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ABSTRACT 

 
Kidney Precision Medicine Project (KPMP) is building a spatially-specified human tissue atlas 

at the single-cell resolution with molecular details of the kidney in health and disease. Here, we 
describe the construction of an integrated reference tissue map of cells, pathways and genes 
using unaffected regions of nephrectomy tissues and undiseased human biopsies from 55 
subjects.  We use single-cell and -nucleus transcriptomics, subsegmental laser microdissection 
bulk transcriptomics and proteomics, near-single-cell proteomics, 3-D nondestructive and 
CODEX imaging, and spatial metabolomics data to hierarchically identify genes, pathways and 
cells. Integrated data from these different technologies coherently describe cell types/subtypes 
within different nephron segments and interstitium. These spatial profiles identify cell-level 
functional organization of the kidney tissue as indicative of their physiological functions and map 
different cell subtypes to genes, proteins, metabolites and pathways. Comparison of transcellular 
sodium reabsorption along the nephron to levels of mRNAs encoding the different sodium 
transporter genes indicate that mRNA levels are largely congruent with physiological 
activity.This reference atlas provides an initial framework for molecular classification of kidney 
disease when multiple molecular mechanisms underlie convergent clinical phenotypes.  
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INTRODUCTION 
The kidney has one of the most diverse cellular populations in the human body, and it is 

critical in maintaining the physiological homeostasis by regulating fluid and electrolyte balance, 
osmolarity and pH. The basic unit of organization in the kidney is the nephron embedded in the 
interstitium; the human kidney has between 210,000 to 2.7 million nephrons (1). There are 
multiple cell types in the nephron and the interstitium including those that comprise the blood 
vessels and capillaries (such as endothelial cells and vascular smooth muscle cells) and many 
types of immune cells. From the development of a structure based standard nomenclature (2), 
to a recent review (3), there has been a sustained effort to develop a detailed understanding of 
structure-function relations within the kidney tissue to understand its physiology and 
pathophysiology. 

Over the past decade, with the advent of single-cell (sc) RNAseq technologies, substantial 
advances have been made in enumerating the different cell types in the human and mouse 
kidney (4-17). Computational analyses and modeling of single-cell transcriptomic data, and other 
types of omics data are starting to provide rich and deep insight into different kidney disease 
processes including kidney cancers (17) and fibrosis (9). These studies demonstrate the power 
of omics technologies in developing atlases that map structure-function relationships at the 
single-cell level within tissues.  

Data sets from different omics technologies provide an unparalleled opportunity to 
understand how the diversity of cell types and their constituents underlie physiological functions 
and how they are altered in different disease states. The Kidney Precision Medicine Project 
(KPMP) is a consortium funded by the National Institute of Diabetes and Digestive and Kidney 
Diseases (NIDDK). Using kidney biopsies that are ethically and safely obtained from participants 
with kidney disease, KPMP aims at the creation of a kidney atlas in health and disease. Such 
an atlas can allow the identification of critical cells, pathways, and targets for novel therapies 
and preventive strategies (18, 19).  To identify and understand disease states, it is necessary to 
have a detailed atlas of tissues that do not show disease phenotype by standard clinical 
histological evaluation. We call such an atlas a reference atlas. Using multiple kidney reference 
sources, different groups in the consortium have generated diverse types of data. Among these 
are single-nucleus (20) and single-cell (21) transcriptomics, regional bulk transcriptomics, 
proteomics and metabolomics as well as multiple complementary types of imaging methods. We 
have analyzed and integrated these different data types obtained from reference kidney tissue 
specimens, as evaluated by standard pathology analysis, from 55 human subjects. We have 
constructed maps of the different cell types in the kidney and the molecular entities as well as 
functional pathways within these cell types to develop an early version of a reference human 
kidney atlas. To determine if the molecular details in the atlas enables new insight into 
physiological activity we compare the transcellular sodium reabsorption along the nephron that 
is important for the maintenance of normal blood pressure in individuals with hypertension (22, 
23). We find substantial congruence between physiological activity and the sum of the mRNA 
levels of different sodium transporters indicating that these such a molecular atlas can provide 
deep insight into molecular and cellular basis of physiological processes. This atlas is now 
available to serve as a starting point from which datasets emerging from disease states can be 
used to project into the integrated functional context and to drive new molecular classification of 
kidney diseases. 
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RESULTS 
The KPMP Consortium conducted different types of omics as well as low throughput 

immunohistochemistry experiments at different sites for these reference atlas studies.   Although 
it is impossible to definitely characterize tissue as healthy, clinical pathologists adjudicated that 
specimens used in this study show no signs of disease manifestations. Nevertheless, since we 
use unaffected tissue regions from nephrectomies as well as biopsies from both living donors 
and transplant recipients (i.e., surveillance biopsies), we use the general term reference tissue 
(Suppl. Table 1). In future studies, these can be compared to diseased tissue specimens. 

 
There were four transcriptomic, two proteomic, two imaging-based, and one spatial 

metabolomics tissue interrogation assays deployed on the shared tissue samples. These assays 
yielded 3 to 48 different datasets obtained from 3 to 22 subjects per assay for a total of 55 
different human subjects (Suppl. Table 1). The assays and their detailed tissue pre-analytical, 
tissue processing, data acquisition and analytical data processing pipelines are schematically 
depicted as a flowchart in Figure 1. We also summarize, in the integration segment of our 
flowchart, the steps by which the data sets from the different assays were integrated and 
harmonized. This is shown in the upper right side of this descriptive map.  
 
Integration of multiple transcriptomic interrogation techniques shows agreement and 
technological synergy between assays 

Separate as well as integrated analysis of single-cell (sc), multiplexed single-cell and single-
nucleus (sn) transcriptomic datasets confirmed all known major kidney tissue cell types of the 
nephron (20, 21) and multiple immune cells (Figure 2A). Clustering algorithms used to separately 
analyze the sc and sn RNAseq data identified multiple subtypes for several cells. We observed 
differences between the numbers of subtypes in the sc versus sn data as different cutoffs were 
used in the initial analyses (20, 21). Nevertheless, when sc and sn RNAseq data were analyzed 
in an integrated manner, all major cell types were identified, as shown in the central panel in 
Figure 2A. Here, combined processing of 17,529 and 13,130 cells along with 17,657 nuclei 
yielded 16 main clusters (note that some clusters contain multiple closely related subtypes). 
These clusters were annotated to 14 cell types based on cluster specific marker gene 
expression. Each cluster contained cells and nuclei from every dataset, documenting 
consistency of our transcriptomic datasets (Suppl. Figure 1). To provide spatial context with 
respect to different regions of the nephron, we compared the sc and sn transcriptomic datasets 
with nephron segment specific bulk transcriptomic datasets that were obtained after Laser 
Microdissection (LMD) of kidney segments (24) (Suppl. Table 2). Cross-assay Pearson 
correlation analysis allowed us to map each single cell and nucleus to the nearest LMD segment 
(Figure 2B). We find that there is strong concordance across the data obtained by the different 
technologies, whereby the majority of the cells and nuclei from each cluster were assigned to 
the correct corresponding LMD subsegment in an unbiased manner. For example, proximal 
tubule (PT) cells were assigned to the PT subsegment, while podocytes were assigned to the 
glomerular subsegment.  

The total numbers of cells analyzed are small by current standards and hence we 
determined, if other independent orthogonal technologies support our overall atlas framework. 
Hence, we used integration of different omic technologies as well as posthoc power analyses to 
determine the validity of the atlas.  
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Proteomic and transcriptomic assays produce biologically complementary descriptions 
of subsegmental molecular composition 

In addition to transcriptomic profiles, we obtained subsegment specific protein expression 
profiles using two different proteomic assays. These assays identify protein expression in the 
glomerulus and the tubulointerstitium (LMD proteomics) or proximal tubule (Near Single Cell, 
NSC, proteomics) (Suppl. Tables 3 and 4, respectively).  We then compared the proteomic data 
sets with the transcriptomic data sets.  For an unbiased cross-platform comparison, we focused 
on podocyte/glomerular and proximal tubule (PT) cells and subsegments in the four 
transcriptomic datasets. To reduce assay related biases, we calculated, for each subject within 
each assay, the logarithmic ratios of gene or protein expression values for the glomerular versus 
tubular cell types or subsegments (Suppl. Figure 2A). Pairwise correlation of these logarithmic 
ratios, followed by hierarchical clustering, resulted in grouping of the data sets by appropriate 
regions of the kidney (Figure 3A). Within this broad classification, the subgroupings by different 
assays could be readily identified and are shown (Right side labels in Figure 3A). From this 
clustering, we conclude that irrespective of the assay, we can readily identify groups of genes 
or proteins associated with the appropriate anatomical region (i.e. glomerulus versus 
tubulointerstitium). This pattern is observed with or without removal of genes or proteins that are 
not identified by all technologies (Suppl. Figure 2B). In contrast, if we cluster by absolute 
expression values, the clustering is primarily driven by the assay used rather than the anatomical 
region. This is irrespective of whether we use datasets with and without removal of genes or 
proteins not detected by all technologies (Suppl. Figure 2C and 2D, respectively). These results 
suggest that rather than absolute presence or absence of the different genes or proteins, the 
relative expression levels are more indicative of the corresponding anatomical region of the 
kidney. It documents the high quality of our data, since technological bias can be overcome by 
a relatively simple algorithm. Correlation analysis of averaged log2 fold changes between all 
combined RNAseq datasets and combined proteomic datasets further supports the conclusions 
that similar entities are identified by different assays (Figure 3B). The 0.6 correlation value that 
we obtain is in agreement with the canonical value across mammalian tissues as described (25), 
though our comparison is based on fold changes and not absolute mRNA and protein 
abundancies. As such, integration of multiple datasets increases accuracy of the results, since 
integrated RNAseq and proteomic datasets show a higher correlation with each other than any 
individual RNAseq and proteomic datasets. Nevertheless, correlations between the same 
technologies when the assay was conducted at different sites is quite high (Figure 3C). 

Imaging-based molecular data and non-spatial proteomic and transcriptomic assays 
together produce spatial marker expression signatures. 

Imaging assays can provide spatial specification of omics data, such as bulk proteomics (26) 
and confirm contextual framework for cell types inferred through sc transcriptomics (27). Those 
with well-characterized markers can identify the spatial localization of individual cells, which can 
be independently identified from gene expression patterns. By analyzing the relationship 
between cells identified from sc/sn sequencing technologies and CODEX imaging of canonical 
markers, we establish the concordance between the assay types for independently identifying 
cell types and inferring molecular profiles for spatially localized cells. We constructed a mapping 
matrix to transform the cell-type specific protein (i.e., marker) expression profiles measured 
using CODEX to cell type-specific gene expression profiles measured using sc and sn 
transcriptomic assays (Suppl. Figure 3). An entry in the mapping matrix is high if the 
corresponding imaging cell type is highly weighted in the linear combination of imaging cell type 
expression profiles that approximate the expression profile of a cell type in the single-cell 
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transcriptomic dataset. We find that this mapping approach performs well for cell types with well-
characterized cell type-specific canonical markers in the imaging dataset, such as endothelial 
cells and podocytes (Figure 4).  

Both the mapping of single cell and nucleus expression profiles to LMD segments and the 
mapping of single cell and nucleus expression profiles to the imaging assays allow assignment 
of single cells and nuclei to anatomical regions within the kidney. Using these comparisons we 
can arrange the cells along the nephron and in the interstitium, allowing documentation of the 
order by which they encounter the glomerular ultrafiltrate. 

 
Integrated pathway enrichment analysis enables identification of functional capabilities 
of different cell types of the kidney 

After establishing the consistency between transcriptomic, proteomic and imaging datasets, 
we used these integrated data to identify the cell-type specific functional pathways and network 
modules. Pathways and modules give rise to subcellular processes that together produce whole 
cell-level biochemical and physiological function. This pathway based approach that connects 
genes to cell level physiological function will serve as the basis for molecular classification of 
disease states. We started by using individual analyses of the sc and sn RNAseq datasets and 
identifying the pathways inferred from the expressed genes (20, 21) (Suppl. Figure 4A and B, 
respectively). In contrast to our integrated analysis of these datasets described above, the 
individual analyses used more relaxed quality control cutoffs  such as allowing up to 50% 
mitochondrial gene expression  so the cell subtype and type specific gene expression obtained 
by the single cell RNAseq dataset was based on 22,264 cells instead of 17,529 cells. These 
single cell technology analyses also allowed us to ascertain that all of the cell types could be 
observed independently of the method by which the reference tissue was obtained. We find that 
all major kidney cell types can be identified in nephrectomy, living donor biopsy and transplant 
surveillance biopsy tissues (Suppl. Figures 4A and 4B). An exception to this finding is that 
immune cells were mostly identified only within the sc RNAseq dataset, while only one cluster 
of the sn RNAseq dataset that contained less than 1% of all nuclei was annotated to an immune 
cell type, i.e. immature macrophage (Suppl. Figure 4B). 

 
  Individual analyses of sc and sn transcriptomic data ensure that these two related 

technologies do not computationally influence the ranking of combined pathways in ways that 
are not fully identifiable. Most cells identified from sc or sn RNAseq data sets in the individual 
analyses were annotated to the same cell types as in the combined analysis (Suppl. Figure 4C 
and 4D, respectively) and mapped to the appropriate LMD segment as well (Suppl. Figure 4E 
and 4F, respectively). A less stringent cutoff for mitochondrial gene expression (50% instead of 
20%) allowed consideration of additional cells that were excluded from the combined analysis. 

 
Post hoc power analysis documents consistent cell-type detection 

Before focusing on cell-type specific functions that we predict from pathway enrichment 
analysis and module mappings, we evaluated how many reference subject samples need to be 
processed to obtain consistently reproducible results. 24 and 47 libraries obtained from 22 and 
15 subjects were subjected to sc (21) and sn (20) RNAseq, yielding 22,264 cells and 12,100 
nuclei after quality control (Suppl. Table 1), respectively. We separately subjected both RNAseq 
datasets, with and without random and progressive removal of libraries, to a standardized sc 
and sn RNAseq analysis pipeline (Suppl. Figure 5A). Results obtained for the down sampled 
datasets were compared to those obtained for the complete datasets (Suppl. Figure 5B). Our 
results indicate that for a consistent detection of podocytes and mesangial cells (i.e. in at least 
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95% of all down sampled datasets with the same library counts), at least 9 (~8,250 cells) or 7 
libraries (1,837 nuclei) are needed if subjected to sc RNAseq (Figure 5A) or sn RNAseq (Figure 
5B), respectively. The observed higher identification rate by the sn RNAseq assay is in 
agreement with a previous report that compared sn and sc RNAseq results obtained from mouse 
kidneys (16). Proximal tubule cells, thick ascending limb cells, principal cells, intercalated cells, 
T-cells were always detected in the downsampled sc RNAseq datasets. Macrophages were 
consistently detected, if 3 libraries (2,843 cells) were analyzed. In the sn RNAseq datasets we 
consistently detected proximal tubule cells, thick ascending limb cells, principal cells and 
intercalated cells in 4, 7, 9 and 6 libraries (1,013; 1,832; 2,323 and 1,527 nuclei), respectively. 
For additional cell types, see Figures 5A and 5B. Additionally, our results suggest that the 
accuracy of sc or sn assignments to the selected cell types is relatively stable as documented 
by the low number of cells that are assigned as different cell types or mapped to an unrelated 
tissue subsegment in the downsampled sc and sn datasets (Suppl. Figures 5C and 5D, 
respectively). Similarly, pearson correlation between cell type specific DEGs in the down 
sampled and full datasets follow the same trend. These analyses establish the rigor with which 
we are able to assign pathways and physiological functions to the different cell types. 

 
Pathway enrichment analysis and module identification 

The top 300 significant gene and protein markers of each cell type or subtype and 
subsegment (Suppl. Table 5) were subjected to dynamic enrichment analysis using the 
Molecular Biology of the Cell Ontology (MBCO) (28) (Suppl. Table 7). In many cases, less than 
300 markers were significant (Suppl. Table 6) and we consequently used  only those for  our 
downstream analysis. Dynamic enrichment analysis is a novel enrichment algorithm that 
considers dependencies between functionally related subcellular processes (SCPs), thereby 
addressing a limitation of standard enrichment analysis (29). In contrast to standard enrichment 
analysis that determines  if a set of experimentally observedgenes enriches for genes annotated 
to a single SCP, dynamic enrichment analysis determines if gene set  enriches for genes 
annotated to  multiple functionally related SCPs. We comparatively assigned mRNAs (cognate 
proteins) to functionally related pathways enabling the formation of subnetworks that underlie 
subcellular processes (SCPs) that give rise to whole-cell physiological function (28). Functional 
relationships are defined in the MBCO network of subcellular processes that are predicted based 
on prior knowledge from primary literature of functional activities. Cell type and corresponding 
segment specific networks were merged. Non-glomerular and glomerular metabolites (Suppl. 
Table 8) were subjected to pathway enrichment analysis using MetaboAnalyst (30) (Suppl. 
Figure 6A and 6B, respectively). For the top eight predicted pathways, we manually determined 
if pathway specific metabolites in the metabolomics data sets could be identified. When at least 
one metabolite could be selectively associated with the predicted pathway, we added the 
pathway to the SCP network identified from the transcriptomic and proteomics datasets. We 
added two pathways that do not exist in MetaboAnalyst after curation of identified metabolites 
(Suppl. Figure 6A). This pathway-based integration process allowed us create maps of 
biochemical and physiological functions of all major cell types in the kidney, setting up the 
framework for the development of molecular classification of kidney diseases. 
Significant mRNA and protein markers were used for community clustering in a kidney-specific 
functional network using HumanBase (31, 32) (Suppl. Table 9). In this network-based module 
detection analysis, genes are partitioned based on their connectivity in tissue-specific functional 
networks using a community clustering approach. These tissue-specific functional networks are 
constructed by integrating thousands of public genomic datasets using a regularized Bayesian 
framework to predict the probability that every pair of genes in the genome is related in a specific 
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tissue context. Thus, module detection provides a global, data-driven view of which genes are 
likely to participate in shared functions, pathways, and processes. Enrichment analysis is 
performed only after this data-driven partitioning, improving power to detect signals in the data 
and to implicate additional genes in biological processes based on their network connectivity. 
Thus our approaach uses multiple ontologies to fully map genes to functions. 
 
Cells of the kidney  
Proximal tubular cells 

Merged proximal tubule SCP networks predict a high level of metabolic activity dependent 
on β-oxidation of lipids, ammonium metabolism as well as absorption of ions, ion-dependent 
glucose reabsorption and detoxification mechanisms (Figure 6A). These SCPs, as shown by the 
different colors, are inferred from multiple technologies. The size of the SCP circle reflects the 
number of technology types that support the prediction of the SCP, while pie slices represent 
the individual technologies. In some physiology functions, cases of multiple pie slices are shown 
for the same technology indicating that this technology predicts the same SCP for multiple 
subtypes of the PT cells. The solid lines indicate connections between SCPs predicted by MBCO 
relationships and the dashed lines indicate additional well-known relationships between SCPs. 
Typically, these edges can represent functional relationships such as enzyme-substrate 
relationships or cotransport of molecules by symporters. It should be noted that most SCPs 
consist of multiple gene/gene products/metabolites of which only some are experimentally 
determined. Both the LMD proteomics and spatial metabolomics assays only distinguish 
between glomerular and tubulointerstitial regions in the kidney. SCPs that were predicted by 
these two assays either overlapped with or described similar functions as the SCPs that were 
identified by the proximal tubule cell or segment-specific datasets (Suppl. Figure 7). This agrees 
with the observation that most tubulointerstitial cells were proximal tubule cells (Suppl. Figure 
4A/B). Consequently, we added all SCPs identified by LMD proteomics and spatial 
metabolomics to the proximal tubule network as well. The identified predictions are in agreement 
with the well-established physiological functions of PT cells that include ATP-dependent 
reabsorption of ions, glucose and other small molecules like amino acids and mono- and 
dicarboxylates (e.g., lactate or oxalate) (33). The pathways also highlight the important role of 
PT cells in ammonium excretion, drug clearance (34) and iron homeostasis pathways (35). The 
latter  - among other functions - mitigate kidney damage during AKI (36). The prediction of 
glucose, fructose and glutamine metabolism from integration of transcriptomic, proteomic and 
metabolomics assays is in agreement with the high levels of PT gluconeogenesis activity (37, 

38). Beta-oxidation, which is the central pathway for energy generation in the PT cells (39, 40), 
is predicted by four out of six technologies. The identified genes and proteins document 
involvement of both mitochondrial and peroxisomal beta- oxidation (Suppl. Table 7). These 
findings support the notion that peroxisomes could be a target in kidney injury (41) . 

Both proteomic datasets of the PT subsegments highlight mitochondrial carnitine shuttle 
pathway that describes a central transport mechanism involved in both peroxisomal (42) and 
mitochondrial (43) beta-oxidation. We identify by spatial metabolomics the central carrier 
molecule carnitine, as well as acetyl-carnitine and palmitoyl-carnitine that are involved in 
transport processes during peroxisomal and mitochondrial beta-oxidation, respectively. The 
identification of carnitine biosynthesis and the carnitine precursor 3-Dehydroxycarnitine  predicts 
that adult kidney - besides apical reabsorption of carnitine - also has the biosynthetic capacity 
for local carnitine production, as shown for human fetal kidney (44). Loss of beta-oxidation and 
consequently ATP synthesis is a significant contributor to tubulointerstitial fibrosis (45).  Hence 
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mapping of the variations in these pathways in different patient populations can provide a basis 
for  molecular stratification of kidney fibrosis. Our data indicate the importance of beta-oxidation 
for proximal tubule function, since the prediction of local carnitine synthesis suggests an 
alternative carnitine source to dietary carnitine intake that might gain importance under a strictly 
vegetarian diet (46). Prediction of high levels of ATP generation and turnover rate is supported 
by the spatial metabolites that enrich for a pathway involved in the biosynthesis and degradation 
of adenine nucleotides. The ability of proximal tubule cells to significantly contribute to 
gluconeogenesis, especially in states of starvation (47) is documented by the identification of 
many enzymes involved in gluconeogenesis in our datasets. Glycolysis-specific enzymes were 
not detected, as described by others and in agreement with the low potential for glycolysis in the 
proximal tubule (38). Only a few pathways describing general cell biological functions (such as 
ECM dynamics, cell adhesion and translation) were predicted by one technology (Suppl. Figure 
8). 

Consequently, our analyses show that the different technologies describe the same biology, 
even though they might detect different genes or proteins and analyzed samples from the 
overlapping and non-overlapping participants (Suppl. Table 1). 

Community clustering of PT marker genes in a kidney-specific functional network (Figure 6B) 
identifies four modules enriched for functions including translation (M2), cellular response to 
metal ion (M4), mitochondrial organization (M1), brush border assembly (M3), and anion 
transport (M3). The marker genes were identified across five distinct technologies (sc/sn/LMD 
transcriptomics, and two independent proteomics datasets), and include genes with a corrected 
p-value of less than 0.01 in each technology. Genes are shaded per number of technologies 
identifying each marker. Five genes (ALDH2, ANPEP, LRP2, PDZK1, and SHMT1) were 
identified as PT markers across all five technologies. Fifty-four genes were identified as PT 
markers by four of the five technologies, and 106 genes were identified as PT markers by three 
of the five technologies. Functional enrichments in module clustering provide a picture consistent 
with the SCP enrichments: key processes enriched in network modules and also identified in 
SCP enrichments include fatty acid beta-oxidation (M1, M4), ammonium ion metabolic process 
(M3), glucose metabolic process (M3), detoxification (M1), anion transport (M3), and cellular 
response to metal ion (M4). While we did not separate between male and female samples in this 
study, sex specific differences in proximal tubule cells have been described recently (8). 
 
Glomerular cells 

In agreement with a previous study focusing on human and mouse glomerular cells (7) we 
detected all four different glomerular cell types, podocytes, mesangial cells, endothelial cells and 
parietal epithelial cells.  The sc and sn transcriptomic datasets (Figure 2) lead to four glomerular 
cell type specific SCP-networks. We separately analyzed the LMD transcriptomic and LMD and 
NSC proteomics and spatial metabolomics datasets (that were obtained from the whole 
glomerulus thus lacking cell type specificity) and identified glomerular SCP networks (Suppl. 
Figure 9A). Analyzing the overlap between the glomerular SCP networks with each of the three 
cell-type specific SCP-networks allows us to assign glomerular SCPs to podocytes, mesangial 
cells or glomerular endothelial cells (Figure 6C). Ten of the 19 glomerular SCPs are also 
predicted for at least one glomerular cell-type based on the sc/sn transcriptomic datasets. Seven 
other SCPs we identified map to particular cell types per functional relationships predicted from 
the sc/sn RNAseq datasets. These SCPs were added to each of the individual cell type specific 
SCP-networks. Podocyte SCPs (Figure 6D) focus on cell-cell/cell-matrix adhesion, glomerular 
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basement membrane (GBM) and extracellular matrix (ECM) dynamics as well as actin dynamics. 
All these pathways are required for foot process maintenance and formation of the glomerular 
filtration barrier (48-50).  Metabolomics data identify sphingolipid metabolism that could be 
involved in cell-cell adhesions as shown in other cell types (51-54). LMD segmental proteomics 
and transcriptomics identified key pathways involved in actin dynamics as well as cell-cell and 
cell-matrix adhesion. Multiple technologies identify tight junction organization, focal adhesion 
organization and lamellipodia organization. The glomerular slit diaphragm between mature 
podocytes develops from epithelial tight and adherens junctions (55). It contains many of these 
junctional protein components and was suggested to be a specialized form of either tight 
junctions (56) or adherens junctions (57, 58). This explains the prediction of these two structures 
from our data, thought they are not morphologically observed in healthy podocytes. We show 
WNT signaling as a central modulator of podocyte function (59). The pathway “Retinol 
metabolism” was predicted for both sc and sn RNAseq dataset as a regulator of tight junction 
similar structures. In agreement, retinoic acid has a regulatory effect on tight junctions in the 
epidermis (60) and plays a significant role in mitigating podocyte apoptosis and dedifferentiation 
during podocyte injury (61).  

 
Community clustering of podocyte marker genes in a kidney-specific functional network 

identifies six modules (Figure 6E). Functional enrichments in these modules included glomerulus 
development (M4), vasculature development (M3), cell-substrate adhesion (M1), cell-cell 
adhesion (M1), and actin cytoskeleton organization (M1). Thirteen genes (AHNAK, CLIC5, 
FERMIT2, GOLIM4, IQGAP2, NES, NPHS2, PDLIM5, PODXL, PTPRO, SLK, SYNPO, and 
TJP1) were identified as podocyte markers by all five technologies surveyed. Forty-one genes 
were identified by four of the five technologies and 108 genes were identified by three of the five 
technologies. 

 
Our datasets identify one mesangial and one transitional mesangial/VSMC cell type from the 

sn and sc RNASeq assays, respectively (Figure 2). LMD transcriptomics and proteomics and 
NSC proteomics along with sc and sn transcriptomics data identify SCPs involved in actin 
cytoskeleton dynamics, ECM dynamics, cell adhesion and amyloid plaque generation in these 
mesangial cells (Figure 6F). Our results are in agreement with their well-known function in blood 
vessel contraction and ECM support (62). In addition, one glomerular endothelial cell type was 
identified by the sc RNAseq data (Figure 2). Its SCP-network derived from integration of LMD 
proteomics and transcriptomics and NSC transcriptomics along with sc transcriptomic data 
identify  cytoskeletal, trans-endothelial immune cell migration and antigen presentation pathways 
(Figure 6G). The assignment of “integrin-mediated leukocyte rolling” to endothelial cells is 
supported by the presence of the related “leukocyte transmigration through endothelium” SCP 
by sc and LMD RNA  transcriptomics. Sn and sc RNAseq assays identified one parietal epithelial 
and one parietal epithelial cell type that also shows characteristics of loop of Henle cells, 
respectively (Figure 2). Parietal epithelial SCP networks contain pathways involved in cell-cell 
and cell-matrix adhesion and intermediate filament dynamics (Suppl. Figure 9B). 
 
Loop of Henle 

We identified one descending limb cell subtype by each sc and sn RNAseq assay (Figure 2). 
SCP networks from sc and sn RNAseq data for the descending limb cells identify cell adhesion 
functions and cytoskeleton dynamics (Suppl. Figure 10A). The presence of “tight junction 
organization” is in agreement with barrier formation in the descending limb that can allow for 
paracellular water reabsorption (63) but not for reabsorption of ions such as sodium or chloride 
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(64). Community clustering of descending limb marker genes in a kidney-specific functional 
network identifies six modules enriched in functions including cell-cell adhesion (M6), epithelium 
development (M3), tube development (M3), response to endoplasmic reticulum stress (M5), and 
water homeostasis (M6) (Suppl. Figure 10B). 

 
 Three thin ascending limb (ATL) cell subtypes are identified by sn RNAseq although only 

one type was identified by sc RNAseq (Figure 2). SCP-networks obtained for ATL cells from 
these two technologies describe functions such as cell adhesion, cytoskeleton dynamics and 
translation (Suppl. Figure 10C). Overall, these SCP networks agree with the known functions of 
these cells that initiate the formation of dilute urine by the establishment of a water impermeable 
barrier that is permeable to low levels of ions (65). Community clustering of ATL marker genes 
in a kidney-specific functional network identifies seven modules enriched in functions including 
translation (M1), kidney morphogenesis (M6), and cell-cell adhesion (M4) (Suppl. Figure 10D). 

 
Sc and sn transcriptomics identified one and two thick ascending limb (TAL) cell subtypes, 

respectively (Figure 2). TAL cell SCPs indicate sodium, potassium and chloride transport 
capabilities as detected by sc, sn and LMD transcriptomic technologies (Figure 6H). 
Tubulointerstitial SCPs identified by the LMD Proteomics and Spatial Metabolomics assays  
provide evidence for functional capabilities of the SCPs networks  (Suppl. Figure 7). These 
findings are in agreement with the known transcellular reabsorption of sodium and chloride that 
is initiated by the furosemide sensitive sodium chloride potassium symporter NKCC2 and 
supported by apical potassium recycling (66). The “tight junction organization” SCP is involved 
in the establishment of a physical barrier that makes this region impermeable to water and thus 
allows the dilution of urine (67). Among the tight junction associated genes are CLDN10 and 
CLDN16 that are involved in the paracellular reabsorption of sodium or calcium/magnesium (66, 
68), respectively, which supports the well-known physiology of this nephron segment. 
Involvement of “retinol metabolism” suggests that retinol regulated transcription can play an 
important role in TAL tight junction maintenance, similarly to its contribution to podocyte integrity. 
SCPs involved in the late secretory and early endocytic pathway support the known morphologic 
observation of vesicles below the plasma membrane that contain the furosemide sensitive 
NKCC2 (66, 69) allowing its mobilization and retrieval on demand (70-72). 

The high energy demand of the TAL cells is reflected by the identification of  SCPs involved 
in mitochondrial energy generation from LMD transcriptomics and proteomics. Spatial 
metabolomics that identify purine metabolites in the tubulointerstitium also support this 
conclusion. Community clustering of TAL marker genes in a kidney-specific functional network 
(Figure 6I) identifies six modules enriched in functions including regulation of ion transport (M6), 
calcium ion import (M6), sodium ion transport (M6), translation (M1), and mitochondrion 
organization (M2). 
 
Distal convoluted tubules 

One distal convoluted (DCT) cell subtype was identified based on each of sc and sn RNAseq 
assays (Figure 2). Predicted SCPs for the DCT cells from sc, sn and LMD transcriptomics 
converge on sodium and chloride transmembrane transport (Suppl. Figure 11A). Our results 
agree with the well-known sodium and chloride reabsorption by this cell type via the thiazide 
sensitive sodium chloride symporter NCC (73). Additionally, sc/sn transcriptomics highlight 
reabsorption of calcium, potassium, bicarbonate and phosphate. Community clustering of DCT 
marker genes in a kidney-specific functional network (Suppl. Figure 11B) identifies three 
modules enriched in functions including regulation of ion transport (M3) and metal ion 
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homeostasis (M2). A recent study focusing on the cells in the distal nephron purified by FACS-
enrichment of mouse kidney cells further classifies the DCT cells into multiple subtypes (4). 
 
Connecting tubules 

Each sn and sc assay identified one connecting tubule (CNT) subtype (Figure 2). Both sn 
and sc transcriptomic datasets for CNT cells indicate that SCPs for sodium, potassium and 
calcium transmembrane transport activities are enriched (Suppl. Figure 12A), supporting its 
function in fine tuning electrolyte balances (74-76). Other SCPs indicate signaling, endoplasmic 
reticulum and energy functions in this cell type. Community clustering of CNT marker genes in 
a kidney-specific functional network (Suppl. Figure 12B) identifies three modules enriched in 
functions including ion transport (M2), receptor-mediated endocytosis (M3), and mitochondrion 
organization (M1). 
 
Collecting duct 

Sc and sn RNAseq show two and three principal cell subtypes, respectively (Figure 2). The 
principal cell SCP networks were obtained by merging the principal cell specific SCPs predicted 
from sc and sn transcriptomics with the collecting duct (CD) specific SCPs predicted from LMD 
transcriptomics (Suppl. Figure 12C). Overlapping or functionally related SCPs identified by LMD 
Proteomics and Spatial Metabolomics were added as well (Suppl. Figure 7). Both sc and sn 
technologies identified “Potassium-“ as well as “Sodium-transmembrane transport” SCPs for the 
principal cells. The SCP ‘Water transmembrane transport’ was identified by both sn and sc 
RNAseq assays as well, though with a lower rank for sn RNASeq assays that did not pass our 
applied cutoff. The LMD transcriptomics and proteomics data identified the energy generation 
SCPs required for the various transport SCPs identified by the sc and sn transcriptomic data. 
The spatial metabolomics data sets provided support for energy generation pathways identified 
by the LMD technologies.  

 Principal cells play an important role in fine tuning ion and water reabsorption and thereby 
regulate systemic electrolyte and water balance (76). The anti-diuretic hormone working with 
prostaglandins regulates the levels of AQP2 on the apical plasma membrane (77, 78) stimulating 
water reabsorption by the principal cell. Apically reabsorbed water is exported by basal water 
transporters AQP3 and AQP4. We detect both AQP2 and AQP3 in our datasets. Sodium 
reabsorption is regulated by the amiloride-sensitive sodium channel EnaC whose expression 
and protein turnover is regulated by aldosterone (79). The aldosterone-stimulated reabsorption 
of sodium is coupled with secretion of potassium (80), as highlighted by our data. Additionally, 
we show calcium transmembrane transport for one cell subtype by both sn and sc RNAseq 
assays. Both sc and sn technologies identify SCPs involved in drug and toxin transmembrane 
movement in one of the subtypes of the principal cell, although drug excretion is generally 
described to occur in the proximal tubule (34). Furthermore, community clustering of PC marker 
genes in a kidney-specific functional network (Suppl. Figure 12D) identifies seven modules 
enriched in functions including ion transport and homeostasis (M7), regulation of vesicle-
mediated transport (M4), and water homeostasis (M6).  

We identified multiple subclusters of intercalated cells that could be assigned to IC-A, IC-B 
and one transitionary subtype, tPC-IC, as well as IC-A1, IC-A2 and IC-B in the sc and sn 
transcriptomic datasets, respectively (Figure 2). SCPs networks were identified by merging sc 
and sn transcriptomic data with LMD transcriptomic data obtained from the collecting duct 
(Suppl. Figure 12E). Additionally we added overlapping or functionally related SCPs predicted 
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by LMD Proteomics and Spatial Metabolomics (Suppl. Figure 7). We find the SCP “Bicarbonate 
transmembrane transport” in all three sc subtypes and one sn subtype (Suppl. Figure 12E), 
documenting the importance of the intercalated cells in the regulation of systemic acid-base 
homeostasis (81). Apical and basolateral bicarbonate transport is driven by exchange for 
chloride (81), as indicated by the “Chloride transmembrane transport” SCP identified for one 
subtype in both sn and sc RNAseq datasets. Community clustering of IC marker genes in a 
kidney-specific functional network (Suppl. Figure 12F) identifies six modules enriched in 
functions including regulation of body fluid levels (M3), translation (M1), mitochondrion 
organization (M2), bicarbonate transport (M5), and cell-cell adhesion (M4). Enrichment analysis 
using Gene Ontology predicts phagocytic activity (phagosome maturation and acidification) 
based on subunits of the vacuolar H+ATPase (81) (Suppl. Figure 12G). In combination with the 
prediction of SCP involved in actin cytoskeleton our data supports the recent observation of 
phagocytic activity of the intercalated cells (82, 83). 
 
Interstitium and the vasculature 

Endothelial Cells: We find four types of endothelial cells by sn transcriptomics and two by sc 
transcriptomics, in addition to glomerular endothelial cell identified sc transcriptomics (Figure 2). 
SCP networks for endothelial cells identified from sc and sn transcriptomic data sets contain 
pathways involved in cellular adhesion, trans-endothelial migration, actin cytoskeleton 
dynamics, caveolin-mediated endocytosis, signaling and antigen presentation (Suppl. Figure 
13A). 

 
Vascular smooth muscle cells: We identified a single type of VSMC by sn RNAseq assay 

(Figure 2). The sc transcriptomic technology identified a variant of mesangial cells that has 
VSMC markers. We classified this subtype as a glomerular cell subtype. SCP networks from sn 
technology highlight cell contraction capabilities for the VSMC (Suppl. Figure 13B).  

 
Fibroblasts: We identified a single type of fibroblast from sc and sn RNAseq assays (Figure 

2). SCPs in fibroblasts identified from sc, sn and LMD transcriptomics data describe pathways 
related to ECM dynamics, cell adhesion, cytoskeleton dynamics and the complement pathways 
(Suppl. Figure 14). The proteomic assays did not detect ECM components related SCPS among 
the highly ranked pathways. 

  
Immune cells: Four types of immune cells are detected by sc or sn RNAseq technologies.  

These include natural killer cells, three types of T-cells, B-Cells and three types of macrophages 
and monocytes (Figure 2). SCP-networks for macrophages contains pathways involved in 
antigen presentation, actin cytoskeleton dynamics and translation (Suppl. Figure 15A). 
Connection of the SCPs involved in actin cytosekeleton dynamics to the SCP ‘Macrophage 
migration inhibitory factor (MIF) signaling pathway indicates the potential for chemotactic activity. 
Macrophage migration is driven by rearrangements in the actin cytoskeleton that are activated 
by stimulation of the MIF receptor proteins CD74 and CXCR4 (84, 85) as identified in our data. 

 The SCP ‘Cellular iron uptake and export’ documents the central role of macrophages in 
iron homeostasis (86). It is predicted based on SLC39A8, a transmembrane transporter involved 
in transport of multiple divalent metal ions including iron (87) and the scavenger receptor CD163 
that is also involved in removing hemoglobin or haptoglobin-hemoglobin complexes by splenic 
red pulp macrophages and Kupffer cells (88). This SCP and the SCPs involved in actin dynamics 
are also identified by LMD transcriptomics of the interstitium.  SCPs in the natural killer cells 
identify antigen presentation, cell migration and actin cytoskeleton dynamics (Suppl. Figure 
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15B). Similarly, SCP-networks predicted for B-cells and T-cells contain pathways involved in 
antigen presentation and the immunoproteasome and translation (Suppl. Figure 15C and 15D, 
respectively). A detailed study of immune cell zonation of the human kidney has been published 
(14), while another single cell sequencing study characterized twelve myeloid cell subtypes 
associated with progression and regression of kidney disease in an animal injury model (6). 

 
Since immune activity was documented for all cell types along the nephron (14), we analyzed 

the fraction of cell type and subtype specific marker genes and proteins that were annotated to 
immune pathways in Gene Ontology. In agreement with the indicated study, about 5-15% of all 
marker genes participate in immune cell functions (Suppl. Figure 16). We want to emphasize 
that in the immune zonation study (14) the highest immune activity was predicted for epithelial 
cells of the pelvis, while our samples do not contain tissue from the pelvis. 
 
Using the atlas to understand the molecular basis of physiological functions.  

Using a similar approach to our post hoc power analysis, we investigated the robustness of 
the SCP-identified cell biological functions by randomly downsampling libraries from the sc/sn 
datasets. We subjected the top 300 DEGs of each cell type and subtype in each downsampled 
dataset to dynamic enrichment analysis. Predictions were ranked by significance. Investigation 
of the ranks that were obtained for those SCPs in the down-sampled datasets that are among 
the top seven predictions in the full dataset allows to estimate which SCPs are consistently 
predicted and probably describe biological core functions. The most consistently predicted SCPs 
share a high overlap with those SCPs that are predicted from multiple datasets, as described 
above. In case of the proximal tubule cells, most of the consistently identified SCPs by the sc 
(Suppl. Figure 17A) or sn RNAseq data (Suppl. Figure 17H) are related to cellular metabolism 
and energy generation, reabsorption and detoxification. In the case of the podocytes, the 
consistently identified SCPs are involved in cell-cell and cell-matrix adhesion. ‘Tight junction 
organization’ and ‘Hemidesmosome organization’ are consistently identified based on the sc 
(Figure 17B) and ‘Tight junction organization’ and ‘Adherens junction organization’ on the sn 
RNAseq assay (Figure 17I). These results document the central importance of the glomerular 
slit diagram that is described as a specialized form of both tight junctions (56) and adherens 
junctions (58). Supplementary figure 17 also shows the results obtained for the other cell types. 
 
Comparison of variation of oxygen supply and inferred levels of energy metabolism help 
understand sites of kidney injury  

To identify energy generation pathways in the different cells along the renal tubule of the 
nephron, we generated a focused ontology of metabolic pathways (Suppl. Figure 18A). Our 
ontology focused on the design of small pathway units that distinguished between reactions 
specific for a particular pathway (e.g., enzymatic reactions that participate in glycolysis, but not 
in gluconeogenesis) and reactions shared by two or more pathways (e.g., enzymatic reactions 
shared by glycolysis and gluconeogenesis). The different pathway units converged on more 
general parent pathways that contained all set of reactions involved (e.g., specific and shared 
reactions involved in glycolysis). Pathways were populated by literature curation, parent 
pathways inherited the genes of their children. Enrichment analysis of cell type, subtype and 
segment specific marker genes and proteins. Using this ontology allowed us to distinguish 
between aerobic and anaerobic as well as catabolic and anabolic pathways (Suppl. Figure 18B). 
To rigorously define the groups, we only considered a parent pathway if its child contains the 
reactions specific for that pathway among the predictions. 
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The patterns of expression of different pathways involved in aerobic and anaerobic energy 
generation along the nephron (Figure 7, Suppl. Table 11) and the varying levels of oxygen 
availability in the different regions of the nephron (89) are shown. This comparison helps us 
identify potential regions with differential susceptibilities towards hypoxia induced kidney injury. 
Missing capability for anaerobic energy generation as predicted by the transcriptomics data in 
humans (Suppl. Figure 18B) and observed in animal experiments (90) combined with low pO2 
suggests S3 segment of the proximal tubule as a site for hypoxia based injury. This reasoning 
is in agreement with experimental observations (89). High levels of capacity for aerobic energy 
generation activity in the medullary TAL (mTAL), a region with low oxygen supply, is 
complemented by high capacity for anaerobic energy generation, as also documented in animal 
experiments (90). When the output of the anaerobic energy generation is depleted then the 
mismatch between oxygen availability and aerobic glycolysis can lead to the accumulation of 
intermediates that can damage the region. Thus, our conclusions on TAL agrees with the 
experimental observation that mTAL injury during hypoxia depends on epithelial transport 
activity (89).  It can be readily seen that molecular profiles of metabolic pathways in the atlas 
provide a basis for understanding and predicting kidney injury due to hypoxia. 

Although podocytes are capable of generating energy by anaerobic glycolysis (91), we did 
not identify any podocyte marker genes involved in any of the analyzed energy generation 
pathways. Since maker genes were determined by comparing cell subtype, type or segment 
specific gene expression to expression profiles in all other cells or segments, our analysis does 
not document that these genes are absent in podocytes, but only that they are not  expressed 
in podocytes at higher levels  as compared to other kidney cells.   

Comparision of the physiological activity along the nephron and mRNA levels of transporters 
provide an understanding of the molecular basis for differential physiological activity.  

Physiological experiments allow us to determine how much of a filtered ion or small molecule 
is reabsorbed in a particular nephron segment. Results of these experiments are described in 
standard medical school physiology textbooks. Typically, the results shown in these textbooks 
specify the percentage of a filtered ion or molecule reabsorbed in a particular nephron segment 
(such as the proximal tubule) or finally excreted into the kidney pelvis and ureter. Sodium 
reabsorption is important for blood pressure control and hence we focused on sodium 
reabsorption as an example of how a cell level tissue atlas that details levels of the various 
sodium transporter genes can help us understand physiological homeostasis.  

 We obtained sodium reabsorption profiles from 4 different standard physiology text books  
(67, 92-94) and averaged the reabsorption percent values for each ion or molecule (Figure 8A-
1). An estimated fraction of 1/3 to 2/3 of the total sodium reabsorbed in the proximal tubule is 
reabsorbed by passive paracellular mechanisms (95). Ablation of the tight junction protein 
claudin2 that facilitates paracellular sodium transport reduces sodium reabsorption in the 
proximal tubule by 37% (96). Paracellular sodium reabsorption in the Loop of Henle is estimated  
to be  below 50% based on electrophysiological considerations (95), approximately around 30%. 
Since we wanted to compare the experimentally determined reabsorption profiles with mRNA 
levels of the different sodium transporters that mediate transcellular reabsorption, we removed 
37% and 30% from the experimental reabsorption profiles for the proximal tubule and Loop of 
Henle, respectively. Obtained physiology experimental values were readjusted to sum up to 
100% to document how much of transcellularly reabsorbed sodium is reabsorbed in each 
nephron segment (Figure 8A-2). We then calculated the sum of all mRNA levels of plasma 
membrane transporter genes for sodium for all cells in each segment of the renal tubule of the 
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nephron, using an ontology of kidney sodium transmembrane transport that we generated from 
prior knowledge (Suppl. Figures 19A/B/C). To determine if results are consistent across data 
sets, we calculated the mRNA levels from three sn RNAseq datasets, our sn RNAseq dataset 
(20) and two additional sn RNAseq (97, 98) datasets  from the Humphries laboratory. We 
hypothesized these sums to represent the total sodium transport capacity for each segment. 
Detailed methods and assumptions underlying this hypothesis are provided under Methods. We 
compared the mRNA levels from the sc and sn transcriptomic experiments with the 
experimentally measured reabsorption profiles of sodium along the nephron without (Figure 8B-
1) and with (Figure 8B-2) removal of paracellular sodium reabsorption. There is agreement 
between the levels of sodium reabsorption seen in physiology experiments with the mRNA levels 
in the different cell types along the nephron. We see differences mainly in the Loop of Henle. 
Under consideration that there is most likely spare capacity for sodium reabsorption in the Loop 
of Henle (66, 69-72), our data documents a good agreement between the calculated sodium 
reabsorption capacities and the experimentally measured reabsorption profiles. Since some 
nephron segments, such as Loop of Hele and collecting duct contain multiple cell types with 
different reabsorption mechanisms (66, 99) we decided to focus on the different cell types to 
determine the contribution of different gene products to the overall inferred transport capacity. 
The relative distribution of mRNAs encoding the different transporter proteins for sodium is 
shown in Figure 8C. Since some of the mRNA mapped to SCPs that are involved in blood-to-
lumen transport (Supp. Table 12), we defined these mRNA levels as negative to account for the 
opposite direction when compared to lumen-to-blood transport. Consequently, when we add the 
mRNA levels of all of these individual transporters along each nephron segment, we obtain the 
total fraction of inferred sodium transport capacity of each segment as documented in figure 8B. 
A significant contribution of sodium channels to the fine-tuning of sodium reabsorption in the 
collecting duct (22) could explain, why the mRNA levels associated with sodium transporter 
involved in blood-to-lumen transport are higher than the levels involved in lumen-to-blood 
transport in this subsegment. 

Calculation of the reabsorption capacities after inclusion of sc RNAseq dataset along with 
the sn RNAseq data, slightly decreased the match with the physiological reabsorption profiles 
and mRNA levels (Figure 8D). This is mainly due to the high mRNA levels associated with the 
basolateral amino acid transporter gamma+LAT1 that exports cationic amino acids into the blood 
in exchange for flow of large neutral amino acids and sodium into the cell (100, 101) (Figure 8D). 

Regarding the transport mechanisms involved in sodium reabsorption (Figure 8B/D), we 
highlight two details here. The proximal tubule is the primary region of the nephron for absorption 
of many metabolites including different amino acids, organic anions and sugars. Often this 
absorption is coupled to sodium transport. We identified a large number of distinct gene products 
that that are responsible for these transport processes.  We have grouped these transporters 
together based on the SCP hierarchy for total transcellular sodium transport. It is this sum of all 
the mRNA levels that matches the total transcellular sodium transport. Thus, the cell level atlas 
provides a detailed picture that was up to now not attainable. The second noteworthy feature is 
that NKKC2 is the major sodium transporter in the TAL cells of the Loop of Henle (66). In 
agreement with this cell physiological knowledge, mRNA encoding NKCC2 is the predominant 
species of sodium transporter in the TAL cells. 

The distribution of mRNAs for the various transporters agrees well with the known levels of 
reabsorption activities identified in physiological experiments. This agreement suggests that the 
levels of transporter mRNAs at the single cell level can provide an indication of transcellular 
transport capacity of the cell type. In support of this conclusion, we find that glucose transport 
along the nephron agrees with glucose transporter mRNAs (Suppl. Figure 19D/F) and is mainly 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2020.07.23.216507doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.216507


17 

 

mediated by SGLT2 (Suppl. Figure 19E/G) that is responsible for ≥ 80% of filtered glucose 
reabsorption in the proximal tubule (102). 
 
 
DISCUSSION 

The integration of multiple types of omics data allows us to describe in depth multiple 
subcellular processes and pathways at cell level resolution. From such description we can 
hypothesize key functions, that when perturbed define disease states. Such disease states could 
have convergent clinical phenotypes even though the underlying molecular changes are 
different. Thus, our detailed characterization described here can provide the starting point for a 
new framework for molecular classification of kidney diseases. For example, the identification of 
both mitochondrial and peroxisomal β-oxidation and carnitine transport and local biosynthesis 
pathway in PT cells suggest how individual variations in any of these SCPs can contribute to the 
effects of kidney injury including fibrosis (9). Thus, a convergent clinical phenotype can arise 
from very different molecular changes related to energy metabolism. Mapping these changes in 
individual patients may allow for better classification of disease states.  
 
Integrated view of kidney cellular functions 

One advantage of the presented multiomics data integration strategy is the ability to infer 
how different classes of biomolecules may enable complex multicellular functions leading to 
potentially predictive biomarkers. Spatial metabolomics identifies N-Palmitoylsphingomyelin (SM 
d18:0/16:1) as a spatial correlate of glomerular kidney segments (correlation coefficient > 0.9; 
Figure 9A), as described previously (103, 104). To identify the cell types involved in its synthesis, 
we screened all glomerular cell types for expression of genes involved in ceramide, 
sphingomyelin and sphingosine metabolism (105, 106). Transcriptomics identify SERINC5 
(serine incorporator 5) and CERS6 (ceramide synthetase 6) as specifically expressed in 
podocytes or in podocytes and mesangial cells, respectively (Figure 9B). SERINC5 incorporates 
serine into the membrane of the endoplasmic reticulum, making it available for ceramide and 
phosphatidylserine synthesis (105). CERS6 is identified by all transcriptomic assays in the 
podocyte. CERS6 is one of six ceramide synthases that converts sphingosine and acyl-CoA into 
ceramide. In contrast to the other five ceramide synthases, it has a high substrate specificity 
towards palmitoyl-CoA (C16:0) (106), thereby generating ceramides with the correct acyl chain 
length to be converted into SM d18:0/16:1. Only one technology, sn RNAseq, shows CERS6 to 
be expressed in mesangial cells as well, albeit at lower level of significance (rank 293 in 
mesangial cells vs 116 and 126 in podocytes; Suppl. Figure 20). Transcriptomic datasets also 
predict the expression of enzymes involved in sphingomyelin synthesis in non-glomerular cells. 
In general, only one specific enzyme of this pathway is expressed per cell type. Consequently, 
podocytes (and mesangial cells) are the most likely synthesis site for this particular 
sphingomyelin as demonstrated by the spatial metabolomics data. Altered metabolism of 
multiple sphingolipids including sphingomyelin and its metabolites is observed in several 
glomerular diseases (107). Cellular sphingomyelin is predominantly localized at membranes 
derived from the trans-Golgi and plasma membrane (108). It is involved in multiple functions, 
including cell signaling (109), lipid rafts formation (110), caveolar endocytosis (108) and 
apoptosis (111). Additionally, it has long been known that sphingomyelin (as part of lipid rafts) 
is enriched in desmosomes (51, 110) and tight junctions (54). Given the central importance of 
foot process interactions between neighboring podocytes, the potential importance of this 
metabolite in making different types of cell-cell contacts and the enzymes involved in its 
biosynthesis in podocytes can be readily appreciated.  Five technologies that focus on genes 
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and proteins identify cell-cell/cell-matrix adhesion as podocyte key functions, and the sixth 
technology identifies a specific metabolite that we consequently predict would be involved in the 
same key functions thus providing integrated support for the role of sphingomyelins in podocyte 
cell-cell interactions. Sphingomyelin with very long (C24) acyl chains, but not palmitoyl (C16) 
sphingomyelin is the predominant species associated with tight junctions (54). Tight and 
adherens junctions are morphologically only observed in developing or diseased podocytes (55, 
112), while in healthy podocytes they have morphed into the glomerular slit diagram (55). These 
observations indicate that we may be able to use decrease in levels of C16 SM and increase in 
long chain SM as a predictive biomarker for disease progression even prior to changes in 
glomerular filtration rates. Such hypotheses may be tested in the future.  

The value of a reference tissue atlas 
There have been several valuable studies focused on sc transcriptomic analyses of human 

kidney tissue (8-10, 13, 15, 17) in the context of different diseases. Although each of these 
studies have provided substantial insight into disease processes, their mapping of undiseased 
kidney tissue has often been limited and focused on cell types relevant to the disease of interest. 
In contrast, in this study, we have studied only human kidney specimens without disease; we 
use multiple omics technologies, including regional and sc/sn transcriptomics, proteomics and 
spatial metabolomics in conjunction with imaging assays to obtain an extensive, near 
comprehensive spatial map of the human kidney at the single-cell resolution.  Our experiments 
identify all known major cell types in the kidney as well as recapitulating several known subtypes. 
Additionally, we are able to identify different types of endothelial cells, vascular smooth muscle 
cells, fibroblasts and different circulating immune cells. Together, these different cell types and 
subtypes provide a detailed picture of the cellular and molecular composition of the human 
kidney. Here, we have extended our bioinformatics analyses beyond ranked lists of genes and 
associated pathways to identify coherent networks of pathways that give rise to function (Table 
1). We have developed our model in a systematic manner such that we identify key functions for 
each cell type and subtypes. These physiological roles identified through pathways and marker 
gene lists enable the development of a multiscale atlas that connects expression patterns to 
whole-cell and tissue level physiological functions. The proteomics and metabolomics as well as 
the spatial imaging data from CODEX allows for the mapping of the sc/sn RNAseq based cell 
type identification to canonical cell type markers and appropriate spatial regions. This exercise 
provides independent orthogonal validation of both the cell type and the spatial localization within 
the nephron (Figs 2A and 7).  

 
Limitations and future refinements  

Several limitations of our study should be noted. Not all cell types are identified with the same 
certainty and depth, although our cell types agree well with other published studies (9, 14, 17, 
97, 113, 114) Additionally our single cell and sn mRNA – Seq assays  contain a relatively low 
number of cells by current standards. However, this is compensated for by use of multiple omic 
and other technologies, all which provide convergent conclusions in the identification of cell 
types.  

 As different cell types exist within the kidney tissue at various levels the numbers of cells for 
the various types of sc and sn RNAseq assays also vary widely. When fewer cells are detected, 
typically, we also identify a lesser number of marker genes and SCPs. Currently, we do not know 
if the relative number of cells we detect in the sc/sn RNAseq assays reflect the proportions in 
situ. Further experiments are needed to resolve this issue. It appears likely that to map SCPs to 
same depth in all cell types, additional subjects are needed. Nevertheless, for the major cell 
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types of kidney, the post hoc power analyses indicate that we have sufficient power to map the 
core cell-level functions from SCPs. In addition, the number and functional identity of major cell 
subtypes need to be further studied. Currently, subtype identification is based on statistical 
reasoning used for the clustering algorithms. How many subtypes there are for a given kidney 
cell and whether these subtypes exist in all individuals requires further studies using spatial 
imaging technologies. Studies in other tissues, such as brain (115) and heart (116), have 
identified multiple subtypes of paraventricular interneurons and ventricular myocytes. Hence, it 
is likely that kidney cell types may also contain major subtypes. In spite of these limitations, this 
study provides a detailed functional view of a kidney map at single-cell resolution which can be 
used to understand major aspects of kidney physiology as demonstrated by the two examples 
described above.  

 
Information becomes knowledge only when it is deliberately and systematically cataloged 

such that new cohesive insights can readily be drawn, as shown above for sphingomyelin related 
functions in podocytes. Ontology is an ideal tool that can logically represent the data and 
metadata in a human- and computer-interpretable manner. It can enable the generation of new 
knowledge, especially when such knowledge involves multiscale relationships between 
molecules, cell types and their subtypes and tissue level physiological function. In addition to the 
integrated analytics presented here, KPMP is also building a community-based Kidney Tissue 
Atlas Ontology (KTAO) (117). KTAO will systematically integrate different types of information 
(such as clinical, pathological, cell and molecular) into a logically defined tissue atlas, which can 
then be further utilized to support various applications. Taken together, the final knowledge 
environment and the kidney tissue atlas constructed by KPMP, which is available at 
www.atlas.kpmp.org, should be able to help molecularly characterize cellular types and subtypes 
in the kidney; improve patient care by providing new disease classifications; and may ultimately 
lead to new patient-specific novel therapeutic approaches. 
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Figure 1. Graphic outline of KPMP data integration and harmonization procedures. The 
“subway map” representation of the experimental and analytical protocols used within KPMP is 
shown in operational flow from kidney biopsy to the integrated multimodal data represented in 
this manuscript. The kidney biopsy, which is processed through three different tissue processing 
methods, is shared among TISes that generate the data. Four key modalities of molecular data 
are generated: transcriptomic (red), proteomic (blue), imaging (yellow) and metabolomic (green). 
Biopsy core 2 and 3 are used for the molecular analysis, biopsy core 1 (not depicted) is used for 
histological analysis. 
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Figure 2. Integrated transcriptomic analysis reveals coherent cell-type-specific 
signatures. (A) Scheme showing the major nephron segments as identified in our datasets. Sc 
and sn datasets were either analyzed separately (20, 21) or combined. UMAP documents the 
results of the combined analysis. Cell subtype counts were obtained from the separated 
analyses (Suppl. Figure 4A/B). The corresponding LMD segments shown include the markers 
used to identify each subsegment: Phalloidin – FITC labeled phalloidin for dissection of glomeruli 
and other structures; LRP2 – Megalin with AlexaFluor 568 secondary (red); UMOD – directly 
conjugated AlexaFluor 546 Ab to uromodulin (red); fluorescein labeled PNA – Peanut Agglutinin 
labels collecting ducts (green); DAPI included for nuclei (blue). (B) Each cell or nucleus in the 
combined transcriptomic sc/sn analysis is mapped to the closest subsegment (subsegment with 
highest Pearson correlation of gene expression) in the LMD RNAseq data. To compute the 
Pearson correlation between the gene expression profiles of cells and LMD segments, the gene 
profiles were restricted to genes shared between the two datasets and showing variable 
expression in the single-cell dataset. Correlations were computed between the logarithm of the 
mean ratio vector for each LMD segment and the scaled expression profile of each cell in the 
sc/sn dataset. For each sc/sn cluster and LMD subsegment, the number of cells/nuclei from that 
cluster assigned to the corresponding segment is displayed in the heatmap. The heatmap is 
colored according to the number of cells/nuclei assigned to each LMD subsegment, scaled so 
each column has mean of 0 and standard deviation of 1. For the overlap between cell type 
annotations in the combined and integrated analyses see Supplementary Figure 4C/D and for 
the LMD mappings based on the separated analyses see Supplementary Figure 4E/F.  
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Supplementary Figure 1: Coloring of cells and nuclei by dataset documents that each cell 
cluster contains cells and nuclei from each dataset. 
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Figure 3. Correlation analyses demonstrate concordance across different omics 
technologies. Log2(fold changes) between podocyte (or glomerulus) and proximal tubule cells 
(or tubulointerstitium) were calculated for each subject based on each assay. Common 
genes/proteins identified by each assay subjected to comparative analysis. (A) Hierarchical 
clustering of pairwise correlation coefficients between the log2(fold changes) groups samples 
based on cell type/segment. Heatmap shows up- and downregulated genes/proteins of each 
sample in red and blue, respectively. Genes and proteins were rearranged according to the 
clustering results. White spots indicate undetected genes or no expression differences. Genes 
and proteins that are not consistently detected across all six technologies were removed. 
Nevertheless, observed grouping of samples by anatomical region is independent of this 
removal (Suppl. Figure 2B). (B) Log2(fold changes) obtained by the same assay were averaged 
across all subjects, followed by averaging of the results across all four transcriptomics and two 
proteomics assays. Positive (negative) log2(fold changes) indicate podocyte/glomerular 
(PT/tubulointerstitial) expression. In arbitrarily selected cases we replaced the dots by the official 
NCBI gene symbols.  (C) Pairwise correlations between the sc/sn RNAseq and proteomic 
datasets document highest concordance between both proteomic and single-cell assays. 
Positive (negative) log2(fold changes) indicate podocyte/glomerular (PT/tubulointerstitial) 
expression. 
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Merge single cell and nucleus gene expression values for all 
proximal tubule cell subtypes of each participant by keeping 

the highest expression value for each gene.
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Supplementary Figure 2: Cross-platform comparison of gene and protein expression. (A) 
Pipeline for correlation analysis across different omics technologies. See methods for details. 
(B) Hierarchical clustering of pairwise correlation coefficients between all samples based on the 
log2(fold changes) without removal of those genes and proteins that are not consistently detected 
across all assays also groups the samples by anatomical region and not technology. In contrast, 
pairwise correlation and hierarchical clustering based on logarithmized absolute expression 
values groups samples by technology, (C) with  or (D) without removal of the not consistently 
detected genes and proteins. 
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Supplementary Figure 3: Illustration of method used for mapping of single cells/nuclei 
to CODEX. 
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Figure 4. Imaging-based and transcriptomic assays show consistent cell-type-specific 
marker signatures. Mapping matrix showing relationship between markers characterizing 
CODEX cell-type clusters and transcriptomic cell-type clusters. Colorbars to the top and left of 
the heatmap show broad segmental/cell-type categories (red = endothelial, gray = 
fibroblast/mesangial, turquoise = podocyte, orange = tubular, gold = immune). See figure 2A for 
cell type abbreviations. 
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Supplementary Figure 4: Separated and integrated analysis of sc and sn RNAseq 
datasets generate consistent cell type mapping. Cell types and subtypes identified by the 
separated analyses of the (A) sn and (B) sc RNAseq datasets. Bars indicate the percentage of 
all cells that mapped to a particular cell type or subtype, colors indicate the tissue collection 
method each particular cell was obtained by. Cell type assignments of separate clusters from 
(C) sn and (D) sc RNAseq datasets were compared to those obtained by the integrated analysis. 
Numbers indicate nuclei/cell counts; fields are colored by the percentage of cells within each 
field compared to the row margins. Note that in separated analyses of the sc RNAseq dataset, 
the applied cutoff for mitochondrial gene expression was higher (≤50% instead of ≤20%); 
consequently, some of the cells that were removed in the combined analysis were assigned to 
cell types in the separated analysis. Similarly, mapping of the (E) nuclei and (F) cells to LMD 
segments documents that the annotations obtained from the separated analyses map to their 
correct anatomical origin, as observed for the integrated analysis. All heatmaps are colored 
according to the number of cells assigned to each LMD subsegment, scaled so each row 
has mean of 0 and standard deviation of 1. See figure 2A for cell type abbreviations. 
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Figure 5: Single-cell/nucleus transcriptomic post hoc power analyses show that nine 
libraries are sufficient to identify most major kidney cell types. Subject libraries (or samples) 
were randomly and progressively removed from (A) the sc (24 libraries) and (B) sn (47 libraries) 
RNAseq to generate at max 100 non-overlapping random groups for the remaining samples. Sc 
and sn datasets were subjected to an automated data analysis pipeline (Suppl. Figure 5A). To 
assign cell types to the identified clusters we compared cluster specific markers of each analysis 
with literature curated cell type specific genes (Suppl. Figure 5B). We counted how many 
analyses based on the same number of remaining libraries that have identified a particular cell 
type. Horizontal dashed lines mark the 95% plateau; vertical dashed lines indicate the minimum 
number of libraries needed to identify a given cell type with a probability of 95%. See Suppl. 
Figure 5 for complete post hoc power analysis results. See figure 2A for cell type abbreviations. 
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Supplementary Figure 5. Complete results of single-cell/nucleus transcriptomic post hoc 
power analysis. Subject libraries or samples were randomly and progressively removed from 
the sc (24 libraries) and sn (47 libraries) RNAseq to generate at max 100 non-overlapping 
random groups for each number of remaining libraries. (A) Sc and sn datasets were subjected 
to an automated sc/sn data analysis pipeline. (B) Results were averaged for each number of 
subject libraries and compared between the downsampled and full datasets as indicated. Post 
hoc power results of the (C) sc and (D) sn RNAseq datasets. ‘Cell type detected’: This plot 
documents how often (in percent) a particular cell type was detected in dependence of the 
number of analyzed libraries. ‘Significance of cell type’: To assign cell types to each cluster 
we subjected cluster specific marker genes to enrichment analysis using Fisher’s Exact test and 
a list of literature curated cell-type specific essential genes. For each cluster predicted cell types 
were ranked by significance and the top ranked cell type was assigned to that cluster. The plot 
shows the -log10(p-values) of the first (i.e. the selected) and the second ranked cell type. 
Comparison of both p-values allows an estimation of the reliability of a particular cell type 
assignment. The larger the difference between both -log10(p-values), the more certain is that 
particular cell type assignment. ‘# clusters’ documents how many clusters were assigned to 
that particular cell type. ‘element/not element of Reference cluster’: Cells/nuclei that were 
assigned to the same (above abscise, positive values, full circles) or to a different cell type (below 
abscise, negative values, open circles) as in the full dataset were counted in each downsampled 
dataset.  ‘element/not element of indicated LMD subsegment’: Using cell and nuclei 
mappings presented in Suppl. Figure 4E/F we counted how many cells/nuclei of a particular cell 
type mapped to the indicated LMD subsegment (above abscise, positive values, full circles) or 
to a different LMD subsegment (below abscise, negative values, open circles). ‘DEGs log(fc)’: 
Correlation between the log fold changes of cell type specific markers obtained for the 
downsampled and full dataset. Notify that all comparisons were only done, if a particular cell 
type was detected (as indicated in the first diagram). See figure 2A for cell type abbreviations. 
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Supplementary Figure 6: Pathway enrichment analysis of spatial metabolomics data. All 
(A) Non-glomerular and (B) glomerular metabolites obtained from the three nephrectomy 
samples were subjected to pathway enrichment analysis using MetaboAnalyst. Some pathways 
were predicted from metabolites that are general precursors for the synthesis of multiple 
products and participate in multiple pathways. To exclude such unspecific and consequently 
uncertain pathway predictions, we focused only on those pathways that were predicted from a 
pathway specific metabolite (see methods for details). To merge the metabolic pathways with 
the MBCO SCP-networks, we mapped the MetaboAnalyst pathways 
‘Glycolysis/Gluconeogenesis’ and ‘Glycerophospholipid metabolism’ to the MBCP SCPs 
‘Glycolysis and Gluconeogenesis’ and to ‘Phosphoglyceride biosynthesis’, respectively. Based 
on identified metabolites, we added the MBCO SCPs “Carnitine shuttle” and “Carnitine 
biosynthesis and transport” to the predicted MetaboAnalyst pathways (see methods for details). 
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Figure 6. Enrichment analysis of markers for proximal tubule and glomerular cells and 
segments predicts cell well known functions. Nephrectomy tissues were subjected to single-
nucleus (SN) and single-cell (SC) RNAseq, laser microdissected (LMD) RNAseq and 
proteomics, near single cell (NSC) proteomics and spatial metabolomics. (A) DEGs or DEPs of 
each PT cell subtype or subsegment were subjected to dynamic enrichment analysis using the 
Molecular Biology of the Cell Ontology (MBCO). Subcellular processes (SCPs) that were among 
the top seven predictions were connected by dashed lines, if their interaction was part of the top 
25% inferred MBCO SCP interactions, and by dotted lines, if their functional relationship was 
curated from the literature. Supplementary figure 8 shows additional predicted SCPs involved in 
cell adhesion and translation. Metabolites associated with non-glomerular compartments were 
subjected to MetaboAnalyst enrichment analysis (Suppl. Figure 6). Any pathway among the top 
eight predicted pathways that was predicted based on metabolites specifically for that pathway 
was mapped to MBCO SCPs, if possible, and integrated into the PT SCP network. MBCO SCPs 
“Carnitine shuttle” and “Carnitine biosynthesis and transport” were added to the predicted 
MetaboAnalyst pathways, since four and two involved metabolites were among the non-
glomerular metabolites (see methods for details). (B) Humanbase analysis of DEGs and DEPs. 
(C) SCPs predicted by dynamic enrichment analysis for the glomerular segment by the LMD 
RNAseq and Proteomics and NSC Proteomics assay were mapped to one of four detected 
glomerular cell types, because they were either detected in that cell type as well or related to 
SCPs detected for that cell type. Numbers indicate at which rank a particular SCP was detected. 
Notify that dynamic enrichment analysis can predict single SCPs or combinations of up to three 
SCPs, and consequently the same rank can be given to multiple SCPs. SCP network predicted 
for (D) podocytes, (E) mesangial cells and (F) glomerular endothelial cells by the sn and sc 
RNAseq datasets were merged with those SCPs that were predicted by the glomerular segment-
specific datasets and assigned to each cell type as described above. (G) Podocyte specific 
modules were predicted by combined analysis of the podocyte sc and sn markers and the 
glomerular DEGs and DEPs. Predicted (H) SCP-network and (I) modules for the thick ascending 
limb cells/segment.  
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Supplementary Figure 7: Mapping of tubulointerstitial SCPs to cell types. SCPs predicted 
by dynamic enrichment analysis for the tubulointerstitial segment by the LMD Proteomics and 
spatial metabolomics assays were mapped to one of three detected glomerular cell types, 
because they were either detected in that cell type as well or related to SCPs detected for that 
cell type. Numbers indicate at which rank a particular SCP was detected. Notify that dynamic 
enrichment analysis can predict single SCPs or combinations of up to three SCPs, and 
consequently the same rank can be given to multiple SCPs. When an SCP was predicted by 
multiple cell subtypes, the highest rank is visualized in this figure. 
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Supplementary Figure 8: Enrichment analysis of differentially expressed genes and 
proteins in proximal tubule cells and subsegments. See Figure 5 for details. SCPs that were 
among the top seven predictions based on dynamic enrichment analysis of PT DEGs and DEPs 
and were removed from the main figure for space reasons. 
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Supplementary Figure 9: Enrichment analysis for glomerular datasets. (A) DEGs and 
DEPs identified by LMD RNAseq and Proteomics and NSC Proteomics were subjected to 
dynamic enrichment analysis. (B) SCP network predicted for parietal epithelial cells by the sn 
and sc RNAseq datasets were merged with those SCPs that were predicted by the glomerular 
segment-specific datasets and assigned to this cell type (Figure 5C). 
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Supplementary Figure 10: Enrichment analysis for the Loop of Henle. (A/B) Descending 
limb cell specific DEGs were subjected to dynamic enrichment (A) and module analysis (B). 
(C/D) Similarly, thin ascending limb cell specific DEGs were subjected to dynamic enrichment 
(A) and module analysis (B). 
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Supplementary figure 11: Enrichment analysis for the distal convoluted tubule. (A/B) 
Distal convoluted tubule cell and segment specific DEGs were subjected to dynamic enrichment 
(A) and module analysis (B). 
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Supplementary Figure 12: Enrichment analysis for the collecting duct. (A/B) Connecting 
tubule cell specific DEGs were subjected to dynamic enrichment (A) and module analysis (B). 
(C/D) Principal cell and collecting duct specific DEGs were subjected to dynamic enrichment (C) 
and module analysis (D). (E/F) Intercalated cell and collecting duct specific DEGs were 
subjected to dynamic enrichment (E) and module analysis (F). (G) Enrichment analysis of the 
marker genes for 4 different intercalated cell subtypes from sn and sc RNAseq using Gene 
Ontology Biological Processes identifies the pathways ‘Phagosome acidification’ and 
‘Phagosome maturation’. 
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Supplementary Figure 13: Enrichment analysis for vascular cells. (A) Endothelial cell 
specific DEGs were subjected to dynamic enrichment. (B) Similarly, vascular smooth muscle 
cell specific DEGs were subjected to dynamic enrichment analysis. 
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Supplementary Figure 14: Enrichment analysis for interstitial cells. (A) Interstitial fibroblast 
cell and segment specific DEGs were subjected to dynamic enrichment analysis. 
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Supplementary Figure 15: Enrichment analysis for immune cells. (A) 
Macrophage/Monocyte, (B) Natural Killer cell, (C) B-cell, and (D) T-cell specific DEGs were 
subjected to dynamic enrichment analysis. 
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Supplementary Figure 16: Expression of immune related genes in the kidney cell types. 
Using all genes that are assigned to the Gene Ontology Biological Process “immune system 
process” or any of its children processes based on the “is_a” or “part_of” relationships, we 
documented the percentage of immune system related genes (orange) in all cell type, subtype 
and segment-specific marker genes and proteins. See figure 2A for cell type abbreviations. 
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Supplementary Figure 17: Cellular key functions are most consistently predicted by 
downsampled sc and sn RNAseq datasets. To analyze the reliability of predicted cell type-
specific biology we subjected the top 300 cell-type specific marker genes that were obtained 
from the full or down-sampled sc and sn RNAseq datasets (Suppl. Figure 5C and 5D, 
respectively) to dynamic enrichment analysis. SCPs that were among the top 7 predictions for 
the full sc and sn RNAseq were identified. We identified the dynamic enrichment ranks of these 
SCPs in the down-sampled datasets and averaged them across all datasets with the same 
number of libraries. Color scale ranges from 1 (dark green/orange/purple) to 21 or higher (white). 
Notify that SCPs predicted for the full datasets are not necessarily the same as the one 
documented in figure 6, since the 2124, 4447 and 721 individual full and downsampled datasets 
were analyzed using an automated pipeline that did not allow manual ad hoc optimization. The 
first set of subfigures shows the predicted SCPs identified from the sc RNAseq dataset for (A) 
proximal tubule cells, (B) glomerular cell types, (C) cell types of the Loop of Henle, (D) of the 
distal convoluted tubule, (E) of the collecting duct, (F) vascular cells and (G) non-immune and 
immune interstitial cells. The second set of subfigures shows the predicted SCPs identified from 
the sn RNAseq dataset for (H) proximal tubule cells, (I) glomerular cell types, (J) cell types of 
the Loop of Henle, (K) of the distal convoluted tubule, (L) of the collecting duct and (M) vascular 
cells. 
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Figure 7: Aerobic and anaerobic energy generation profiles and oxygen supply accurately 
highlights sites of hypoxia induced injury. To compare energy generation profiles with 
experimentally determined oxygen supply in the different nephron regions, we generated an 
ontology that allows the separation of aerobic and anaerobic pathways involved in energy 
generation. Enrichment analysis of cell type, subtype and subsegment marker genes with this 
ontology predicts high dependency of proximal tubule cells on aerobic energy generation, 
suggesting S3 as a primary injury site during hypoxia (marked by two explosions) because of its 
low oxygen supply under basal conditions. Enrichment results predict a high aerobic energy 
generation activity for the medullary TAL that can be compensated by anaerobic energy 
generation. In combination with the already low oxygen saturation in that segment under normal 
conditions our results suggest that mTAL is the second, though less likely, injury site during 
hypoxia (marked by one explosion). Enrichment results are combined from those shown in 
Suppl. Figure 17B. Numbers in boxes indicate pO2 in mmHg taken from (89), NA: not available. 
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Supplementary Figure 18: Prediction of cellular dependencies on aerobic and anaerobic 
metabolic pathway activities. (A) We designed a small ontology that allows distinguishing 
between aerobic and anaerobic as well as catabolic and anabolic reactions. Shown is the 
annotated pathway hierarchy. Colored pathways indicate parent and child pathway pairs, where 
the child contains only enzymes that are specifically involved in the function of its parent and of 
any other parent. Pathways were populated with genes by literature curation. Parents are 
populated with all genes of the child pathways. (B) Top 500 cell type, cell subtype and 
subsegment specific marker genes and proteins were subjected to enrichment analysis using 
the leaf pathways shown in A. Initial enrichment results determined with pathways were used for 
the analysis shown in figure 7. For each cell type, subtype and subsegment we only considered 
a higher level pathway, if the child pathway that contains the enzymes specifically involved in 
the higher level pathway activity was also predicted (as indicated by the colored pathway pairs 
in A). Cell types that contain many cells obtained from medullary samples are marked. See figure 
2A for cell type abbreviations. 
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Figure 8: Predicted sodium transport capacities match with experimentally determined 
reabsorption profiles. (A) Sodium reabsorption profiles that document the percentage of the 
glomerular filtered sodium in each segment of the nephron were obtained from four different 
standard physiology and medical text books (92-94, 120), followed by calculation of the mean 
and standard deviation values.  These values for total reabsorption are shown in (1).  About 37% 
of the sodium reabsorbed in the proximal tubule is paracellular(96, 134), while paracellular 
sodium reabsorption in the Loop of Henle is estimated to be below 50% (95). Since we want to 
compare the experimentally determined sodium reabsorption profiles with mRNA levels involved 
in transcellular sodium reabsorption, we subtracted 37% and 30% paracellular transport values 
from the total sodium reabsorption values in the proximal tubule and Loop of Henle, respectively. 
Profiles were readjusted, so that they sum up to 100%, followed by calculation of means and 
standard deviations for each segment. These values are shown in (2). (B) To compare predicted 
reabsorption capacities from mRNA levels with those from physiological experiment derived 
reabsorption profiles, we generated an ontology that assigns genes to the different subcellular 
processes responsible for sodium movement by different transporter proteins. All transport 
processes were integrated into a hierarchy that finally converges on lumen-to-blood and blood-
to-lumen transport for sodium. For each of three different sn RNAseq datasets  (one from KPMP 
(20, 21, 135) and two from the Humphrey laboratory(97, 98)) obtained for reference tissue we 
calculated the sum of all mRNA counts that mapped to genes involved in lumen-to-blood or 
blood-to-lumen transport of Na+ for each segment of the renal tubule. The net reabsorption 
capacity for sodium was determined by calculating the difference between both mRNA count 
levels. Segment specific net reabsorption capacities are expressed in percent of total 
reabsorption along the nephron, followed by calculation of mean and standard deviations.  
Physiological experiment derived reabsorption profiles determined in (A) with (I) and without (II) 
paracellular sodium reabsorption in the proximal tubule are shown in gray. (C) Cell type specific 
transport capacities for sodium. Segment associated single cell or nucleus read counts were 
summed up for selected transport processes involved in sodium transmembrane transport, 
followed by normalization of the results towards the net lumen-to-blood transport capacity (see 
figure (B) for details). Normalized transport capacities from the single cell and single nucleus 
RNAseq datasets were averaged. All transport capacities that described lumen-to-blood or 
blood-to-lumen transport were assigned to be positive or negative, respectively. Notify that the 
positive bars documented in (C)  are the sums of all (positive) lumen-to-blood and (negative) 
blood-to-lumen mRNA levels of each segment. Parent-child relationships between shown 
subcellular processes (SCPs) are documented in the legend, where children SCPs are written 
below their parent SCPs and shifted to the right. Parent SCPs only contain mRNA levels 
mapping to genes that are not assigned to any of the documented children SCPs. For a proper 
documentation of the SCP hierarchy, we added all offspring SCPs of every selected SCP to the 
legend, even if the offspring SCPs were not selected. Unselected offspring SCPs whose mRNA 
levels are not shown in the bar diagrams are not annotated to a color in the legend. Their mRNA 
levels are part of the next selected ancestor SCP. Notify that in case of multiple parent SCPs we 
only show one parent in the legend that was arbitrarily selected (Supplemental Table 3). (E) 
Comparison between reabsorption profiles and reabsorption capacities that were predicted from 
the 3 sn RNAseq datasets used above and the KPMP sc RNAseq dataset. (F) Sodium 
reabsorption mechanisms were predicted based on all 4 datasets. See figure 2A for cell type 
abbreviations. 
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Supplemental figure 19: Generation of an ontology for transmembrane ion and molecule 
movements. (A) Flow chart documenting the steps involved in the generation of the ontology. 
(B) Shown are example transporters (gray) involved in sodium and glucose lumen-to-blood 
(L2B) transport and how they integrate into the hierarchy to finally converge on sodium and 
glucose lumen-to-blood transport. Symporter mechanisms are colored in orange, antiporter 
mechanisms in blue. (C) The figure illustrates SCPs involved in sodium blood-to-lumen (B2L) 
transport and their integration into the SCP hierarchy. (D) Reabsorption capacities for glucose 
transmembrane transport were calculated using the three sn RNAseq datasets as described in 
figure 8 and compared to experimentally determined glucose reabsorption profiles. Since only 
one physiology text book (94) documented the glucose reabsorption profiles, there is no 
standard deviation for the experimental values. Facilitated glucose transporters were excluded. 
(E) As for sodium, we analyzed the transport mechanisms involved in glucose reabsorption. (F) 
We compared the reabsorption capacities that were calculated using the three sn and the sc 
RNAseq datasets with the experimental reabsorption profiles, (G) followed by visualization of 
the individual transport mechanisms for glucose. 
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Figure 9: Podocytes are the synthesis site for glomerular sphingomyelin (SM) 
d18:0/16:1. (A) Matrix-assisted laser desorption/ionization mass spectrometry imaging reveals 
that the ion distribution of SM 18:0/16:1, [M+Na]+, correlates with the glomerular kidney 
regions. (B) Podocytes express two genes involved in sphingomyelin synthesis including the 
genes CERS6 that is identified by both sn and sc RNAseq datasets and the LMD RNAseq 
dataset. CERS6 specifically generates C16 ceramides, the direct precursor for SM 
d18:0/16:1. (C) CERS6 is also expressed in mesangial cell, though only detected by the sn 
RNAseq dataset. Glomerular expression of the gene SERINC2 is detected by the LMD RNAseq 
assay. 
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Supplementary Figure 20: Expression of genes involved in sphingomyelin synthesis and 
sphingosine metabolism in all kidney cell types and segments. Expression of curated 
enzymes was detected in the indicated cell types/segments. Genes were ranked by significance 
and ranks were added to the figure.  
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SC SN

MC 1

vSMC_MC 1

Podocytes POD 1 1 PODXL, NPHS2, CLIC5, NES, PTPRO
cell-cell adhesion, cell matrix adhesion, 

fibronectin assembly

Glomerular 

endothelial cells
GC-EC 1 IGFBP5, EMCN, IFI27, MGP, CRHBP actin cytoskeleton, paracellular cell migration

Epithelial cells
PEC, 

PEC/LOH
1 1

CTGF, SPATA22, CFH, PAMR1, CTD-

3037G24.3, TNNT2

paracellular cell migration, Antigen presentation, 

contraction

Proximal tubule Proximal tubule cells PT 7 4 PDZK1, PDZK1IP1, LRP2, ANPEP, GPX3

beta oxidation, energy generation, 

gluconeogenesis, protein/ammonium 

metabolism, toxin and drug clearance, ion and 

molecule reabsorption

Descending limb cells DTL 1 1 VCAM1, CRYAB, CLU, TNFSF10, KRT18 barrier formation, cytoskeleton

Thin ascending limb 

cells
ATL 1 3 C8ORF4, SPP1, KRT7, VMP1, SAT1 cell adhesion, cytoskeleton

Thick ascending limb 

cells
TAL 1 2 SLC12A1, UMOD, GP2, EGF, CLCNKA

ion reabsorption, glycolysis, energy generation, 

vesicle traffic

Distal tubule
Distal convoluted 

tubule cells
DCT 1 1 SLC12A3, EMX1, EGF, TMEM52B, WNK1 ion reabsororption, vesicle traffic

Connecting tubule 

cells
CNT 1 1 CALB1, SLC8A1, TEX41, PIK3C2G, WNK1 Ion reabsororption

CNT-PC 1

PC 1 3

tPC-IC 1

IC 2 3

Vascular smooth 

muscle cells
vSMC 1 MYH11, NTRK3, LDB3, PDZRN4, MCAM cellular contraction

Endothelial cells EC 2 4 TCF4, EGFL7, EPAS1, PTPRB, TIMP3 paracellular cell migration, antigen presentation

Non-Immune 

interstitium
Fibroblasts FIB 1 1 COL6A3, C1R, AEBP1, CALD1, COL1A2 ECM synthesis, complement system

Natural killer cells NKC 1 GNLY, NKG7, CCL4, GZMB, CCL3
antigen presentation, cell migration/actin 

cytoskeleton

T cells
T-cyt, T-

mem, T-act
3 CXCR4, BTG1, CD69, ZFP36L2, CD52 antigen presentation

B cells B cell 1 CD79A, MS4A1, IGJ, CD79B, VPREB3 antigen presentation

MON 1

IMM 1

MAC 1

Region Cell type Abbreviation

# Cell 

subtypes

Loop of Henle

Collecting duct

Immune cells

Vascular cells

Glomerulus

antigen presentation, cell migration/actin 

cytoskeleton, macophage signaling

Macrophages, 

Monocytes

Mesangial cells contraction/actin cytoskeleton, ECM synthesis 

Cell type marker genes Cell type specific SCPs

Intercalated cells
bicarbonate/chlorid exchange, cell adhesion, 

energy, cytoskeleton

SCIN, ATP6V0D2, PLCG2, ATP6V1C2, 

ATP6V1G3

SRGN, HCLS1, SMAP2, TBXAS1, SLC1A3

CALD1, PDGFRB, FRZB, NRGN, A2M

Principal cells SCIN, SCNN1G, HSD11B2, RALBP1, AQP2
water/ion reabsorption,barrier formation, 

detoxification

Table 1
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TABLE CAPTIONS 

Table 1. Overview of cell type specific marker genes and pathway activities. 
 
SUPPLEMENTARY TABLE CAPTIONS 
 
Supplementary Table 1. Samples used for different analytical pipelines. 

 
Supplementary Table 2. Laser microdissected (LMD) RNAseq gene expression 
 
Supplementary Table 3. Laser microdissected (LMD) Proteomics protein expression 
 
Supplementary Table 4. Near Single Cell (NSC) Proteomics protein expression 
 
Supplementary Table 5. Top 2,000 marker genes and proteins predicted by each assay for 
each analyzed cell subtype, cell type and tissue subsegment. Marker genes and proteins are 
differentially expressed genes (DEGs) and proteins (DEPs) that were obtained by comparing 
each cell type, cell subtype or subsegment to all other cell subtypes, types or subsegments. 
Initially, we duplicated all subsegmental datasets and added them to each data integration term 
that describes a cell type localized in that particular segment. For cell type specific assignments 
of the subsegmental data see results section, Figure 5C and Supplementary Figure 8. 
 
Supplementary Table 6. # of significant marker genes that were subjected to dynamic 
enrichment analysis. 
 
Supplementary Table 7. Dynamic enrichment analysis results of the top 300 marker genes and 
proteins. We duplicated all predictions based on the subsegment specific LMD RNAseq and 
Proteomics and the NSC Proteomics and added them to each integration term that describes a 
cell type localized in that particular segment. From these results we assigned cell type specificity 
to the predicted pathways as described in the results sections and documented in Figure 5C and 
Supplementary Figure 8. Notify that the columns “Experimental_symbols_count” and 
“Scp_symbols_count” contain the experimental and scp genes after removal of all those genes 
that are not part of the background list of genes (See methods for details). Hence, they can be 
smaller than the gene counts documented in supplementary table 6. 
 
Supplementary Table 8. Spatial metabolomics metabolite correlations for subjects 18-139 (A), 
18-142 (B) and 18-342 (C). 
 
Supplementary Table 9. Gene Ontology enrichments for modules in the kidney-specific 
functional network of top DEGs and DEPs in PT, podocytes, and principal cells. 
 
Supplementary Table 10. Literature curated cell-type specific essential genes used for cell type 
identification. 
 
Supplementary Table 11. Enrichment analysis of the top 500 significant marker genes and 
proteins using the generated metabolic ontology. 
 
Supplementary Table 12. Sodium transporters identified in the sc and sn RNAseq datasets and 
their function in kidney sodium reabsorption.  
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SUPPLEMENTARY INFORMATION 
Omics and imaging assays used within KPMP target different types of molecular components 

with different resolution, sensitivity and precision. An important function of the KPMP Central 
Hub is to integrate the different types of data using a set of analytical techniques. This process 
is summarized in Figure 1. Throughout the paper, we consistently use the same continuous 
color-code to identify different assays or cell types. The experimental assays that generate the 
raw data and all their technical details including standard operating procedures are detailed 
under ‘Data generation and initial analysis’ and publicly released with all their technical details 
and version-controlled release dates on the KPMP protocols.io page 
(https://www.protocols.io/groups/kpmp/publications). 
 
Identification of differentially expressed genes, proteins and metabolites 

We analyzed data from four types of transcriptomic, two proteomic, one imaging-based and 
one metabolomic tissue interrogation assays. The pilot data presented for each assay comprises 
3 to 48 different datasets that are obtained from 3 to 22 subjects (Suppl. Table 1). Kidney tissue 
was procured from a spectrum of tissue resources including from unaffected parts of tumor 
nephrectomy specimen (n=38), living donor preperfusion biopsies (n=3), diseased donor 
nephrectomies (n=5), and normal surveillance transplant (n=5) and native kidney biopsies (n=4). 
Single cell and nucleus transcriptomics clusters were obtained from previous analyses (20, 21).  
Within each assay we generated lists of differentially expressed genes (DEGs), proteins (DEPs) 
and metabolites that describe those genes, proteins or metabolites that are upregulated or 
enriched in a particular single cell cluster, single nucleus cluster or kidney subsegment, if 
compared to all other clusters or subsegments. 

For pathway enrichment analysis and module identification, cluster-specific differentially 
expressed genes (DEGs) were obtained from published analyses from PREMIERE TIS 
(Michigan, Princeton, Broad) single-cell RNA sequencing (RNAseq) (21) and UCSD/WU TIS 
single-nucleus RNAseq (20) datasets. We excluded the clusters PT cells-3 and principal cells-2 
from the single-nucleus RNAseq dataset, since these clusters showed an inflammatory or a 
stress response. Similarly, we excluded the cluster “Unk” from the single nucleus and the 
clusters “Pax8positivecells” and “LOH/DCT/IC” from the single cell RNAseq assays. Laser 
microdissected (LMD) RNAseq and proteomics (OSUIU), near-single-cell (NSC) proteomics 
(UCSF) and spatial metabolomics (UTHSA-PNNL-EMBL) datasets were individually processed 
as described in supplementary methods. Only DEGs and DEPs that indicate genes and proteins 
that are higher expressed in a particular cell subtype, type or segment were considered for all 
analyses. 
 
Ranking of differentially expressed genes and proteins 

In the case of the DEGs and DEPs that were used for dynamic enrichment analysis, (28) 
module identification, (32) and post hoc power analysis, single nucleus and single cell DEGs 
were first ranked by adjusted p-value and then by decreasing fold changes (i.e., fold changes 
were used as a tiebreaker). Top ranked 300 entities with a maximum adjusted p-value of 0.05 
were subjected to downstream analysis. Similarly, DEGs and DEPs obtained for each kidney 
subsegment based on LMD bulk RNAseq (24), or LMD and NSC proteomics, were ranked first 
by p-value and decreasing fold changes and the top ranked 300 DEGs and DEPs with maximum 
nominal p-value of 0.05 were subjected to pathway enrichment analysis or module detection 
(see below). 
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Dynamic enrichment analysis 
Top DEGs and DEPs for each podocyte cluster/glomerulus, PT cell cluster/tubulointerstitium 

and principal cell cluster/collecting duct subsegment were separately subjected to dynamic 
enrichment analysis using the Molecular Biology of the Cell Ontology (MBCO, version 2021) 
level-3 subcellular processes (SCPs) (28) that can be found at github.com/SBCNY/Molecular-
Biology-of-the-Cell  and www.mbc-ontology.org. The annotated interconnected hierarchy of 
MBCO is enriched using a unique algorithm that infers weighted relationships between 
functionally related SCPs. For all analyses we consider the top 25% weighted relationships. 
Dynamic enrichment analysis uses the top relationships to generate context-specific higher-level 
processes by merging functionally related SCPs that contain at least one DEG or DEP. The 
context specific higher-level SCPs contain all annotated genes of the original SCPs and are 
added to the annotated ontology to generate a context specific ontology. The context specific 
ontology at this point contains single and merged SCPs. This list is then used for enrichment 
analysis of the DEPs or DEGs using Fisher’s Exact test. All SCPs that are among the first seven 
predictions are connected based on the top inferred relationships, using solid lines. All networks 
for a particular cell type and the corresponding segment were merged and each SCP was color-
coded according to the source assay(s) that initiated its dynamic enrichment. SCPs predicted by 
multiple assays contain multiple slices that are color coded accordingly. SCP size is determined 
by the number of assays that identified a particular SCP. Multiple subtypes or a particular cell 
type (e.g., PT cells) are all color coded by the same assay specific color. If an SCP was predicted 
for more than one subtype, it contains multiple slices colored with the assay specific color. SCPs 
predicted by different assays for the same cell type or corresponding segment were connected 
based on the top 25% inferred MBCO relationships, using solid lines. Additional well-known 
functionally related SCPs were connected using dashed lines. 

We used the right-tailed Fisher’s Exact test to calculate the likelihood of obtaining the 
observed or a higher overlap between a list of DEGs/DEPs and a list of genes/proteins annotated 
to a particular SCP. To calculate this likelihood, we consider which genes or proteins have a 
chance to be identified as differentially expressed. Only genes/proteins that are detected by a 
particular assay and are statistically analyzed for differential expression can be identified as 
DEGs/DEPs. Consequently, only these genes/proteins are considered as the experimental 
background set for the Fisher’s Exact test. Similarly, the ontology background set only contains 
genes that have a chance to be assigned to a given SCP. In the case of the single cell (21) and 
nucleus (20) RNASeq datasets, all genes that are part of the UMI (Unique Molecular Identifier) 
read count matrices comprise the experimental background genes. In the case of the LMD bulk 
RNASeq, and the LMD and NSC proteomics datasets, the experimental background 
genes/proteins were all genes/proteins that were statistically analyzed for differential expression 
(Suppl. Tables 2, 3 and 4, respectively). MBCO contains an SCP that is labeled ‘Background 
genes’ and contains all genes that were identified during its population via text mining. The 
intersection of the experimental and ontological background genes/proteins is called background 
genes/proteins and is different for every assay and ontology combination. For additional 
statistical accuracy we removed all genes and proteins that were not part of the background 
genes/proteins from the lists of DEGs, DEPs and SCP genes before each enrichment analysis. 
 
Module detection 

In parallel to enrichment analyses, we also performed another network-based pathway 
enrichment technique, identifying modules of cell-type specific marker genes within the kidney-
specific functional network using the HumanBase interface (hb.flatironinstitute.org). For each 
cell type, module detection was performed using all cell-type-specific DEGs detected by single 
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cell and single nucleus RNAseq (adjusted p-value <0.01) and segment-specific DEGs and DEPs 
detected by the other 4 technologies (nominal p-value < 0.01). Module detection is a network-
based approach described in Krishnan et al., and construction of the functional networks is 
described in Greene et al. (31, 32). In contrast to the prior knowledge-based MBCO networks, 
the kidney-specific functional network is constructed using a data-driven regularized Bayesian 
framework based on the information in thousands of datasets, which include co-expression, 
transcription factor binding, protein-protein interactions, and other data types. Modules are 
detected using a community clustering algorithm based on connectivity between genes in the 
kidney-specific functional network, and enrichment analysis is subsequently performed to 
identify functional enrichments in each module. 

 
Enrichment analysis for metabolites 

All glomerular and nonglomerular metabolites that were identified for the three subjects were 
merged and subjected to pathway enrichment analysis using MetaboAnalyst (30). Pathway 
analysis with the selections: Hypergeometric Test, Relative-betweeness Centrality, Homo 
Sapiens (KEGG), website version 3/22/2021. We analyzed which metabolites were part of the 
top six predicted metabolic pathways. We removed those pathways among the top 8 predictions 
that were predicted based on metabolites that are shared substrates in multiple pathways and 
consequently unspecific for the identified pathway (i.e. we ignored the glomerular pathways 
‘Linoleic acid metabolism’, ‘alpha-Linoleic acid metabolism’, ’GPI-anchor synthesis’ and 
‘Arachidonic acid metabolism’ that were predicted based on the lipids 
‘Phosphatidylethanolamine’ and ‘Phosphatidylcholine’ and the pathway ‘Phenylalanine, tyrosine 
and tryptophan biosynthesis’ that was predicted based on the central precursor ‘3-(4-
Hydroxyphenyl)pyruvate’). We mapped the kept MetaboAnalyst pathways onto MBCO pathways 
whenever possible; if those pathways did not have a corresponding MBCO pathway, the original 
pathway names were preserved. Since the non-glomerular metabolites contained multiple 
carnitine derivates we added the MBCO pathways “Carnitine shuttle” (based on L-
Acetylcarnitine, Malonyl-Carnitine, L-Palmitoylcarnitine and L-Carnitine) and “Carnitine 
biosynthesis and transport” (based on L-Carnitine and 3-Dehydroxycarnitine) to the pathways 
predicted from spatial metabolomics, assigning the ranks 9 and 10, respectively.  
 
Integration of single-cell/single-nucleus transcriptomics 

In contrast to bulk mRNA sequencing, where the gene expression measurements reflect an 
average across all captured cell types, single-cell or single-nucleus mRNA sequencing allows 
the measurement and comparison of comprehensive gene sets obtained from individual cells. 
This approach enables mapping of cellular heterogeneity with high throughput. In the first phase 
of the project, three KPMP Tissue Interrogation Sites (TISes) performed this approach to 
generate single cell/single nucleus expression data from normal adult kidney tissue. In addition 
to locally acquired kidney tissue samples, each TIS also used a set of common KPMP pilot tumor 
nephrectomy tissue samples to generate the expression data.  Single-cell transcriptomic data 
was produced by PREMIERE (24 libraries from 22 subjects) (21) and UCSF (10 libraries from 
10 subjects), whereas the single-nucleus data was made by UCSD (47 libraries from 15 
subjects) (20). Following is a brief description of the integration of the data from the three sites.  

Data from each site were first processed using the Seurat 3.0 R package (118). As a quality 
control step, nuclei/cells with less than 500 and more than 5,000 features and more than 20% 
mitochondrial genes were removed. The processing steps included normalization and 
identification of highly variable genes. We then removed potential doublets using DoubletFinder 
(119) from each dataset. Next, we used the integration algorithm embedded in the Seurat R 
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package to perform combined analysis of single-cell/single-nucleus transcriptomic data. The 
integration algorithm first identified a set of anchor genes in each processed dataset. These 
anchor genes were then used to harmonize the datasets. The downstream process included 
scaling, principal component analysis, batch integration using harmony, dimensionality reduction 
using Uniform Manifold Approximation and Projection (UMAP), and unsupervised clustering. The 
clustering was performed at a low resolutions (clustering granularity of 0.5). Enriched genes for 
each cluster compared to all other clusters were identified using the Wilcoxon rank sum test. 
 
Integration of single-cell, single-nucleus and laser capture microdissection bulk 
transcriptomics 

To integrate single-cell sequencing, single-nucleus sequencing, and LMD bulk transcriptomic 
datasets, we first determined the overlap between genes identified both in the LMD dataset and 
in the corresponding single-cell transcriptomic dataset. From this set of shared genes, we 
restricted further analyses to a subset of genes showing variable expression in the single-cell 
dataset.  We then computed the Pearson correlation between each individual cell in a scaled 
single cell/single nucleus dataset and the LMD transcriptomic dataset. For this correlation, we 
used the logarithmized mean fold change that was obtained by dividing the average expression 
of each gene within a subsegment by the average expression of the same gene within all other 
subsegments. Using this approach, we can assign each cell to the appropriate LMD segment 
that shows the highest correlation value. To evaluate the overall segment assignments for 
individual cell clusters, we examine the normalized distribution of cells assigned to each LMD 
segment within a given single-cell cluster and present this as a normalized heatmap that 
represents overlap between different transcriptomic assays.  

 
Proteomic-transcriptomic co-expression analysis 

LMD and NSC proteomic datasets identified protein expression in two kidney subsegments: 
glomeruli and tubulointerstitium for LMD and glomeruli and proximal tubule (PT) for NSC. Here, 
we did not combine sequencing and proteomic results of multiple subjects to generate DEGs 
and DEPs, but compared the results obtained for each individual person. Since only one dataset 
per segment was generated from each individual person by the LMD and NSC technologies, we 
could not calculate p-values in this analysis. Furthermore, both proteomic technologies only 
generated results for 2 subsegments, i.e. the glomerular and PT segments for NSC proteomics 
and the glomerular and tubulointerstitial subsegments for the LMD proteomics. Consequently, 
we collectively calculated the fold changes between podocyte/glomeruli and PT/tubulointerstitial 
cells or subsegments for each individual subject.  

For the single cell and nucleus transcriptomic datasets, we identified technology and subject 
specific cluster gene expression, using the “Average Expression” functionality embedded in the 
Seurat R package (RNA assay, counts slot) on the cells/nuclei assigned to the same clusters in 
the integrated single cell and nucleus RNAseq data analysis described above. The gene lists of 
all PT clusters of an individual subject and technology were merged (Suppl. Figure 2). If a gene 
was identified by more than one cluster, we defined the highest expression value as the merged 
expression value for that gene. For each technology we characterized all genes/proteins that 
were identified in at least one cluster or subsegment of at least one subject and defined these 
genes/proteins as a technology specific background set. The intersection of all background sets 
was defined as the set of common genes. Subject-specific podocyte or glomerular gene and 
protein expression was calculated by dividing gene and protein expression in podocytes, or 
glomeruli, by gene and protein expression in PT cells or PT/tubulointerstitial subsegments, after 
adding 1 to prevent division by 0. Ratios were inverted to describe PT/tubulointerstitial specific 
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gene expression. Log10 absolute expression values and log2(ratios) of all genes/proteins or all 
common genes/proteins were subjected to pairwise correlation, followed by hierarchical 
clustering. Log2 ratios were averaged over each subject within each technology and pairwise 
Pearson correlation coefficients were determined between the different technologies using the 
set of common genes. Mean log2 ratios were averaged across the four RNAseq platforms and 
the two proteomic platforms, followed by determination of the Pearson correlation coefficient 
using the set of common genes. 
 
Comparison of cell type-specific imaging and transcriptomic expression data 

To integrate cell type-specific imaging and transcriptomic data, we first constructed matrices 
with average expression values for each gene in each cell type cluster for both the set of 16 
normalized integrated transcriptomic clusters and the CODEX clusters. We normalized each 
gene in both transcriptomic and CODEX matrices to have a mean of 0 and standard deviation 
of 1. We then filtered both datasets to include only genes represented in both the transcriptomic 
and the imaging datasets and computed the average expression of each gene/protein in each 
cell type. We next considered the problem of constructing a matrix to computationally map 
transcriptomic cell clusters to the imaging cell clusters. Specifically, let A be the N x k1 matrix of 
average protein expression values by imaging data clusters, C be the N x k2 matrix of average 
gene expression values by transcriptomic clusters, and M be the k1 X k2 matrix that maps A to 
C. We want to find M such that AM ≈ C. We can approximate M by taking the Moore-Penrose 
pseudoinverse of A, denoted A+, with M ≈ (A+)(C). M then provides a set of weights that map 
the imaging cell types to the transcriptomic cell types, with a large value for an entry in M in 
position (i, j) indicating that the imaging cell type i makes a large contribution to approximating 
the expression vector of transcriptomic cell type j as a linear combination of imaging cell types. 
Before visualizing matrix M as a heatmap, we first normalized each row to have mean of 0 and 
standard deviation of 1 in order to identify the transcriptomic cell types that are weighted most 
heavily in the mapping to each imaging cell type.  

 
Post hoc power analysis 

The  single-cell RNAseq and single-nucleus RNAseq datasets were obtained from 22 and 15 
subjects, respectively, whose samples were sequenced in 24 and 47 libraries. We used these 
datasets to assess the reproducibility and reliability of both assays in a post hoc power analysis. 
This analysis compares results by the full datasets with the results by down-sampled datasets 
where libraries are randomly and systematically removed from the full data.  

Both full datasets were separately subjected to a standardized Seurat pipeline for the 
identification of single-cell (or -nucleus) clusters and DEGs. Nuclei and cells with less than 500 
and more than 5,000 features as well as more than 50% mitochondrial genes were removed. 
‘SCTransform’ was used for data normalization and scaling (based on top 2,000 features), 
followed by principal component analysis. The first 30 principal components were used for 
dimensionality reduction before identifying single nucleus/cell clusters (resolution = 0.8). 

Top 300 DEGs of each cluster were identified (adjusted p-value: 0.05) and compared with 
literature-curated cell-type specific essential genes (Suppl. Table 10) using Fisher’s Exact test 
to assign a kidney cell type to each cluster. The assigned cell type is that cell type whose 
essential genes had the most significant enrichment among the DEGs of that cluster. To 
document the reliability of that cell type assignment we compared its p-value to the p-value of 
the second prediction (that cell type whose essential genes had the second most significant 
enrichment among the DEGs of that cluster). The larger the distance between both p-values, the 
more reliable the cell type assignment. The number of clusters that were assigned to each cell 
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type was documented. Nuclei and cells that were assigned to a particular cell type and map or 
do not map to the corresponding LMD tissue subsegment were counted as well, based on the 
subsegmental correlation analysis as described above. The top 300 DEGs were subjected to 
dynamic enrichment analysis using MBCO. All SCPs among the top seven predictions were 
further investigated. 

We progressively and randomly removed libraries from the full (reference) datasets to 
generate 100 non-overlapping downsampled datasets for each number of remaining subjects. 
Downsampled data was subjected to the same analysis pipeline and results were compared with 
the reference results. We calculated the percentage of downsampled datasets for each number 
of remaining libraries that identified a particular cell type. If a particular cell type was identified in 
a down-sampled dataset we counted how many of its nuclei/cells were assigned to the same or 
to a different cell type in the reference analysis. To visualize both counting results in the same 
plot, we defined those cell counts that mapped to a different cell type to be negative, so these 
counts are plotted below the abscissa. Similarly, we counted how many nuclei/cells of a 
particular cell type mapped and did not map to a particular tissue subsegment that is indicated 
in the title of the plot. Here, we also defined those cell counts that mapped to a different 
subsegment to be negative. We calculated the Pearson correlation between the DEGs of each 
cell type in the downsampled datasets and the reference datasets based on log2(fold changes).  

Pathway enrichment analysis normally involves identification of the most significant pathways 
irrespective of their p-values. To document the reliability of the identified SCPs we identified the 
ranks of the SCPs that were among the top seven predictions in each downsampled dataset. 
Ranks were averaged for each SCP and number of analyzed libraries. 

 
Documentation of cellular metabolism 

We generated a small ontology that contains the major metabolic pathways involved in 
energy generation and sphingomyelin synthesis. We defined parent-child relationships, where 
child pathways described sub-functions of their parent pathways  (Suppl. Figure 17A). Pathways 
were populated with genes curated from the literature, parent pathways also populated with the 
genes of their child pathways. The ontology is publicly available at 
github.com/SBCNY/Molecular-Biology-of-the-Cell and mbc-ontology.org. 

We subjected the top 500 significant marker genes and proteins (sc/sn RNAseq: adjusted p-
value 0.05, LMD RNAseq, LMD/NSC proteomics: nominal p-value 0.05) to enrichment analysis 
using this ontology and Fisher’s Exact Test. Investigation of the predicted pathways that are 
specific for a particular reaction allowed to decide in which reaction(s) those enzymes participate 
that are shared by multiple pathways. Child pathways that specifically describe the function of 
their parent pathways are visualized in the same color in supplementary figure 17A. If only 
pathways that contained the shared reactions of multiple parent pathways were predicted, we 
assumed that they participated in the default parent pathways “Glycolysis”, “Keton body 
catabolism” or “Aerobic glycolysis”. 

Since the sc RNAseq data was derived from cortical, medullary and mixed samples (Suppl. 
Figure 4B), we distinguished between medullary (DTL, ATL1-3, TAL-1, PC-3 and IC-A2) and 
cortical cell types (all other cell types of the renal tubule of the nephron). All other datasets were 
assigned as cortical. Enrichment result negative log10(p-values) were first averaged across the 
different cell subtypes of the same cell type and then across the different transcriptomic datasets. 
In case of the sc and sn RNAseq assays, we considered the amount of cells assigned to each 
subtype of a particular cell type. The averaged negative log10(p-values) is representative of the 
cell counts of each cluster. 
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Comparison of experimental reabsorption and gene expression profiles 

Experimentally determined reabsorption capacity profiles that describe what percentage of a 
filtered sodium or glucose is reabsorbed in a particular nephron segment were curated from 
standard medical and physiological text books (92-94, 120), followed by averaging of the curated 
numbers for each ion or molecule.  As these are widely used medical school textbooks, we 
assumed that the information is correct and did not further track down the values given in these 
books to the primary papers from which these values were obtained. Also we assumed 
conversation of physiological processes across mammalian species and we did not ascertain if 
all values were derived from the same species or more than one species. 
 
Generation of a transmembrane  transport ontology 

Since human single cell and single nucleus RNAseq datasets (20, 21, 97, 98) contain gene 
expression profiles in all major nephron cell types, we reasoned we could compare segment 
specific gene expression levels of the transporter or channel of interest with these physiologically 
measured reabsorption profiles. Using Gene Ontology 7, Molecular Biology of the Cell Ontology 
(28), Wikipedia articles and selected reviews as sources (66, 99, 121-124), we generated a 
comprehensive ontology of transmembrane transporter at the plasma membrane  (Supplemental 
Figure 19A). Within GO we focused on all Biological Processes and Molecular Functions that 
were children of "sodium ion transport",  "sodium ion transmembrane transporter activity" as well 
as "glucose transport", "glucose transmembrane transporter activity", as defined by the “is_a” 
and “part_of” relationships. From MBCO we added all genes assigned to the subcellular 
processes (SCPs) "Sodium transmembrane transport". The initial list of transporter candidates 
was manually investigated to validate their transporter activity. True positives were assigned to 
de novo subcellular processes (SCPs) that describe the movement mechanism (i.e., transport 
via symporter or antiporter), the movement direction (i.e. lumen-to-blood or blood-to-lumen) and 
all ions or molecules that are transported by that mechanism. In case of antiporters, we specified 
which ions or molecules move in opposing directions by separating them with the term ‘vs’. If the 
protein translated from a particular gene had a unique name that is commonly used and is 
different from the official NCBI gene symbol, we assigned the gene to that particular protein 
name (e.g., SLC12A1 and SCL12A3 were assigned to NKCC2 and NCC, respectively). Here, 
we did not describe the activity mediated by that protein (e.g., “Sodium potassium chloride 
transport by the symporter NKCC2”), since this would create unnecessarily long names in our 
figure legends. Nevertheless, in all analyses these proteins were processed as if they were 
SCPs. Consequently, whenever we use the term SCP in the manuscript, we refer to these 
proteins as well. Each SCP-gene association was supported by at least one reference that could 
be the NCBI gene summary, UniProt gene summary or a PubMed ID for a supporting article 
(Supplementary Table 12). To allow systematic analysis and grouping of transmembrane 
movements, we integrated all SCPs into a SCP hierarchy of parent and children SCPs 
(Supplementary Figure 19B) using a strategy we have described for the MBCO ontology (28). 
This hierarchy converges children on parent SCPs that describe more generalized shared 
transport mechanisms. For example, the SCP “Sodium potassium chloride symporter” (that is 
the parent of the SCP “NKCC”) is the child of the two parent SCPs “Sodium chloride symporter” 
and “Sodium potassium symporter”. We left out the SCP “Potassium chloride symporter”, since 
here we focused on sodium and glucose transmembrane transport. These SCPs are then 
connected to the higher-level SCP “Sodium lumen-to-blood transport by symporter”. For both 
sodium and glucose all SCPs finally converge on either one of two different overall parent SCPs 
describing transcellular lumen-towards-blood transport and transcellular blood-towards-lumen 
transport. Discussed example of SCP relationships and two additional examples are shown in 
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supplemental figure 18B. Supplemental figure 18C shows the hierarchical organization of all 
SCPs involved in sodium lumen to blood and blood to lumen transport. All parent SCPs were 
populated with the genes of all of their children SCPs. Finally, we kept only those genes in the 
ontology that localize to the plasma membrane based on the jensenlab human compartment 
ontology with a minimum confidence score of 4 (out of maximal 5) 
(www.compartments.jensenlab.org) 
 
Calculation of predicted reabsorption capacities 

Besides our own single cell (sc) and nucleus (sn) RNAseq dataset (20, 21), we utilized two 
different snRNA seq datasets that were generated from undiseased tissue as well (97, 98). All 
datasets document how many mRNA molecules are transcribed from each gene in each 
individual cell. These numbers are described as UMI (Unique Molecular Identifier) counts (125), 
but in this study we use the term mRNA counts or levels to indicate that it is a quantitative 
measure of mRNA levels of a certain species. The cells and nuclei in the sc and sn RNAseq 
data sets were previously grouped into clusters using standard software packages (Seurat XX), 
followed by identification of cluster specific marker genes and cell type and subtype annotation 
(20, 21, 97). We analyzed the raw UMI matrix (GSE114156) (98) using the seurat package (as 
outlined in Suppl. Figure 5A) and annotated kidney cell types based on cell type specific gene 
expression (Suppl. Table 10). 
We assumed that that mRNA molecule counts (i.e., UMI counts) of each transporter or channel 
in each cell reflect the capacity of that particular cell for transmembrane movement of that 
particular ion or molecule. The following explanation of how we predicted movement capacities 
from those mRNA levels is summarized in supplemental figure 18A. We initially processed all 
four datasets, i.e., one sc RNAseq and three sn RNAseq datasets, independently. For each 
dataset and SCP of our transmembrane movement ontology we summed up all mRNA 
molecules that are expressed in all cells of a particular cell type or nephron segment and map 
to genes involved in that SCP. It should be noted that we documented total and not mean 
capacities, because we did not divide the mRNA count sums by the number of cells in each 
particular cell type or segment. If a particular cell type or nephron segment contains more cells, 
it is assumed to contribute more to the reabsorption of a particular ion or molecule, if the 
appropriate transporter is present. Measured physiological reabsorption profiles describe net 
lumen-to-blood transport values in each segment. To account for the different transport 
directions predicted from SCPs that are involved in lumen-to-blood and blood-to-lumen 
transport, we defined all mRNA levels mapping to blood-to-lumen transport SCPs as negative. 
This allowed the calculation of net lumen-to-blood transport capacities by adding up all mRNA 
counts involved in lumen-to-blood transport and all (negative) mRNA counts involved in blood-
to-lumen transport of each ion or molecule. Since the physiological profiles document how much 
percent of a particular ion or molecule is reabsorbed in a particular nephron segment, we 
expressed all SCP capacities in percent of the net lumen-to-blood transport capacities of the 
corresponding ions or molecules. Consequently, the sum of all predicted transport capacities 
along the nephron is 100% for both sodium and glucose (mRNA levels assigned to blood-to-
lumen transport are still defined as negative), allowing the direct comparison of mRNA levels 
and reabsorption profiles. Any SCPs that mediate the transport of multiple ions or molecules, 
were normalized independently for each ion and molecule to calculate the relative contribution 
of that SCP to the total reabsorption capacity of each ion or molecule. Final percentages of the 
same SCPs predicted by the three single nucleus RNAseq datasets or all 4 datasets were 
averaged. 
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Identification of cell-type markers 
Marker genes and proteins of each cell subtype or segment were ranked as described above. 

If multiple cell subtypes were identified based on the single cell or single nucleus RNAseq 
datasets, we calculated the average rank for that cell type. Original or averaged ranks were 
averaged again over the different assays for each cell type and selected segment, followed by 
re-ranking. Top five re-ranked genes/proteins were selected as cell type markers in Table 1. 

Generation of nephron schema 

We used BioRender.com to create the nephron schema in Figure 7. 

 
Data generation and initial analysis 

Seven different RNAseq, proteomics, metabolomics and imaging datasets were generated 
and analyzed by five different TISes. The PREMIERE TIS (composed of Michigan, Princeton, 
Broad)  generated single cell RNASeq data, the USCD/WashU TIS generated single-nucleus 
data, the UCSF TIS generated single-cell RNASeq, near-single-cell proteomics and Codex 
imaging data, the IU/OSU TIS generated laser microcapture dissection (LMD) RNASeq and LMD 
proteomics data and the UTHSA-PNNL-EMBL TIS generated spatial metabolomics data. 
 
Single-nucleus RNAseq (UCSD/WashU) and Single-cell RNASeq (PREMIERE) 

UMI count matrixes and list of differentially expressed genes were downloaded from 
published analyses for the PREMIERE TIS (composed of Michigan, Princeton, Broad) single-
cell RNA sequencing (RNAseq) (21) and UCSD/WashU TIS Single-nucleus RNAseq (20) 
datasets. We excluded the PT cells-3 and principal cells-2 clusters from the single-nucleus 
RNAseq dataset, since these clusters showed an inflammatory or a stress response. 
 
Subsegmental LMD Transcriptomics (IU/OSU) 

A comprehensive Laser MicroDissection (LMD) protocol is published on protocols.io 

(https://www.protocols.io/view/laser-microdissection-8rkhv4w). Briefly, 12 m frozen sections 
are obtained from an Optimal Cutting Temperature (OCT) preserved tissue block and adhered 
to LMD membrane slides (Leica, Buffalo Grove, IL). Tissue undergoes a rapid staining protocol 
involving acetone fixation, washes with RNAse-free PBS, and antibody incubation in 10% bovine 
serum albumin. Slides undergo dissection with a Leica LMD6500 system with pulsed UV laser. 
After collecting a minimum tissue area of 500,000 μm2 in an RNAse-free micro-centrifuge tube, 
RNA is isolated using the PicoPure RNA IsolationKit according to manufacturer’s instructions 
(Applied Biosystems, Cat# KIT0204). RNA quality is assessed by bioanalyzer, ribosomal RNA 
is depleted, and cDNA libraries are prepared using the SMARTer Universal Low Input RNA Kit 
(Takara, No. 634938). Sequencing was conducted on an Illumina HiSeq4000. Mapping was 
performed using STAR (v2.5.2b) and read counts were quantified with featureCounts (subread 
v.1.5.0). Total read counts mapping to each gene were generated with edgeR, normalized, and 
converted to expression ratios. 

Segment specific gene expression was compared to the gene expression in all other 
subsegments using an unpaired ttest with equal variance. Subsegment specific gene expression 
ratios were calculated similarly. 
 
Subsegmental LMD Proteomics (IU/OSU) 

A comprehensive Laser MicroDissection (LMD) proteomics protocol is published on 
protocols.io https://www.protocols.io/view/laser-microdissection-for-regional-transcriptomics-
8rkhv4w?version_warning=no. Our LMD proteomic methods have also been previously 
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published in detail (126, 127).  Briefly, 10 m frozen sections are obtained from an OCT 
preserved tissue block and adhered to polyethylene naphthalate (PEN) membrane slides for 
LMD. Frozen sections are fixed in 70% ethanol, incubated in H2O to remove OCT, briefly stained 
with hematoxylin, and dehydrated in ethanol. LMD is performed and glomeruli and 
tubuloninterstitial samples are collected separately in 0.5% Rapigest/50 mM NH3HCO3 solution. 
The collected samples are then boiled for 20 minutes for protein retrieval and digested overnight 
with trypsin.  Peptides are dried, re-suspended in acetonitrile/formic acid and analyzed using 
liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis using an Easy-nLC 
1000 HPLC coupled to an Orbitrap Fusion mass spectrometer (Thermo Scientific, Waltham, 
MA).  Data is searched using Proteome Discoverer 2.1 (Thermo Scientific) and searched against 
a human Uniprot database (version 05/26/18). Data are analyzed following global normalization 
of spectral counts. 

Glomerular gene expression was compared to the tubulointerstitial gene expression using 
an unpaired t-test with equal variance. Glomerular to tubular specific gene expression ratios 
were calculated similarly. 
 
3-D Immunofluorescence Imaging and Tissue Cytometry (IU/OSU) 

The entire 3-D fluorescence imaging and tissue cytometry protocol is published on 
protocols.io (dx.doi.org/10.17504/protocols.io.9avh2e6).  Briefly, frozen cores are sectioned at 

50 m using a cryostat and fixed using 4% paraformaldehyde. A panel of up to 8 antibodies was 
incubated to identify renal and immune cell types. Images were acquired in up to 8 channels 
using a Leica SP8 Confocal Microscope. Volume stacks spanning the whole thickness of the 
tissue were taken using a 20× NA 0.75 or 40× NA 1.3 objectives with 0.5- to 1.0-μm spacing. 
Large scale confocal imaging of overlapping volumes was performed with an automated stage 
and stitched using Leica LASX software (Germany). 3-D image rendering was done using Voxx 
v2.09d. The 3-D tissue cytometry was performed on image volumes using VTEA, which was 
developed as a plugin for ImageJ/FIJI as previously described (128). 

 
CODEX Imaging (UCSF) 

The CODEX system is the combination of an (1) oligo-nucleotide based antibody labeling-
detection technique, (2) a microfluidics instrument coupled with an inverted microscope capable 
of whole slide scanning, and a (3) software suite that consists of an image processor and an 
ImageJ-based image analysis solution (129). First, a section from an optimal cutting temperature 
compound-embedded tissue block is cut and incubated manually in a single step, with a set of 
antibodies each tagged with a unique oligonucleotide sequence. The following phase consists 
of iterative cycles of detection, imaging, and dye removal. In each cycle, a maximum of three 
targets are revealed by spectrally distinct dyes (AF488, Atto 550, and Cy5) tagged with 
oligonucleotides complementary to the oligonucleotide tag of a given antibody. 

The acquired images are processed by the CODEX processor in a set sequence of steps: 
shading correction, tile registration, deconvolution, drift compensation, overlap cropping, 
background subtraction, best focus detection/interpolation, stitching, cell segmentation, and 
spillover compensation. 

The output of the cell segmentation step of image processing is an .fcs file (similarly to flow-
cytometry solutions). This file contains the individual fluorescent intensity values (can range from 
0 to 65k) of each cell for each marker. Fluorescent intensity values allow the definition of cell 
populations by manual gating of the segmented cells using visual assessment of the image and 
previous literature data on the expression pattern of our marker set in human kidney. 
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Native renal biopsies taken at University of California, San Francisco from patients with 
minimal change disease (n = 3), thin-basement membrane disease (n = 1), and post-surgical 
biopsies from tumor nephrectomies (n = 2) were used. In addition, case 18-162 from KPMP pilot 
sample pool was also processed (Suppl. Table 1). 
 
Spatial Metabolomics (UTHSA-PNNL-EMBL) 

10 m thick renal cortical tissues were sectioned using a cryostat (Leica Microsystems), thaw 
mounted on indium tin oxide coated slides (Bruker Daltonics), and prepared for matrix-assisted 
laser deposition/ionization mass spectrometry (MALDI-MSI) by spraying with 2,5-
dihydroxybenzoic acid (DHB; 40 mg/mL in 50% MeOH:H2O) using the TM-Sprayer automated 
spraying robot (HTX Technology). The following spraying parameters were used: 80 °C nozzle 
temperature, a flow rate of 0.05 mL/min, 10 passes, a N2 pressure of 10 psi, a track spacing of 
3 mm, and a 40 mm distance between the nozzle and sample was maintained. MALDI-MSI was 
performed using a MALDI-FTICR imaging mass spectrometer (Bruker Daltonics) set at a 
120,000 resolving power at m/z 400 or a MALDI-Orbitrap mass spectrometer (Thermo Scientific) 
set at the 120,000 resolving power at m/z 200. The data was inspected following the quality 
control guidelines as developed within KPMP and converted into the imzML centroided format 
using the SCiLS software (Bruker Daltonics) or ImageInsight software (Spectroglyph, LLC), 
followed by the submission to METASPACE and annotation against the SwissLipids and HMDB 
molecular databases with the false discovery rate of 20%, as described in Reference 33.  

We have developed an approach to find glomeruli markers in MALDI-MSI data by using 
METASPACE and co-localization analysis. First, we have selected a template marker that was 
localized within the glomerular regions, as confirmed by the histology. This ion was annotated 
by METASPACE as ceramide phosphate CerP(d34:1) 33. Then, we performed a spatial co-
localization analysis by calculating for all other detected metabolites and lipids their spatial 
correlation with CerP(d34:1) using the cosine score. The molecules with the correlation above 
0.2 were considered and manually curated to show the co-localization with the glomeruli regions 
by overlaying every ion image with the histological image. The resulting 30 markers were 
uploaded to the KPMP DataLake and were used for the multiomics integration analysis.  
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