-transcriptomics-
8rkhv4w?version_warning=no. Our LMD proteomic methods have also been previously
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published in detail (126, 127). Briefly, 10 um frozen sections are obtained from an OCT
preserved tissue block and adhered to polyethylene naphthalate (PEN) membrane slides for
LMD. Frozen sections are fixed in 70% ethanol, incubated in H20 to remove OCT, briefly stained
with hematoxylin, and dehydrated in ethanol. LMD is performed and glomeruli and
tubuloninterstitial samples are collected separately in 0.5% Rapigest/50 mm NH3HCOs3 solution.
The collected samples are then boiled for 20 minutes for protein retrieval and digested overnight
with trypsin. Peptides are dried, re-suspended in acetonitrile/formic acid and analyzed using
liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis using an Easy-nLC
1000 HPLC coupled to an Orbitrap Fusion mass spectrometer (Thermo Scientific, Waltham,
MA). Data is searched using Proteome Discoverer 2.1 (Thermo Scientific) and searched against
a human Uniprot database (version 05/26/18). Data are analyzed following global normalization
of spectral counts.

Glomerular gene expression was compared to the tubulointerstitial gene expression using
an unpaired t-test with equal variance. Glomerular to tubular specific gene expression ratios
were calculated similarly.

3-D Immunofluorescence Imaging and Tissue Cytometry (IU/OSU)

The entire 3-D fluorescence imaging and tissue cytometry protocol is published on
protocols.io (dx.doi.org/10.17504/protocols.io.9avh2e6). Briefly, frozen cores are sectioned at
50 um using a cryostat and fixed using 4% paraformaldehyde. A panel of up to 8 antibodies was
incubated to identify renal and immune cell types. Images were acquired in up to 8 channels
using a Leica SP8 Confocal Microscope. Volume stacks spanning the whole thickness of the
tissue were taken using a 20x NA 0.75 or 40x NA 1.3 objectives with 0.5- to 1.0-um spacing.
Large scale confocal imaging of overlapping volumes was performed with an automated stage
and stitched using Leica LASX software (Germany). 3-D image rendering was done using Voxx
v2.09d. The 3-D tissue cytometry was performed on image volumes using VTEA, which was
developed as a plugin for ImageJ/FIJI as previously described (128).

CODEX Imaging (UCSF)

The CODEX system is the combination of an (1) oligo-nucleotide based antibody labeling-
detection technique, (2) a microfluidics instrument coupled with an inverted microscope capable
of whole slide scanning, and a (3) software suite that consists of an image processor and an
ImageJ-based image analysis solution (129). First, a section from an optimal cutting temperature
compound-embedded tissue block is cut and incubated manually in a single step, with a set of
antibodies each tagged with a unique oligonucleotide sequence. The following phase consists
of iterative cycles of detection, imaging, and dye removal. In each cycle, a maximum of three
targets are revealed by spectrally distinct dyes (AF488, Atto 550, and Cy5) tagged with
oligonucleotides complementary to the oligonucleotide tag of a given antibody.

The acquired images are processed by the CODEX processor in a set sequence of steps:
shading correction, tile registration, deconvolution, drift compensation, overlap cropping,
background subtraction, best focus detection/interpolation, stitching, cell segmentation, and
spillover compensation.

The output of the cell segmentation step of image processing is an .fcs file (similarly to flow-
cytometry solutions). This file contains the individual fluorescent intensity values (can range from
0 to 65k) of each cell for each marker. Fluorescent intensity values allow the definition of cell
populations by manual gating of the segmented cells using visual assessment of the image and
previous literature data on the expression pattern of our marker set in human kidney.
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Native renal biopsies taken at University of California, San Francisco from patients with
minimal change disease (n = 3), thin-basement membrane disease (n = 1), and post-surgical
biopsies from tumor nephrectomies (n = 2) were used. In addition, case 18-162 from KPMP pilot
sample pool was also processed (Suppl. Table 1).

Spatial Metabolomics (UTHSA-PNNL-EMBL)

10 um thick renal cortical tissues were sectioned using a cryostat (Leica Microsystems), thaw
mounted on indium tin oxide coated slides (Bruker Daltonics), and prepared for matrix-assisted
laser deposition/ionization mass spectrometry (MALDI-MSI) by spraying with 2,5-
dihydroxybenzoic acid (DHB; 40 mg/mL in 50% MeOH:H20) using the TM-Sprayer automated
spraying robot (HTX Technology). The following spraying parameters were used: 80 °C nozzle
temperature, a flow rate of 0.05 mL/min, 10 passes, a N2 pressure of 10 psi, a track spacing of
3 mm, and a 40 mm distance between the nozzle and sample was maintained. MALDI-MSI was
performed using a MALDI-FTICR imaging mass spectrometer (Bruker Daltonics) set at a
120,000 resolving power at m/z 400 or a MALDI-Orbitrap mass spectrometer (Thermo Scientific)
set at the 120,000 resolving power at m/z 200. The data was inspected following the quality
control guidelines as developed within KPMP and converted into the imzML centroided format
using the SCILS software (Bruker Daltonics) or Imagelnsight software (Spectroglyph, LLC),
followed by the submission to METASPACE and annotation against the SwissLipids and HMDB
molecular databases with the false discovery rate of 20%, as described in Reference 3,

We have developed an approach to find glomeruli markers in MALDI-MSI data by using
METASPACE and co-localization analysis. First, we have selected a template marker that was
localized within the glomerular regions, as confirmed by the histology. This ion was annotated
by METASPACE as ceramide phosphate CerP(d34:1) 33. Then, we performed a spatial co-
localization analysis by calculating for all other detected metabolites and lipids their spatial
correlation with CerP(d34:1) using the cosine score. The molecules with the correlation above
0.2 were considered and manually curated to show the co-localization with the glomeruli regions
by overlaying every ion image with the histological image. The resulting 30 markers were
uploaded to the KPMP DatalLake and were used for the multiomics integration analysis.
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