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Abstract

Functional annotations have the potential to increase the power of genome-wide asso-
ciation studies (GWAS) by prioritizing variants according to their biological function.
Focusing on variant-specific annotation meta-scores including CADD (Kircher et al.,
2014) and Eigen (Ionita-laza et al., 2016), we broadly examined GWAS summary
statistics of 1,132 traits from the UK Biobank (Sudlow et al., 2015) using the weighted
p-value approach (Genovese et al., 2006) and stratified false discovery control (sFDR)
method (Sun et al., 2006). These 1,132 traits were rated by Benjamin Neale’s lab from
the Broad Institute as having medium to high confidence for their heritability estimates.

Averaged across the 1,132 UK Biobank traits, sFDR was more robust to uninformative
meta-scores, but the weighted p-value method identified more variants using CADD
or Eigen, based on performance measures that included type I error control, recall,
precision, and relative efficiency. Our application results were consistent with those from
an extensive simulation study using three different designs, including leveraging the real
genetic data combined with simulated genomic data and vice versa.

We also considered the recent FINDOR method (Kichaev et al., 2019), which leverages a
set of individual 75 functional annotations into GWAS. An earlier application of FINDOR
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to 27 traits selected from the z7 category (SNP-heritability p-value < 1.27 × 10−12 by
Nealelab) detected 13%-20% additional genome-wide significant loci as compared to the
standard annotation-free GWAS, which we confirmed. Moreover, across all 438 traits in
the z7 category, 46,631 out 59,764 (80%) significant loci discovered are common across
the three data-integration methods.

However, across all the 1,132 UK Biobank traits examined, the median [Q1,Q3] of the to-
tal numbers of new, genome-wide significant independent loci were 0 [0, 3] by FINDOR,
0 [0, 2] by weighted p-value, and 0 [0, 0] by sFDR. Notably, 162 traits (89%) in the non-
sig trait category (SNP-heritability p-value > 0.05, “likely reflecting limited statistical
power rather than a true lack of heritability" by Nealelab) had no new discoveries after
data-integration by any of the three methods. Our findings suggest that more informative
scores or new data integration methods are warranted to further improve the power of
GWAS by leveraging the variant functional annotations.

Introduction

In the last decade, genome-wide association studies (GWAS) have enabled the discov-
ery and identification of thousands of genetic loci across a wide range of phenotypes
(Visscher et al., 2017). However, despite their increasingly large sample sizes (e.g.
n > 100, 000) there is a need to improve the often modest power of GWAS, considering
that genetic effect sizes of truly associated SNPs are believed to be small for most
complex human traits (Spencer et al., 2009).

Earlier work have integrated linkage results or summary statistics from independent
GWAS of the same or related traits to increase the power of a GWAS (e.g., Buniello et al.,
2019, Ott et al., 2015). To integrate information across multiple GWAS, meta-analysis
(Cochran, 1954) and Fisher’s method (Fisher, 1938) are two standard and powerful
approaches. For example, meta-analysis of summary statistics has been shown to be
as powerful as mega-analysis using the original individual-level data, when there is no
heterogeneity between the studies (Lin and Zeng, 2010, Sung et al., 2014). On the other
hand, Fisher’s method is more robust to differential directions of effect by combining
p-values from different studies.

Recently, it has been shown that variant functional annotations can predict the biological
relevance of a variant (e.g., Adzhubei et al., 2010, Davydov et al., 2010, Dunham et al.,
2012, Kundaje et al., 2015). To overcome limitations such as incomparable metrics of
measurement and differential ascertainment biases across different annotations, several
authors have proposed methods to integrate many diverse annotations into one single
measure: a meta-score (e.g., Ionita-laza et al., 2016, Kircher et al., 2014, Lu et al., 2015,
Ritchie et al., 2014, Shihab et al., 2015). For instance, Kircher et al. (2014) combined
more than 60 genomic features into one combined annotation dependent depletion
(CADD) meta-score to provide a measure of the relative deleteriousness for each variant,
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while Ionita-laza et al. (2016) developed Eigen, a functional meta-score of similar nature
using an unsupervised spectral approach.

Despite the popularity of using these meta-scores for genomic studies (e.g., Li et al.,
2020, Liang et al., 2019, Pereira et al., 2019), their potential for improving power of
GWAS has not been well studied or understood. To integrate GWAS summary statistics
with meta-scores, in addition to meta-analysis and Fisher’s method, we also consider the
weighted p-value approach (Genovese et al., 2006) and the stratified false discovery rate
(sFDR) control method (Sun et al., 2006), which extended the traditional methodology
of FDR control (Benjamini and Hochberg, 1995). Both weighted p-value and sFDR
methods have been used to leverage linkage evidence (e.g., Roeder et al., 2006, Yoo et al.,
2010), gene-expression data (e.g., Keel et al., 2020, Li et al., 2013), and pleiotropy (e.g.,
Andreassen et al., 2013) to increase power of GWAS. Here we use these data-integration
methods to integrate CADD or Eigen functional meta-scores with GWAS summary
statistics of 1,132 phenotypes from the UK Biobank data (Sudlow et al., 2015).

Integrating functional annotation scores with GWAS summary statistics has been
previously studied. Recently, Kichaev et al. (2019) proposed a modified weighted
p-value-based method called FINDOR to leverage polygenic functional enrichment to
improve power of GWAS. To achieve this, FINDOR uses a stratified linkage disequi-
librium (LD) score regression method (Finucane et al., 2015) to compute the expected
χ2

1 statistic for each GWAS SNP, by regressing the observed GWAS χ2
1 statistics against

75 functional annotations (Gazal et al., 2017) that are tagged by each SNP. FINDOR
then stratifies the GWAS SNPs into 100 equally-sized bins based on their expected
GWAS χ2

1 values and applies bin-specific weights to the corresponding GWAS p-values.
An application of FINDOR by Kichaev et al. (2019) to 27 traits selected from the UK
Biobank data (Sudlow et al., 2015) showed that the method was able to improve power of
GWAS by identifying additional associated variants.

Focusing on integrating functional meta-scores with GWAS summary statistics to
improve power of GWAS, our study here is different from the FINDOR evaluation of
Kichaev et al. (2019) in several ways. Firstly, unlike FINDOR, we study methods that
prioritize GWAS findings based on external information alone. That is, the weighting
factor and stratification are determined solely based on the annotations, independent of
the observed GWAS summary statistics to minimize potential over-fitting. Secondly,
instead of using many individual functional scores we utilize existing meta-scores such
as CADD and Eigen, which are already calibrated and easier to implement in practice.
Thirdly, we focus on evaluating methods’ robustness to the possibility of uninformative
functional annotations, because our understanding of the genomic functionality of a
genetic variant is incomplete and evolving. Finally, we comprehensively examine all
1,132 UK Biobank traits for which the confidence for their SNP-heritability estimates
were considered medium to high by Benjamin Neale’s lab from the Broad Institute
(hereafter referred to as Nealelab; Web Resources).
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We first provide technical details for the four data-integration methods to be examined,
namely meta-analysis, Fisher’s method, weighted p-value, and sFDR. We then describe
the genetic and genomic data to be integrated, namely the summary statistics of the
1,132 UK Biobank traits from Nealelab, and the CADD and Eigen functional annotation
meta-scores from their respective websites (Web Resources).

For a comprehensive evaluation of the methods, we first detail our simulation study de-
signs, including leveraging the observed genomic data combined with simulated genetic
data or vice versa, or using only simulated data. We then describe in details the various
measures used to compare method performance, including the traditional family-wise
error rate (FWER), as well as FDR, power, recall, precision, and relative efficiency.

In addition to the extensive simulation studies, our empirical method evaluation includes
an applications that integrates the UK Biobank GWAS summary statistics with CADD
or Eigen meta-scores, analyzing close to 8 million SNPs for 1,132 complex traits. When
appropriate, we also include the FINDOR method (using 75 individual functional scores)
in both the simulation and application studies.

Materials and Methods

The integration methods: meta-analysis, Fisher’s method, weighted
p-value, and stratified false discovery rate (sFDR) control

Notation and set-up

Let zi and pi be the association test statistic and its corresponding p-value for SNP i,
i = 1, ...m, from a genome-wide association study, the primary data of interest. Without
loss of generality, we assume zi follows N(0, 1), the standard normal distribution, under
the null hypothesis of no association between the SNP and the GWAS trait under the study.

Let zi,add and pi,add be additional information available for the SNP, based on data in-
dependent of zi and pi from the GWAS. Note that zi,add may or may not be normally
distributed depending on the application setting, e.g. zi,add can be the CADD (Kircher
et al., 2014) or Eigen (Ionita-laza et al., 2016) functional meta-score available for SNP i,
which will be the focus of our study.

Meta-analysis and Fisher’s method

For the meta-analysis approach, we first assume the best-case scenario where zi,add is
normally distributed. We then use the inverse variance approach (Hedges and Vevea,
1998) to integrate zi and zi,add,

Zmetai =

√
vizi +

√
vi,addzi,add√

vi + vi,add
,

where the weights, vi and vi,add, are inverse variance estimates associated with zi and
zi,add, respectively, from the GWAS study and the additional study available for data
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integration. Under the null hypothesis of no association and assuming the functional
meta-score is uninformative, Zmetai is N(0, 1) distributed.

Fisher’s method combines p-values instead of the test statistics. That is,

ZFisheri = −2(log(pi) + log(pi,add)).

Fisher’s method is omnibus to directions of effect, and as a result it can be more powerful
than meta-analysis when signs of zi and zi,add differ. Under the null that both p-values,
pi and pi,add are, independently, Unif(0, 1) distributed, ZFisheri is χ2

df=4 distributed.

Although meta-analysis and Fisher’s method are applicable in many scientific settings,
their applications to genetic association studies are typically restricted to combining
association evidence from multiple GWAS studies of the same phenotype in the same
population. This is because the statistical power of meta-analysis (and Fisher’s method)
relies on the assumption of homogeneity beyond direction of effect (Thompson, 1994).
In practice, given two families of multiple tests, the underlying compositions of the
null and alternative hypotheses may differ, unless the two studies used the same study
design and data ascertainment scheme, including phenotype definition, genotyping
platform, environmental exposure, and study population (Begum et al., 2012). When
the truly associated SNPs do not completely overlap between the different studies, using
random-effect instead of fixed-effect meta-analysis does not guarantee improved power,
because it violates the assumption that the effect sizes come from the same distribution.

The use of meta-analysis and Fisher’s method is also questionable when zi and zi,add
from the two studies offer different types of information. In essence, the use of weights
vi and vi,add notwithstanding, meta-analysis and Fisher’s method implicitly assume zi
and zi,add carry ‘exchangeable’ information. For our study, however, zi is the genetic
association summary statistic, while zi,add is the genomic annotation meta-score. Thus,
meta-analysis and Fisher’s method are likely to be sub-optimal for the purpose of this
study. However, for completeness we include the two classical data-integration methods
in our initial method evaluation.

For a practical implementation of meta-analysis when zi,add is the CADD or Eigen meta-
score, we let vi,add = vi as it is unclear what is the variance of zi,add, the functional
meta-score; using the sample estimate is not appropriate as it assumes the underlying
variances of zi,add’s are the same across the i = 1, ...m SNPs. Further, we use the inverse
normal transformation to re-scale zi,add while keeping the sign of the re-scaled zi,add to be
the same as zi, creating the best-case scenario for the meta-analysis; see Supplementary
Information S.1 for details. Similarly, for a practical implementation of Fisher’s method,
we use a rank-based transformation and let pi,add = (rank of zi,add/m), which is also
related the phred-scaled CADD and Eigen scores which we discuss later.
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The weighted p-value approach

Unlike meta-analysis and Fisher’s method, which assume zi and zi,add carry similar
information, the weighted p-value approach (Genovese et al., 2006) treats zi and zi,add
differently. That is, the method considers zi and pi as the primary data of interest, and it
converts zi,add to wi, a weight to be applied to pi. Thus, the weighted p-value approach
is an attractive method for the purpose of our study, where the primary data are GWAS
summary statistics, and the additional information available are genomic functional
scores derived independently from the GWAS of interest.

For a valid weighted p-value implementation, the wi’s must satisfy two conditions: wi ≥
0 and w̄ =

∑
wi/m = 1 (Genovese et al., 2006). To convert zi,add to wi, Roeder

et al. (2006) studied two possible weighting schemes: exponential, wi = m(exp(β ×
zi,add)/

∑
i exp(β × zi,add)), and cumulative,

wi = m
Φ(zi,add − β)∑
i Φ(zi,add − β)

, (1)

where Φ is the cumulative distribution function of the standard normal. In either case,

pi,weighted = min{ pi
wi
, 1}. (2)

Here we choose the cumulative weighting scheme, with the recommended default value
of β = 2 (Roeder et al., 2006). This is because the exponential converting scheme is
highly sensitive to large values of zi,add, which is the case here; functional meta-scores
can be as large as 80 (Kircher et al., 2014).

Stratified false discovery rate (sFDR) control

Unlike the weighted p-value approach that up-weights or down-weights each SNP
according to its external information zi,add, the sFDR method separates the GWAS SNPs
into different groups based on zi,add, which can be continuous or categorical (Sun et al.,
2006). When zi,add is continuous, it has been shown that categorizing zi,add does not
necessarily result in loss of power, as the additional information available are unlikely to
be precise or completely informative (Yoo et al., 2010). In addition, sFDR is robust to the
situation when zi,add is uninformative (i.e. random) or possibly misleading.

To implement sFDR in our setting where zi,add is the continuous functional meta-score,
without loss of generality, we first stratify GWAS SNPs into two groups based on whether
their meta-scores are among the top five percent or not, irrespective of zi and pi, the
GWAS summary statistics. (The choice of the number of groups and the thresholds,
however, is subjective, similar to the choice of the weighting scheme and β value for the
weighted p-value approach above.) As a result, there are two groups of GWAS SNPs,
where group 1 contains 5% of the GWAS SNPs with the highest functional meta-scores
and group 2 contains the remaining SNPs. It is worth emphasizing that group 1 is only
presumed to be the high-priority group, as the stratification is based on genomic zi,add
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alone, independent of the GWAS zi or pi.

We then apply FDR control, separately, to the two groups of GWAS p-values, but using
the same pre-specified FDR γ% level. Following the sFDR method of Sun et al. (2006),
for each group of SNPs we first convert their GWAS p-values, pi’s, to q-values, qi’s
(Storey, 2002), and we then reject the SNPs with qi < γ%; this sFDR procedure controls
the overall FDR at the γ% level. Although sFDR does not explicitly use weights, it has
been shown to be a robust version of the weighted p-value approach, where all SNPs
within a group have the same weights (Yoo et al., 2010).

Let mk be the number of SNPs in group k, and let π(k)
0 be the proportion of truly as-

sociated SNPs in the group. Within each group, we obtain q-values recursively (Storey,
2002),

qi = min{
π̂

(k)
0 m(k)p(i)

i
, qi+1},

where p(1) ≤ . . . ≤ p(i) ≤ . . . ≤ p(m) are the ordered GWAS p-values, and the procedure
starts from q(m) = π̂0p(m). To obtain π̂0, we choose the commonly used conservative
estimate (Storey and Tibshirani, 2003),

π̂0 =
the number of SNPs with pi > 0.5

0.5m(k)
.

After rejecting SNPs with qi < γ% separately for each group of SNPs, group-specific
weights can be inferred if desired (Yoo et al., 2010). Let α(k) be the maximum GWAS
p-values among the rejected SNPs for group k, the group-specific weight is,

w(k) = m
α(k)∑

k α
(k)m(k)

. (3)

We can then obtain sFDR weighted p-values,

pi,sFDR = min{ pi
w(k)

, 1}. (4)

Without loss of generality, if group 1 has no rejections at the pre-specified FDR γ% level,
we set w(1) = 0 and w(2) = m/m(2). If both groups have no rejections at the γ% level,
then w(1) = w(2) = 1. That is, the study is reduced to the unweighted case.

The sFDR group-specific weights, w(k)’s satisfy the constraints imposed by the weighted
p-value approach (Genovese et al., 2006), and they have been shown to be a robust ver-
sion of the SNP-specific wi’s (Yoo et al., 2010). If the additional information is truly
informative, w(1) > 1 while w(2) < 1, where w(k)’s can be considered as dichotomized
wi’s of the weighted p-value approach. In that case, the weighted p-value approach is
slightly more powerful than sFDR. On the other hand, if the information is just random
noise, w(1) ≈ w(2) ≈ 1 for sFDR, while the weighted p-value method still up-weights
or down-weights the GWAS p-values according to the individual wi’s values, which are
proportional to the observed zi,add’s. In the event of misleading information, w(1) < 1

while w(2) > 1 even though group 1 was presumed to be the high-priority group. Thus,
sFDR is robust to uninformative or even misleading added information.
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The UK Biobank GWAS summary statistics for 1,132 complex traits

We obtained the UK Biobank GWAS round 2 summary statistics from Nealelab (Web
Resources). Nealelab performed association studies for 4,236 complex traits using regres-
sion, where the regression models included age, sex and the first 20 principal components
as covariates, in addition to SNP genotypes which were coded additively. For each of
these traits, Nealelab also applied the LD-score regression method (Bulik-Sullivan et al.,
2015) to estimate the SNP-heritability, which ranges from 0% to 48%.

In addition to the point estimate and the p-value of testing if the SNP-heritability is 0%,
Nealelab also rated the heritability p-value of each trait with a confidence level, primarily
based on the effective sample size (n > 20, 000) used for the p-value calculation. Thus,
we restricted our analysis to the 1,132 traits rated as with medium to high confidence
by Nealelab, among which 531 are continuous and 601 are binary traits for which the
effective sample sizes depend on the numbers of cases; see Figure S1 for a histogram of
the case rates for the 601 binary traits.

Note that the SNP-heritability estimates for some of the 1,132 traits can still be very low,
and their SNP-heritability testing p-values may not be significant. Nealelab then put these
1,132 traits into four groups: nonsig (182 traits with SNP-heritability testing p-value
p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits; p < 3.17 × 10−5), and z7
(438 traits; p < 1.28 × 10−12), where “many of the non-significant results likely reflect
limited statistical power rather than a true lack of heritability”. Figure S2 contrasts the h2

g

estimates of the 1,132 traits with their z-values of the SNP-heritability testing conducted
by Nealelab.

The GWAS of Nealelab were restricted to n = 361, 194 individuals of white-British an-
cestry and 10.9 million variants that passed a set of quality control (QC) steps; see Web
Resources for the detailed QC steps performed by Nealelab. Our analysis focused on
m = 7, 895, 174 common bi-allelic autosomal SNPs. We excluded indel variants because
their functional meta-scores are not available. We additionally excluded X-chromosomal
variants because their association tests may not be optimal (Chen et al., 2021) and their
functional annotations are not always available. Lastly, we excluded SNPs with minor al-
lele frequency (MAF) less than 1% because their association p-values may not be reliable
(Tang et al., 2020) and joint analysis of multiple rare variants simultaneously (Derkach
et al., 2014) is beyond the scope of our study.

CADD and Eigen functional meta-scores

We obtained the CADD meta-scores (v1.6), using the CADD tool (Rentzsch et al., 2019),
and the Eigen meta-scores (v1.0), using the ANNOVAR tool (Wang et al., 2010), for all
the 7,895,174 common bi-allelic autosomal SNPs.

In addition to the raw CADD meta-scores, the CADD tool also provides rank-based re-
scaled scores called phred scores,−10 log10(ranks of the raw scores/total number SNPs),
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which are positive and have better interpretation as compared with the raw scores. For
example, a phred score of 10 or greater indicates that the SNP is predicted to be among
the top 10% most deleterious among the human genome, while a phred score 20 or
greater implies top 1% most deleterious.

For consistency between CADD and Eigen, we applied the same technique to obtain
phred-scaled Eigen scores; hereafter scores represent phred-scaled scores unless specified
otherwise. Figure S3 in Supplementary Information shows the histograms of CADD
and Eigen scores; each is expected to be 2.17χ2

2 distributed, because (rank of the raw
score/total number SNPs) is Unif(0,1) distributed, and as a result −2 log(Unif(0,1)) is χ2

2

distributed.

Because Eigen scores were estimated using an unsupervised learning approach, in contrast
to CADD scores, which were estimated using labeled data, we also compared these two
scores genome-wide (Figure S4) and across four different consequence categories: mis-
sense, non-coding, synonymous, and protein truncating variants (PTV) (Figure S5). Vari-
ants in the missense and PTV categories tend to have higher CADD than Eigen scores,
while variants in the non-coding and synonymous categories tend to have higher Eigen
than CADD scores. However, overall the two meta-scores are consistent and lead to qual-
itatively comparable data-integration results, which we discuss next.

Simulation study design I, leveraging the observed genomic data

Here we used the real CADD and Eigen functional meta-scores, combined with simulated
GWAS summary statistics, to verify type I error control of the studied data-integration
methods.

Simulated GWAS summary statistics under the null of no association combined with
real functional annotation scores

We first simulated aN(0, 1) distributed trait for 1,756 individuals from the 1000 Genomes
Project (Auton et al., 2015). The phenotype values were simulated independently of
the genotypes of 422,923 bi-allelic, autosomal and common (MAF > 5%) SNPs that a)
passed quality control conducted by Roslin et al. (2016) who studied the individuals from
the five super-populations, and b) have available CADD and Eigen meta-scores, and c)
have the 75 annotations used by FINDOR.

We then obtained GWAS summary statistics for the 422,923 SNPs by regressing the
trait values of the 1,756 individuals on the additively coded genotypes. Because the trait
values were randomly generated, independent of the genotypes and the populations, the
resulting GWAS zi’s are N(0, 1) distributed and pi’s Unif(0,1) distributed, as expected
under the null of no association and confirmed by the histograms of zi’s and pi’s from
one randomly selected simulation run (Figure S6).
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Finally, we integrated the GWAS summary statistics with their corresponding CADD (or
Eigen) meta-scores using the four methods, meta-analysis, Fisher’s method, weighted p-
value, and sFDR control as described above. Although Kichaev et al. (2019) showed that
FINDOR calibrated well when a GWAS consists of a mixture of null and associated SNPs,
we also examined the performance of FINDOR in this setting when all GWAS SNPs are
under the null hypothesis of no association. We applied the FINDOR tool using the same
set of LDscores and the 75 annotations (Gazal et al., 2017) that were used by Kichaev
et al. (2019) for their study; see Web Resources.

Method evaluation: family-wise error rate (FWER)

For each simulation replicate (i.e. a GWAS simulated under the null of no association), we
obtained the number of false positives using the conservative Bonferroni corrected signifi-
cance level, α = 0.05/422923 = 1.2×10−7. We repeated the simulation, independently,
50,000 times, and calculated the family-wise error rate as the proportion of the number
of replicates with at least one significant finding. Assuming the true FWER is 0.05, we
expect the estimate obtained from the 50,000 independent simulation replicates to have a
standard error of

√
0.05× 0.95/50000 ≈ 0.001. Thus, a method with a FWER estimate

outside [0.047, 0.053] can be considered inaccurate.

Simulation study design II, leveraging the observed genetic data

Here we used the UK Biobank GWAS summary statistics, combined with permuted
CADD and Eigen scores, to evaluate robustness of the methods to random annotation
scores. Prior to the permutation, we examined the similarity of functional annotations
between SNPs in linkage disequilibrium.

Permuted functional annotation scores combined with real GWAS summary statistics

To obtain a null set functional annotation meta-scores that are independent of GWAS
summary statistics, we randomly permuted the observed CADD (or Eigen) scores
between the SNPs. Although such permutation does not preserve the potential correlation
between functional scores of nearby SNPs, for the purpose of this study, it provides a
valid set of annotation scores that are independent of the GWAS summary statistics.
Nevertheless, we examined the similarity of annotation scores between SNPs in linkage
disequilibrium.

Using CADD as an example, let CADDi and CADDj be the annotation scores
of SNPs i and j, respectively. We first defined a pair-wise similarity measure as
s2
i,j = 1 − |CADDi − CADDj |/(CADDi + CADDj), which is bounded between

0 and 1, where 1 means two scores are identical whereas a value close to 0 suggests
a lack of similarity. We then contrast s2

i,j with r2
i,j , the traditional LD measure of

genotype similarity between two SNPs. Results in Figure S7 show that there is no clear
concordance between the two measures. A closer examination of s2

i,j and r2
i,j for two

randomly selected regions in Figure S8, and the contrast between variant-specific CADD
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meta-score and LD score across the genome in Figure S9, led to the same conclusion that
functional scores of SNPs in LD are not necessarily similar.

After we permuted the functional scores of the 7,895,174 common, bi-allelic autosomal
SNPs, for each of the 1,132 traits of the UK Biobank data, we integrated the GWAS
summary statistics with the permuted annotation scores, using meta-analysis, Fisher’s
method, weighted p-value, and sFDR control. We were not able to evaluate FINDOR
here, because FINDOR implements the LD SCoring (LDSC) tool (Bulik-Sullivan et al.,
2015) and the validity of using LDSC for permuted annotations is not clear.

Method evaluation: Recall, Precision and FDR

Before data integration, we first used α = 5× 10−8 to identify genome-wide significance
findings (Dudbridge and Gusnanto, 2008) based on the summary statistics of the 1,132
UK Biobank GWAS by Nealelab. For the purpose of this simulation study, we treated
these findings, m1,t, as the total number of truly associated SNPs to be discovered after
data-integration for each trait t, t = 1, . . . , 1, 132. In addition to counting the number of
significant SNPs per GWAS, we also counted the number of significant independent loci.
We first defined independent loci using the LDclumping algorithm of PLINK (v1.07)
(Purcell et al., 2007), with a sliding window of 1 Mb and a LD r2 threshold of 0.1 as
per standard practice. We then considered each independent locus significant if the locus
contained at least one genome-wide significant SNP.

After data-integration, integrating the GWAS summary statistics with the permuted
functional scores for each trait t, we then used the same α = 5 × 10−8 to identify
genome-wide significance findings (SNPs or loci as defined above), denoted as Pt.
Among the Pt positives, we defined false positives, FPt, as the new findings that were
not part of the m1,t findings, because the information used for data integration were
permuted functional scores. Similarly, we defined TPt = Pt − FPt as the number of
true positives for trait t.

Finally, we defined and calculated recall, precision and false discovery rate by

Recallt =
TPt
m1,t

, P recisiont =
TPt
Pt

and FDRt = 1− Precisiont =
FPt
Pt

.

Recall is conceptually the same as Power, defined later for simulation studies where
we know the ground truth and m1,t SNPs were simulated as truly associated SNPs. We
calculated Recallt only when m1,t > 0. That is, for the 409 out 1,132 GWAS with no
significant findings before data-integration (i.e. m1,t = 0) we did not calculate Recallt.
Regardless of if m1,t = 0, for GWAS with no significant findings after data-integration,
(i.e. Pt = 0; 558 by meta-analysis, 505 by Fisher’s method, 440 by weighted p-value,
and 415 by sFDR), we conservatively defined Precisiont = 1 and FDRt = 0.
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Simulation study design III, varying the informativeness of genomic
information

To further investigate method performance in the presence of completely informative,
partially informative, uninformative, or even misleading added information, we per-
formed an additional set of simulation studies. Although linkage disequilibrium is an
important aspect of GWAS, given the simulation study design I and our findings in the
results section, the simulation studies here focused on independent SNPs to delineate
other potentially influencing factors.

Without loss of generality, we assumed the total number of SNPs m = 10, 000, among
which the first m1 = 100 SNPs are truly associated. The corresponding summary
statistics zi’s were drawn, independently, from N(µ1, 1) for the m1 associated SNPs,
and from N(0, 1) for the remaining null SNPs. The top left plot in Figure S10 shows the
Manhattan plot for one simulated GWAS replicate with µ1 = 3; we also varied µ1 from
0.1 to 4 to represent different power of a GWAS.

We then assumed zi,add’s as the additional information available, which were drawn,
independently, from N(µadd, 1) for madd SNPs and N(0, 1) for the remaining SNPs.
Importantly, the locations of the madd SNPs may differ from those of the m1 associated
SNPs. That is, the additional information available for a truly associated SNP may be
random noise. On the other hand, for a null SNP with no association (i.e. zi drawn from
N(µ1, 1)), zi,add could be drawn from N(µadd, 1), representing misleading information.
We also varied µadd, which may or may not be the same as µ1.

Using m1 = 100 and µ1 = 3 as an example for the GWAS component, we considered
the following eight scenarios for the additional information available for data integration
(Figure S10), which fall into four categories.

• Category I is completely informative (homogeneity): (1) madd = 100, µadd = 3

and locations of themadd SNPs perfectly match those ofm1 GWAS truly associated
SNPs.

• Category II is partially informative: (2) madd = 100 and µadd = 1.5; (3) madd =

50 and µadd = 3; (4) madd = 50, µadd = 1.5, and all madd SNPs coincide with
(some of) the m1 SNPs.

• Category III is (partially or completely) misleading: (5)madd = 100 and µadd = 3;
(6) madd = 100 and µadd = 1.5, but in both scenarios only 50 out of the madd

SNPs coincide with 50 of the m1 SNPs. And (7) madd = 100 and µadd = 3, but
none of the madd SNPs coincide with the m1 SNPs.

• Category IV is uninformative: (8) madd = 0 and µadd = 0. That is, the additional
information available is white noise.

For each of the eight scenarios, we simulated 1,000 data replicates, independently of
each other. For each replicate, we then applied the four data-integration methods that
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are suitable for this simulation study, namely meta-analysis, Fisher’s method, weighted
p-value, and sFDR control. Finally, we evaluated the methods using various performance
measures, which we describe below.

Method evaluation: power and relative efficiency (RE)

We first used the Bonferroni corrected threshold to declare significance (i.e. p-value <
0.05/10000 = 5 × 10−6). Let Prept be the number of positives for each of the 1000
simulation replicates after data-integration, we defined power as

Powerrept =
Prept
m1

,

the proportion of the truly associated GWAS SNPs that were found after data-integration,
which is similar to Recallt defined earlier in simulation study design I.

As the Bonferroni approach can be conservative, we explored two alternative decision
rules: fixed-region and fixed-FDR rejections. The fixed-region rule rejected the top k
SNPs (e.g. k = 100), while the fixed-FDR rule rejected SNPs by controlling FDR at γ%

level (e.g. γ% = 5% or 20%). For each rejection rule, we then calculated the power as
described above.

In the context of multiple hypothesis testing, the performance of a method can be evalu-
ated by alternative measures, such as relative efficiency. To this end, we first ranked all the
truly associated m1 SNPs based on the GWAS data summary statistics alone, denoted as
Rbaseline. We then ranked these SNPs after data-integration, denoted as Rmethod, based
on the magnitude of their Zmeta, ZFisher, pweighted, and psFDR statistics as defined
in the method section. Finally, after averaging Rbaseline and Rmethod across the 1000
simulated replicates, we defined relative efficiency as

REmethod = 1− Rmethod

Rbaseline
.

A positive REmethod value means the truly associated m1 SNPs are ranked higher, on
average, after data-integration using the method; a REmethod value of zero means that
the date-integration method did not improve performance; and a negativeREmethod value
suggests that the data-integration effort was counter-productive.

Application, integrating UK Biobank GWAS summary data with func-
tional annotations

We analyzed the 7,895,174 common, bi-allelic autosomal SNPs of the UK Biobank
data, using the weighted p-value approach and sFDR methods to integrate their GWAS
summary statistics with the CADD (or Eigen) meta-scores, for each of the 1,132 traits as
described before. We excluded meta-analysis and Fisher’s method from data application,
because severe robustness issues (to partially informative, uninformative, or misleading
zi,add) were found in simulation studies; see results for details. For comparison, we also
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implemented FINDOR using the set of 75 publicly available annotations recommended
by the authors; see Web Resources.

To evaluate method performance, we first counted the total number of significant, inde-
pendent loci (at the 5×10−8 level) found after data integration, the same measure used by
FINDOR. As a baseline, we also counted the number of significant loci identified based
on the GWAS data alone (without data integration with annotation scores) for each of the
1,132 traits. We then calculated Recall, the proportion of the initial GWAS findings that
were retained after data-integration, as defined early for the simulation studies. Finally,
we usedNewDiscoveries to represent the number of new genome-wide significant find-
ings at the 5× 10−8 level.

Results

Results of simulation design I, leveraging the observed genomic data

Here we integrated real functional annotations with simulated GWAS summary statistics
that were simulated under the null of no association. The performance measure here is
the empirical family-wise error rate, estimated from 50,000 simulated replicates.

Table 1 shows that the empirical FWER is 0.0496 for the baseline analysis (i.e. using the
null GWAS summary statistics alone). For the five different data-integration methods,
the empirical rates were 0.0477, 0.0366, 0.0501, 0.0474, and 0.0537 for meta-analysis,
Fisher’s method, weight p-value, sFDR, and FINDOR, respectively, where FINDOR is
the only method with slightly liberal type I error rate.

Table S1 also provides a detailed account of the numbers of replicates, out of a total
of 50,000 replicates, that have at least one, two or three false findings for each of the
methods; no method had more than three false findings per GWAS. Although a method
with an empirical FWER estimate outside [0.047, 0.053] can be considered inaccurate,
overall all methods have reasonable type I error control in this setting.

Results of simulation design II, leveraging the observed genetic data

Here we integrated real UK Biobank GWAS summary statistics of the 1,132
traits with permuted CADD (or Eigen) meta-scores; FINDOR was not applica-
ble here. The suitable performance measures here are Recallt = TPt/m1,t and
Precisiont = 1 − FDRt = TPt/Pt, where m1,t was defined as the number of
genome-wide significant GWAS findings prior to data-integration for trait t, and Pt and
TPt are the numbers of positives and true positives after data-integration.

The Recall results shown in Figure 1 confirm that meta-analysis and Fisher’s method
are not suitable for integrating functional annotations with GWAS summary statistics.
Among the 723 GWAS with at least one significant finding prior to data integration
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(m1,t > 0), 574, 627, 717, and 692 GWAS have at least one significant finding after
data-integration using, respectively, meta-analysis, Fisher’s method, weighted p-value,
and sFDR to integrated permuted CADD scores.

Across the 723 GWAS with m1,t > 0, the median [Q1, Q3] Recall rates are 66.67%
[50%, 73.34%] for meta-analysis and 84.23% [70%, 92.15%] for Fisher’s method, after
integrating permuted CADD scores. In contrast, these values are 100% [95.87%, 100%]
for the weight p-value method and 100% [100%, 100%] for the sFDR control (Figure 1;
Table 1). The Precision results in Figure 1 and Table 1 are consistent with the Recall
results.

These results consistently show the sensitivity issue of meta-analysis and Fisher’s meth-
ods, and they confirm that sFDR is more robust than the weighted p-value approach which
was demonstrated by Yoo et al. (2010) in a different setting, integrating linkage results
with GWAS. Results stratified by the four types of traits analyzed, nonsig, nominal, z4,
and z7 (Figure S11), counting significant SNPs instead of loci (Figure S12), or using
permuted Eigen scores (Figure S13) lead to the same conclusion.

Results of simulation design III, varying the informativeness of ge-
nomic information

Here we simulated GWAS summary statistics with some SNPs truly associated, and
we then simulated additional data with varying degree of informativeness, including
uninformative or possibly misleading. We used power and relative efficiency (RE) to
compare methods, where RE was defined as one minus (the average ranks of the truly
associated SNP after data-integration) divided by (their average base-line ranks using
GWAS data alone).

The RE results in Figure 2 are consistent with those from simulation study design II.
While meta-analysis and Fisher’s method work well when the additional information is
completely informative (i.e. the two data resources are homogeneous with each other),
they are not suitable data-integration methods for other settings.

The power results in Figure S14 are consistent with the RE results, across different
rejection rules including controlling FWER at 5%, rejecting top 100 ranked SNPs, and
controlling FDR at 5% or 20%. Results are also consistent when µ1 varies from 0.1
to 4 to represent different power of a GWAS (Figures S15–S20). Thus, we excluded
meta-analysis and Fisher’s method from the application study.
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Results of the application study, integrating UK Biobank GWAS sum-
mary data with functional annotations

We applied three data-integration methods to integrate GWAS summary statistics (be-
tween each of the 7,895,174 common SNPs and each of the 1,132 UK Biobank traits)
with, respectively, 75 individual annotation scores using FINDOR, and CADD (or
Eigen) meta-scores using weighted p-value and sFDR methods. In addition to Recall
and Precision, we also examined the total number of significant, independent loci de-
tected at the 5×10−8 level, the performance measure used by the original FINDOR paper.

Figure 3 shows the total number of significant, independent loci identified by using
GWAS alone (as a baseline), or FINDOR, weight p-value and sFDR data-integration
methods, stratified by the four types of traits analyzed (nonsig, nominal, z4, and z7).
Overall, integrating existing functional annotations with UK Biobank GWAS association
statistics did not lead to striking improvement in terms of the total number of significant
loci, as compared with the baseline (i.e. using GWAS data alone) irrespective of the data
integration methods. Results of using Eigen (Figure S21) or counting SNPs instead of
independent loci (Figure S22) are characteristically similar.

The loci identified by any of the three methods largely overlapped (Figure S23). For
example, in the z7 category 44,595 out 56,153 (79%) genome-wide significant, indepen-
dent loci discovered are common across the three methods. In general, FINDOR and
weighted p-value methods have very similar performance, both with slightly more find-
ings than sFDR, which is not surprising given the trade-off between power and robustness.

Figure S24 shows Recall rates stratified by the four trait categories for FINDOR (using a
set of 75 annotations) and weighted p-value and sFDR (using CADD meta-scores). Table
1 shows the number of traits with m1,t > 0 (the number of genome-wide significant
findings before data integration), for which Recall rates were calculated for each of the
four trait categories, as well as the median [Q1, Q3] of Recall for each of the three
data-integration methods.

Consistent with the simulation results, results in Figure S24 and in Table 1 show that
sFDR has the highest Recall rates across the four trait categories. However, as the
estimation of Recall may not be stable when m1,t is small, Figure 4 (A) shows the
Recall rates for the 337 traits with m1,t > 10, while Figure 4 (B) contrasts the number
of significant loci preserved after data-integration with that before data-integration, for
the remaining 789 traits with m1,t ≤ 10.

Conclusion drawn from Figure 4 is consist with that from Figure S24. That is, sFDR
has better Recall rate than FINDOR and weighted p-value approach, which is also
supported by results in Figure S25 for Recall rates for the 402 traits with m1,t > 5;
results in Figures S26–S28 for the contrasts between the numbers of significant loci
before and after data-integration, respectively, for 942 traits with m1,t ≤ 50, 980 traits
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with m1,t ≤ 100, and all 1,132 traits (i.e. m1,t ≥ 0); results in Figure S29 for Recall
using Eigen (instead of CADD meta-score) for the weighted p-value and sFDR methods.
Interestingly, Figure S24 (A) shows that the Recall rate is the highest for traits from
the z4 category regardless of the data-integration methods. However, Figure S24 (B)
shows that overall, Recall rate increases as SNP-heritability estimate in creases, which is
expected.

Despite the overall high median Recall rate, FINDOR and weighted p-value data-
integration methods lose much more genome-wide significant loci found in GWAS than
the sFDR approach (Figure 4). This behaviour reflects the trade-off between power and
robustness as discussed before. Indeed, Figure 5 shows that FINDOR and weighted
p-value are better than sFDR in terms of New Discoveries; using Eigen instead CADD
lead to similar results (Figure S30 and Table 1).

Out of the total of 1,132 UK Biobank traits, 553 (48.8%), 472 (41.7%), 89 (7.8%) had
NewDiscoveries after using, respectively, FINDOR, weighted p-value and sFDR meth-
ods to integrate the GWAS summary statistics with functional annotations; see Table
1 for the counts of New Discoveries stratified by the four trait categories. In addi-
tion, across the four trait types, 165 traits (15%) and 139 traits (12%) had more than
10 New Discoveries after using respectively FINDOR and the weighted p-value data-
integration methods. However, the contrast of the numbers of significant loci before and
after data-integration in Figures 3 and S28 show that all three data-integration methods
have limited capacity to improve the power of GWAS.

Discussion

We have set out to examine the potential of using functional annotation scores to improve
power of genome-wide association studies. We comprehensively studied 1,132 GWAS
summary statistics from the UK Biobank data, and two different functional meta-scores
(CADD and Eigen) and 75 individual scores, using three different data-integration
methods (weighted p-value, stratified FDR and FINDOR). Overall, the number of new
genome-wide significant discoveries is limited across traits and methods (Figures 3
and S28), suggesting more informative scores or new data integration methods are needed
to further improve power of GWAS by leveraging variant functional annotations. A closer
examination of method performance and trait heritability (Figures 5 and S30) revealed
that all methods performed better for traits with higher estimates of SNP-heritability.
This suggests that even the current UK Biobank-level sample size may not be adequate
for some complex traits.

Our study used CADD and Eigen as the functional meta-score available for data-
integration. To the best our knowledge, CADD was the first meta-score in the literature
and Eigen was the first to use unsupervised learning approach, and both meta-scores
have been shown to be superior to other scores in genomic studies. However, the recent
work by Li et al. (2020) has proposed annotation-PCs, a new alternative meta-score that
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warrants further investigation.

In one of our simulation studies, we permuted CADD (and Eigen) to provide a
set of meta-scores that are independent of the GWAS summary statistics of the
UK Biobank data. Although this approach is valid for examining type I error
control, we were intrigued by the question of if there is a meta-score similarity be-
tween SNPs in strong linkage disequilibrium. To answer this question, we defined
s2
i,j = 1 − |CADDi − CADDj |/(CADDi + CADDj) as the similarity measure

between SNPs i and j. Interestingly, there were no clear concordance between s2
i,j and

r2, the LD measure for genotype similarity (Figures S7 and S8).
Throughout this paper, we have used the default tuning parameter values, β = 2 for
the weighted p-value approach and k = 2 for the sFDR method. We did not tune
the parameters to select values that lead to the ‘best’ results, for which valid result
interpretation requires adjustment for the inherent data-dredging or selective inference.
The choice of different β and k values, however, has an effect on method performance.
Figure S31 shows the results of the full analysis of the UK Biobank application study.
For the weighted p-value approach, the default β = 2 led to the highest number of
New Discoveries, but at the same time it resulted in the lowest Recall rate. For the
sFDR method, k = 10 or 20 lead to an increased number of New Discoveries as
compared with the default k = 2, at the cost of slightly reduced Recall rates. Thus,
unlike the previous linkage and GWAS integration setting, the default value of k = 2 for
sFDR appears to be sub-optimal for integrating functional meta-score with GWAS.

Overall, results of all three methods examined, weighted p-value, sFDR and FINDOR,
were largely consistent with each other as detailed in Figure S23, despite of their apparent
differences in methodological approach: FINDOR uses multiple individual functional
scores and adjusts for linkage disequilibrium, while weight p-value and sFDR use
meta-scores without LD adjustment; FINDOR and weighted p-value methods use the
scores as weights, while sFDR only uses the scores to stratify SNPs into different priority
groups. Overall, FINDOR and weighted p-value behaved more similarly with each other
than with sFDR, where FINDOR and weighted p-value led to more new discoveries in
the UK Biobank application, while sFDR is the most robust with the highest recall and
precision rates in both the simulation and application studies.

In contrast to FINDOR, the weights used by the weighted p-value approach and the
variant stratification in sFDR depend solely on the external meta-scores (i.e. independent
of the GWAS summary statistics). This is to reduce the potential over-fitting which,
though not severe for FINDOR, was observed in our simulation studies where the
empirical family-wise error rate of FINOR was 0.0537, estimated from 50,000 simula-
tion replicates; the empirical FWERs of weighted p-value and sFDR were 0.0501 and
0.0474, respectively. Interestingly, the weighted p-value approach used here performs
similarly as compared with FINDOR in terms of both New Discoveries (Figure 5)
and Recall (Figure 4). This, and combined with the FWER control results in Tables
1 and S1, suggests that using GWAS p-values and LD-regression to derive weights
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for weighted p-value method is not necessary. Thus, with the consideration of ease-
of-implementation, we recommend weighted p-value and sFDR for practical applications.

However, the overall number of novel loci discovered after data-integration is limited re-
gardless of the methods used; see Figures 3 and S28 for the contrast of the numbers of
significant loci before and after data-integration for all the 1,132 UK Biobank traits an-
alyzed. Notably, 162 traits (89%) in the nonsig trait category had no new discoveries in
terms of independent loci by any of the three methods; “many of the non-significant re-
sults likely reflect limited statistical power rather than a true lack of heritability” as noted
by Nealelab. Thus, results from this study show the limitation of the current sample size
available for GWAS of complex traits, the informativeness of the current functional an-
notation measures, or power of the current data-integration methods that integrate GWAS
summary statistics with functional annotations.
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Web Resources

UK Biobank, https://www.ukbiobank.ac.uk
UK Biobank GWAS summary statistics from Nealelab, http://www.nealelab.is/uk-
biobank
UK Biobank GWAS QC steps performed by Nealelab, https://github.com/Nealelab/UK_
Biobank_GWAS#imputed-v3-variant-qc
UK Biobank SNP-heritbability estimates from Nealelab, https://nealelab.github.io/
UKBB_ldsc/
The 1,000 Genome Projects, http://tcag.ca/tools/1000genomes.html
CADD(v1.6) , https://cadd.gs.washington.edu
Eigen (v1.0) through ANNOVAR software, http://annovar.openbioinformatics.org/en/
latest/user-guide/filter/#eigen-score-annotations
FINDOR, https://github.com/gkichaev/FINDOR
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Data and Code Availability

Data used in this work are GWAS summary statistics and functional annotation scores
which are publicly available; see Web Resources. All codes used for data analyses
and simulation studies are open-resource and available at https://github.com/jianhuig/
Integrate-gwas.
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FIGURE 1: The Recall and Precision rates obtained from simulation study design
II, integrating the 1,132 UK Biobank GWAS summary statistics with permuted

CADD functional meta-scores, using meta-analysis, Fisher’s method, the weighted
p-value approach, and the stratified FDR control. Recallt = TPt/m1,t and
Precisiont = 1− FDRt = TPt/Pt, where m1,t is the number of genome-wide

significant independent loci prior to data-integration for trait t, and Pt and TPt are the
numbers of positives and true positives after data-integration; see Table 1 for additional
results. Independent loci were defined using PLINK’s LDclumping algorithm with a 1

Mb window and an r2 threshold of 0.1.
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FIGURE 2: The relative efficiency (RE) obtained from simulation study design III,
integrating simulated GWAS summary statistics with simulated additional

information with varying degrees of informativeness, using meta-analysis, Fisher’s
method, the weighted p-value approach, and the stratified FDR control. There were

10,000 independent SNPs, among which 100 were truly associated whose summary
statistics were drawn from N(3, 1); the rest from N(0, 1). For the additional information
available for data integration, the details of the eight simulation scenarios are provided in

the text and illustrated in Figure S10. RE is one minus (the average ranks of the truly
associated SNP after data-integration) divided (by their average base-line ranks using

GWAS data alone), averaged across 1000 simulation replicates.
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FIGURE 3: The total numbers of genome-wide significant independent loci of the
UK Biobank GWAS application study, before and after data-integration with

functional annotations, stratified by the four phenotype categories. In each figure,
the total number of significant loci identified based on the UK Biobank GWAS data

alone serves as a baseline. The GWAS baseline box-plot is followed by the box-plots for
the total numbers of significant loci after integrating the UK Biobank GWAS summary
statistics with functional annotations using FINDOR (using 75 individual annotation
scores), and the weighted p-value and stratified FDR control methods (each using the
CADD meta-score), analyzing 7,895,174 variants for each of the 1,132 UK Biobank

traits. The 1,132 traits were rated by Nealelab as having medium to high confidence for
their heritability estimates, and they fall into four categories: nonsig (182 traits;

heritability testing p-value p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits;
p < 3.17× 10−5), and z7 (438 traits; p < 1.28× 10−12). Independent loci were defined
using PLINK’s LDclumping algorithm with a 1 Mb window and an r2 threshold of 0.1.

28



(A) 337 traits with > 10 UK Biobank GWAS findings, m1,t > 10

FINDOR weighted p sFDR

R
ec

al
l

nonsig nominal z4 z7 nonsig nominal z4 z7 nonsig nominal z4 z7

0.80

0.85

0.90

0.95

1.00

(B) 795 traits with ≤ 10 UK Biobank GWAS findings, m1,t ≤ 10

FINDOR weighted p sFDR

no
ns

ig
no

m
in

al
z4

z7

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

Number of significant loci before integration

N
um

be
r 

of
 s

ig
ni

fic
an

t l
oc

i p
re

se
rv

ed
 a

fte
r 

in
te

gr
at

io
n

method FINDOR weighted p sFDR
count

1

20

40

60

80

100

150

FIGURE 4: Results of the UK Biobank GWAS application study, before and after
data-integration with functional annotations, stratified by the four phenotype
categories. (A) Recallt = TPt/m1,t, where m1,t is the number of genome-wide

significant independent loci prior to data-integration for trait t, and TPt is the number of
true positives after data-integration. Recall estimation is not stable when m1,t is small

so for m1,t ≤ 10, (B) contrasts the number of significant loci preserved after
data-integration with m1,t. The three data-integration methods integrated the UK

Biobank GWAS summary statistics with functional annotations using FINDOR (using
75 individual annotation scores), and the weighted p-value andstratified FDR control

methods (each using the CADD meta-score), analyzing 7,895,174 variants for each of the
1,132 UK Biobank traits. The 1,132 traits were rated by Nealelabas having medium to
high confidence for their heritability estimates, and they fall intofour categories: nonsig
(182 traits; heritability testing p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits;
p < 3.17× 10−5), and z7 (438 traits; p < 1.28× 10−12). Independent loci were defined
using PLINK’s LDclumping algorithm with a 1 Mb window and an r2 threshold of 0.1.
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(B) Contrasting with the SNP-heritability estimates
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FIGURE 5: The total New Discoveries of the application study (A) stratified by the
four trait types or (B) Contrasting with the SNP-heritability estimates. The three
data-integration methods integrated the UK Biobank GWAS summary statistics with

functional annotations using FINDOR (using 75 individual annotation scores), and the
weighted p-value andstratified FDR control methods (each using the CADD meta-score),

analyzing 7,895,174 variants for each of the 1,132 UK Biobank traits. The 1,132 traits
were rated by Nealelabas having medium to high confidence for their heritability
estimates, and they fall intofour categories: nonsig (182 traits; heritability testing

p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits; p < 3.17× 10−5), and z7 (438
traits; p < 1.28× 10−12). Independent loci were defined using PLINK’s LDclumping

algorithm with a 1 Mb window and an r2 threshold of 0.1.
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Methods
GWAS alone Data-integration of GWAS and Functional Annotation Score

75 individual scores CADD meta-score Eigen meta-score
UK Biobank GWAS by the Nealelab unless specified other wise1 FINDOR Weighted p-value Stratified FDR Weighted p-value Stratified FDR

(A). Simulation Design I: Simulated Null GWAS with Real Annotation Scores
Empirical FWER2 0.0496 0.0537 0.0501 0.0474 0.0489 0.0442

(B). Simulation Design II: Real UK Biobank GWAS with Permuted Annotation Scores
Median of Recallt3

[Q1, Q3] NA
98.46%

[95.09%, 100%]
100%

[95.87%, 100%]
100%

[100%, 100%]
100%

[96.38%„ 100%]
100%

[100%, 100%]
Median of Precisiont4

[Q1, Q3] NA
97.51%

[87.56%, 100%]
96.96%

[89.29%, 100%]
100%

[100%, 100%]
97.53%

[92.36%, 100%]
100%

[100%, 100%]
(C). Application Study: Integrating UK Biobank GWAS summary data with Annotation Scores

Median of # of significant loci5
[Q1, Q3] GWAS alone FINDOR Weighted p-value Stratified FDR Weighted p-value Stratified FDR

overall (1,132 traits)
2

[0, 18]
2

[0, 21]
2

[0, 20]
2

[0, 18]
2

[0, 19.25]
2

[0, 18]

nonsig (182 traits)
0

[0, 0]
0

[0, 0]
0

[0, 0]
0

[0, 0]
0

[0, 0]
0

[0, 0]

nominal (277 traits)
0

[0, 1]
0

[0, 1]
0

[0, 1]
0

[0, 1]
0

[0, 1]
0

[0, 1]

z4 (235 traits)
1

[0, 4.5]
2

[0, 5.5]
1

[0, 5]
1

[0, 4.5]
1

[0, 4.5]
1

[0, 4.5]

z7 (438 traits)
26.5

[5, 245.8]
31.5

[6, 255]
27

[5, 255]
26.5

[5, 245.8]
27

[5, 251.5]
26

[5, 246.2]
Median of Recallt 6

[Q1, Q3]

overall (337 traits) NA
97.56%

[96.15%, 98.73%]
96.88%

[95.79%, 98.27%]
100%

[99.91%, 100%]
97.43%

[96.35%, 98.40%]
100%

[99.85%, 100%]

nosig (4 traits) NA
100%

[98.21%, 100%]
100%

[99%, 100%]
100%

[98.21%, 100%]
100%

[99%, 100%]
100%

[100%, 100%]

nomial (11 traits) NA
96%

[90.04%, 98.92%]
97.84%

[95.31%, 100%]
100%

[100%, 100%]
98.85%

[96.44%, 97.06%]
100%

[100%, 100%]

z4 (42 traits) NA
97.30%

[94.12%, 98.35%]
97.15%

[95.64%, 100%]
100%

[100%, 100%]
97.53%

[96.36%, 99.75%]
100%

[100%, 100%]

z7 (280 traits) NA
97.61%

[96.47%, 98.69%]
96.83%

[95.81%, 97.99%]
100%

[99.89%, 100%]
97.37%

[96.36%, 97.06%]
100%

[98.36%, 100%]
Median of # of New Discoveries

[Q1, Q3]

overall (1,132 traits) NA
0

[0, 3]
0

[0, 2]
0

[0, 0]
0

[0, 1]
0

[0, 0]

nonsig (182 traits) NA
0

[0, 0]
0

[0, 0]
0

[0, 0]
0

[0, 0]
0

[0, 0]

nominal (277 traits) NA
0

[0, 0]
0

[0, 0]
0

[0, 0]
0

[0, 0]
0

[0, 0]

z4 (235 traits) NA
0

[0, 1]
0

[0, 1]
0

[0, 0]
0

[0, 1]
0

[0, 0]

z7 (438 traits) NA
4

[1, 18.75]
3

[1, 13.75]
0

[0, 0]
2

[0, 11]
0

[0, 1]
# of traits with >0, 5, 10 significant loci

overall (1,132 traits) 772, 402, 337 738, 420, 353 746, 408, 346 717, 403, 337 701, 405, 346 715, 402, 337
nonsig (182 traits) 36, 5, 4 39, 5, 5 40, 5, 4 36, 5, 4 41, 5, 4 36, 5, 4
nominal (277 traits) 110, 18,11 102, 21, 11 113, 21, 11 109, 18, 11 110, 20,12 107, 18, 11
z4 (235 traits) 160, 55, 42 169, 59, 45 172, 56, 43 157, 56, 42 169, 56, 42 158, 56, 42
z7 (438 traits) 416, 324, 280 428, 335, 292 421, 326, 288 415, 324, 280 421, 324, 288 414, 324, 280
# of traits with >0, 5, 10 New Discoveries
overall (1,132 traits) NA 553, 227, 165 472, 180, 139 89, 0, 0 422, 154, 119 144, 0, 0
nonsig (182 traits) NA 20, 0, 0 15, 0, 0 0, 0, 0 9, 0, 0 1, 0, 0
nominal (277 traits) NA 50, 3, 1 37, 1, 0 3, 0, 0 30, 1, 0 4, 0, 0
z4 (235 traits) NA 103, 22, 11 77, 16, 10 9, 0, 0 75, 11, 8 14, 0, 0
z7 (438 traits) NA 380, 202, 153 343, 163, 130 77, 0, 0 308, 142, 111 125, 0, 0

TABLE 1
A summary of the simulation and application results

1GWAS summary statistics of 1,132 phenotypes from the UK Biobank data (Web Resources). These 1,132
traits were rated as with medium to high confidence for their heritability estimates by Nealelab and fall into four
categories: nonsig (182 traits; SNP-heritability testing p > 0.5), nominal (277 traits; p < 0.05), z4 (235 traits;
p < 3.17× 10−5), and z7 (438 traits; p < 1.28× 10−12).

2FWER estimated from 50,000 simulated replicates; a method with a FWER estimate outside [0.047, 0.053]
can be considered inaccurate. See Table S1 for a detailed account of the numbers of replicates that have at least
one, two or three false findings for each of the methods.

3Recallt = TPt/m1,t, where m1,t is the number of genome-wide significant loci at 5 × 10−8 prior to
data-integration for trait t, and TPt is the number of true positives after data-integration. Recall was calculated
only for 723 traits with m1,t > 0. FINDOR was not evaluated here because the validity of running LDSC on
permuted annotations is not clear. See Figure 1 for the distributions of Recallt.

4Precisiont = TPt/Pt, where Pt is the total number of positives at 5 × 10−8 after data-integration.
See Figure 1 for the distributions of Preciationt.

5The number of significant, independent loci detected at 5 × 10−8 before and after data-integration. See
Figures 3 and S21 for the corresponding box-plots, and see Figure S23 for the overlap between the findings.

6Only for traits with greater than 10 significant loci (m1,t > 10) for which the recall estimation is stable.
See Figure 4 (A) for the corresponding box-plots, and Figure 4 (B) for results for the remaining 795 traits with
m1,t ≤ 10. For box-plots of Recall when m1,t > 5 see Figure S25, and without the m1,t restriction see
Figure S24.
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FIGURE S1: Histogram of prevalence for the 601 binary traits from the 1,132 UK
Biobank traits analyzed in the application study.
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FIGURE S2: Contrast between SNP-heritability estimates and their z-scores for the
1,132 complex traits, based on the UK Biobank data analyzed by Nealelab. The

1,132 traits are categorized by Nealelab into four categories: nonsig (182 traits;
z < 1.96), nominal (277 traits; 1.96 ≤ z < 4), z4 (235 traits; 4 ≤ z < 7), and z7 (438

traits; z ≥ 7).
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Inverse Normal Transformation

Unlike z score in simulations, however, phred score are all positive and only have relative
meaning: higher value means that a variant is more likely to be deleterious. Since inverse
variance meta-analysis and Fisher’s method need z scores or p-values to pool information,
phred score need to be transformed so that small scores (close to 0) have large p-values.
Without loss of generality, let ei be the Eigen phred score, we perform rank based inverse
normal transformation by

INT (ei) = sign(β)Φ(−1)[(
rank(ei)− k
n− 2k + 1

)/2],

where Φ−1 is the inverse normal, rank(ei) is the rank of ei in descending order and k =

3/8 is the Blom offset (Blom, 1958). Because meta-analysis is directional specific, we
manually fix the sign of transformed Eigen score to be consistent with sign of original
GWAS effect βi, which is the best scenario for meta-analysis.
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FIGURE S3: Distributions of CADD and Eigen functional meta-scores. The left
figure shows the phred-scaled meta-scores,

−10 log10(ranks of the raw scores/total number SNPs), and right figure shows the
inverse-normal transformed meta-scores.
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hexagon represents the number of SNP counts.
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FIGURE S5: Contrast between CADD and Eigen functional meta-scores on the
phred-scale. The phred scores are

−10 log10(ranks of the raw scores/total number SNPs), stratified by four variant
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variants. The color and inner size of each hexagon represents the number of SNP counts.
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Detailed simulation design

We first simulated GWAS p-value under the null on 1000 Genomes Project variants.
We then applied FINDOR, weighted p-value, and sFDR on simulated p-values. The
traditional FWER is defined as the proportion of replicates that find at least one false
positive.

Genotype Data Description:

• We obtained 1000 Genome Project genotypes from The Center of Applied Ge-
nomics at Sickkids (http://tcag.ca/tools/1000genomes.html).

• The data went through extensive data cleaning (http://tcag.ca/documents/tools/
omni25_qcReport.pdf).

• In addition, we restricted our analysis to SNPs with MAF > 0.05.

• The dataset analyzed contains 1,756 independent samples and 422,923 bi-allelic
SNPs.

• The proportion of non-missing genotypes was calculated per SNP. The call rate was
excellent: 422,364 of 422,923 (99.7%) of the SNPs had call rate > 97%. We fast
impute missing genotypes by randomly sampling acoording to allele frequencies.

Simulation Design:

• We simulated a continuous trait for each sample using Y ∼ N(0, 1) , independent
of the genotype data.

• We conducted a basic GWAS without adjusting any covariates. Because Y was ran-
domly simulated and the population is homogenous, PCA adjustment is not critical;
indeed, the GWAS p-values were Unif(0,1) distributed.

• We then run ldsc (https://github.com/bulik/ldsc) with reference 1000G_Phase3_bas-
elineLD_ldscores.tgz, frq 1000G_Phase3_frq.tgz and weights 1000G_Phase3_wei-
ghts_hm3_no_MHC.tgz from Alke’s Group (https://alkesgroup.broadinstitute.org/
LDSCORE/). In total 100 equal sized bins are created based on quantities of
E(χ2).

• For FINDOR, we use weight wb =

1−π0,b
π0,b

1
100

∑100
b=1

1−π0,b
π0,b

, where π0,b is the estimated

proportion of null hypothesis in each bin using cubic spline proposed by Storey and
Tibshirani. We reject null hypothesis if pgwaswb

< threshold.

• For weighted p-value and sFDR, we obtain CADD (v1.6), and using same methods
we described under methods section in the paper.

• Finally, we repeat the simulation, independently, 50,000 times.

Results:
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FIGURE S6: Histograms of GWAS Z values and p-values from the simulation study
design III. A N(0, 1) distributed trait was simulated for 1,756 individuals from the 1000

Genomes Project, independently of the genotypes of 422,923 bi-allelic, autosomal and
common (MAF > 5%) SNPs. The GWAS summary statistics for the 422,923 SNPs were

obtained by regressing the trait values of the 1,756 individuals on the additively coded
genotypes. Results shown here are from one simulation run, randomly selected from a

total of 50,000 simulation runs.

• Table S1 shows the number of simulation replicates, out of a total of k = 50, 000,
in which 0, 1, 2, or 3 SNPs were declared significant; no replicates had more than
3 false positive SNPs. Let kn represent number of replicates have n false findings.
The sample estimate of (k−k0)/k = (k1 +k2 +k3)/k provides an estimate of the
FWER for each of the method. Note that in this case where all SNPs are under the
null, the estimates are also FDR estimates.

• Because the total number of SNPs in our dataset are around half million, we have
applied the Beefaroni threshold 0.05/422923 = 1.2e − 7 instead of 5e − 8. Table
S1 shows the results.

Conclusion and Discussion: We noticed an increased Type I error in FINDOR method
than baseline method in both cases.

38



Method k0 k1 k2 k3 FWER
Baseline 47522 2409 68 1 0.04956

Meta-analysis 47617 2332 49 2 0.04766
Fisher’s method 48172 1790 38 0 0.03656

Weighted p-value 47495 2443 62 0 0.05010
stratified FDR 47629 2303 67 1 0.04742

FINDOR 47316 2618 64 2 0.05368
TABLE S1

Results of simulation study design I that leverages the real functional scores
combined with GWAS summary statistics simulated under the null of no

association. Breakdown of the number of false positive findings for the k = 50, 000
simulated replicates using the Bonferroni threshold of 1.2× 10−7. Among the

k = 50, 000 replicates, kn, n = 0, ..., 3 represent number of replicates have n false
findings. Assuming the true FWER is 0.05, we expect the estimate obtained from the

50,000 independent simulation replicates to have a standard error of√
0.05× 0.95/50000 ≈ 0.001. Thus, a method with a FWER estimate outside [0.047,

0.053] can be considered inaccurate.
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Using CADD as an example, let CADDi and CADDj be the annotation scores of
SNPs i and j, respectively. We first defined a pair-wise similarity measure as s2

i,j =

1 − |CADDi − CADDj |/(CADDi + CADDj), which is bounded between 0 and 1,
where 1 means two scores are identical whereas a value close to 0 suggests a lack of sim-
ilarity. We then contrast s2

i,j with r2
i,j , the traditional LD measure of genotype similarity

between two SNPs. Results in Figure S7 show that there are no clear concordance be-
tween the two measures. A closer examination of a few randomly selected regions led to
the same conclusion (Figure S8); see Supplementary Information for details.
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FIGURE S7: Contrast between s2
i,j , a pair-wise similarity measure of annotation

scores of SNPs i and j, and r2
i,j , the linkage disequilibrium measure of genotype

correlation, for the common bi-allelic autosomal SNPs of the UK Biobank data.
Annotation similarity measure is defined as

s2
i,j = 1− |CADDi − CADDj |/(CADDi + CADDj), which is bounded between 0

and 1, where 1 means two scores are identical whereas a value close to 0 suggests a lack
of similarity. The pair-wise LD r2

i,j values were calculated for all possible pairs within
1MB on each chromosome using emeraLD (Quick et al., 2019). Area with darker color

(red) represents higher number of points are observed in that region.
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(B) Chr 13: 94071151-94444092

FIGURE S8: For two randomly selected regions, Left: the CADD scores and the
standard pair-wise linkage disequilibrium (LD) plot along with gene information.

Right: contrast between s2
i,j , a pair-wise similarity measure of annotation scores of SNPs

i and j, and r2
i,j , the LD measure of genotype correlation. Annotation similarity measure

is defined as s2
i,j = 1− |CADDi − CADDj |/(CADDi + CADDj), which is

bounded between 0 and 1, where 1 means two scores are identical whereas a value close
to 0 suggests a lack of similarity. Area with darker color (red) represents higher number

of points are observed in that region.
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FIGURE S9: Contrast between CADD meta-score and LD score for the 7,895,174
common, bi-allelic autosomal SNPs of the UK Biobank data. For each variant i, the

plot shows its CADD meta-score and the sum of r2
i,j across all other j variants analyzed.

The color and inner size of each hexagon represents the number of SNP counts.
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FIGURE S10: Illustration of Simulation study design III, varying the
informativeness of genomic information. Among the total m = 10, 000 SNPs, the first
m1 = 100 SNPs are truly associated (red circles) whose GWAS association summary

statistics were drawn from N(µ1 = 3, 1); the remaining SNPs are not associated whose
association summary statistics were drawn from N(0, 1). The top left figure shows the
Manhattan plot of of one simulation run. The other figures demonstrate eight scenarios
for the additional information available for data-integration. The summary statistics of
the additional information available were drawn, independently, from N(µadd, 1) for
madd SNPs (black circles) and N(0, 1) for the remaining SNPs; the locations of the
madd SNPs may differ from those of the m1 associated SNPs. The eight scenarios fall

into four categories. Category I is completely informative (homogeneity): (1)
madd = 100, µadd = 3 and locations of the madd SNPs perfectly match those of m1

GWAS truly associated SNPs. Category II is partially informative: (2) madd = 100 and
µadd = 1.5; (3) madd = 50 and µadd = 3; (4) madd = 50, µadd = 1.5, and all madd

SNPs coincide with (some of) the m1 SNPs. Category III is (partially or completely)
misleading: (5) madd = 100 and µadd = 3; (6) madd = 100 and µadd = 1.5, but in both

scenarios only 50 out of the madd SNPs coincide with 50 of the m1 SNPs. And (7)
madd = 100 and µadd = 3, but none of the madd SNPs coincide with the m1 SNPs.
Category IV is uninformative: (8) madd = 0 and µadd = 0. That is, the additional

information available is white noise.
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Permuted Functional Annotations

Here we integrated real UK Biobank GWAS summary statistics for the 1,132 traits with
permuted CADD (and Eigen) meta-scores, using meta-analysis, Fisher’s method, the
weighted p-value approach, and the stratified FDR control. The suitable performance
measures here are Recallt = TPt/m1,t and Precisiont = 1 − FDRt = TPt/Pt,
where m1,t was defined as the number of genome-wide significant GWAS findings
prior to data-integration for trait t, and Pt and TPt are the numbers of positives and
true positives after data-integration. Recall rates were obtained for 723 GWAS with
m1,t > 0. Regardless if the original GWAS has a finding or not, the Precision rates
were conservatively defined as one for 558, 505, 440, and 415 GWAS with Pt = 0 after
data integration using, respectively, meta-scores, Fisher’s method, weighted p-value, and
sFDR.

In addition to the Figure 1, Figure S11 shows the results stratified by SNP-heritability
estimates of GWAS; Figure S12 shows the rate calculated using SNPs instead of loci;
Figure S13 shows the results by integrating permuted Eigen instead of CADD.
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FIGURE S11: The trait-type-stratified Recall and Precision rates obtained from
simulation study design II. The study integrated the 1,132 UK Biobank GWAS

summary statistics with permuted CADD functional meta-scores, using meta-analysis,
Fisher’s method, the weighted p-value approach, and the stratified FDR control. The

1,132 traits fall into four categories by Nealelab: nonsig (182 traits; p > 0.05), nominal
(277 traits; p < 0.05), z4 (235 traits; p < 3.17× 10−5), and z7 (438 traits;

p < 1.28× 10×−12). Recallt = TPt/m1,t and Precisiont = 1− FDRt = TPt/Pt,
where m1,t is the number of genome-wide significant independent loci prior to
data-integration for trait t, and Pt and TPt are the numbers of positives and true

positives after data-integration.
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FIGURE S12: SNP results for the Recall and Precision rates obtained from
simulation study design II. The study integrated the 1,132 UK Biobank GWAS

summary statistics with permuted CADD functional meta-scores, using meta-analysis,
Fisher’s method, the weighted p-value approach, and the stratified FDR control.
Recallt = TPt/m1,t and Precisiont = 1− FDRt = TPt/Pt, where m1,t is the

number of genome-wide significant SNPs prior to data-integration for trait t, and Pt and
TPt are the numbers of positives and true positives after data-integration.
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FIGURE S13: Eigen results for the Recall and Precision rates obtained from
simulation study design II. The study integrated the 1,132 UK Biobank GWAS

summary statistics with permuted Eigen functional meta-scores, using meta-analysis,
Fisher’s method, the weighted p-value approach, and the stratified FDR control.
Recallt = TPt/m1,t and Precisiont = 1− FDRt = TPt/Pt, where m1,t is the

number of genome-wide significant independent loci prior to data-integration for trait t,
and Pt and TPt are the numbers of positives and true positives after data-integration.
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FIGURE S14: Power obtained from simulation study design III. The study integrated
simulated GWAS summary statistics with simulated additional information with varying
degrees of informativeness, using meta-analysis, Fisher’s method, the weighted p-value
approach, and the stratified FDR control. There are 10,000 independent SNPs among

which 100 are truly associated whose summary statistics were drawn from N(3, 1); the
rest from N(0, 1). For the additional information available for data integration, the

details of the eight simulation scenarios are provided in the text and illustrated in Figure
S10. Power is the proportion of true signals detected after data integration, estimated

from 1,000 simulation replicates, using four different decision rules, controlling
family-wise error rate at 0.05, rejecting top 100 ranked SNPs, and controlling false

discovery rate at 5% or 20%. The red line represents baseline power of using GWAS
data alone without data-integration.
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FIGURE S15: Results of simulation study design III for scenario (1) in Figure S10
from Category I type of informativeness, with the true effect size µ1 for the m1

causal SNPs varying from 0.1 to 4. Completely Informative (Homogeneity) :
madd = 100, µadd = µ1 and locations of the madd SNPs perfectly match those of m1

GWAS truly associated SNPs. We assumed the total number of SNPs m = 10, 000,
among which the first m1 = 100 SNPs (in red on top-left panel) are truly associated.
The corresponding summary statistics zi’s were drawn, independently, from N(µ1, 1)
for the m1 associated SNPs, and from N(0, 1) for the remaining null SNPs. We then
assumed zi,add’s (in black on top-left panel) as the additional information available,

which were drawn, independently, from N(µadd, 1) for madd SNPs and N(0, 1) for the
remaining SNPs.
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FIGURE S16: Results of simulation study design III for scenario (2) in Figure S10
from Category II type of informativeness, with the true effect size µ1 for the m1

causal SNPs varying from 0.1 to 4. Partially Informative: madd = 100, µadd = 1.5,
and all madd SNPs coincide with (some of) the m1 SNPs. We assumed the total number
of SNPs m = 10, 000, among which the first m1 = 100 SNPs (in red on top-left panel)

are truly associated. The corresponding summary statistics zi’s were drawn,
independently, from N(µ1, 1) for the m1 associated SNPs, and from N(0, 1) for the

remaining null SNPs. We then assumed zi,add’s (in black on top-left panel) as the
additional information available, which were drawn, independently, from N(µadd, 1) for

madd SNPs and N(0, 1) for the remaining SNPs.
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FIGURE S17: Results of simulation study design III for scenario (4) in Figure S10
from Category II type of informativeness, with the true effect size µ1 for the m1

causal SNPs varying from 0.1 to 4. Partially Informative: madd = 50, µadd = 1.5, and
all madd SNPs coincide with (some of) the m1 SNPs. We assumed the total number of

SNPs m = 10, 000, among which the first m1 = 100 SNPs (in red on top-left panel) are
truly associated. The corresponding summary statistics zi’s were drawn, independently,

from N(µ1, 1) for the m1 associated SNPs, and from N(0, 1) for the remaining null
SNPs. We then assumed zi,add’s (in black on top-left panel) as the additional

information available, which were drawn, independently, from N(µadd, 1) for madd

SNPs and N(0, 1) for the remaining SNPs.
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FIGURE S18: Results of simulation study design III for scenario (6) in Figure S10
from Category III type of informativeness, with the true effect size µ1 for the m1

causal SNPs varying from 0.1 to 4. Partially Misleading: madd = 100, µadd = 1.5 but
only 50 out of the madd SNPs coincide with 50 of the m1 SNPs. We assumed the total

number of SNPs m = 10, 000, among which the first m1 = 100 SNPs (in red on top-left
panel) are truly associated. The corresponding summary statistics zi’s were drawn,

independently, from N(µ1, 1) for the m1 associated SNPs, and from N(0, 1) for the
remaining null SNPs. We then assumed zi,add’s (in black on top-left panel) as the

additional information available, which were drawn, independently, from N(µadd, 1) for
madd SNPs and N(0, 1) for the remaining SNPs.
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FIGURE S19: Results of simulation study design III for scenario (7) in Figure S10
from Category III type of informativeness, with the true effect size µ1 for the m1

causal SNPs varying from 0.1 to 4. Completely Misleading: madd = 100 and
µadd = 1.5, but none of the madd SNPs coincide with the m1 SNPs. We assumed the
total number of SNPs m = 10, 000, among which the first m1 = 100 SNPs (in red on
top-left panel) are truly associated. The corresponding summary statistics zi’s were

drawn, independently, from N(µ1, 1) for the m1 associated SNPs, and from N(0, 1) for
the remaining null SNPs. We then assumed zi,add’s (in black on top-left panel) as the

additional information available, which were drawn, independently, from N(µadd, 1) for
madd SNPs and N(0, 1) for the remaining SNPs.
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FIGURE S20: Results of simulation study design III for scenario (8) in Figure S10
from Category I type of informativeness, with the true effect size µ1 for the m1

causal SNPs varying from 0.1 to 4. Uninformative: madd = 0 and µadd = 0. That is,
the additional information available is white noise. We assumed the total number of

SNPs m = 10, 000, among which the first m1 = 100 SNPs (in red on top-left panel) are
truly associated. The corresponding summary statistics zi’s were drawn, independently,

from N(µ1, 1) for the m1 associated SNPs, and from N(0, 1) for the remaining null
SNPs. We then assumed zi,add’s (in black on top-left panel) as the additional

information available, which were drawn, independently, from N(µadd, 1) for madd

SNPs and N(0, 1) for the remaining SNPs.
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FIGURE S21: Results of using Eigen meta-scores for the total numbers of
genome-wide significant independent loci of the UK Biobank GWAS application
study, before and after data-integration with functional annotations, stratified by

the four phenotype categories. In each figure, the total number of significant loci
identified based on the UK Biobank GWAS data alone serves as a baseline. The GWAS
baseline box-plot is followed by the box-plots for the total numbers of significant loci

after integrating the UK Biobank GWAS summary statistics with functional annotations
using FINDOR (using 75 individual annotation scores), and the weighted p-value and

stratified FDR control methods (each using the Eigen meta-score), analyzing 7,895,174
variants for each of the 1,132 UK Biobank traits. The 1,132 traits were rated by Nealelab

as having medium to high confidence for their heritability estimates, and they fall into
four categories: nonsig (182 traits; heritability testing p-value p > 0.05), nominal (277

traits; p < 0.05), z4 (235 traits; p < 3.17× 10−5), and z7 (438 traits;
p < 1.28× 10−12). Independent loci were defined using PLINK’s LDclumping

algorithm with a 1 Mb window and an r2 threshold of 0.1.
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FIGURE S22: Results of counting significant SNPs instead of loci for the total
numbers of genome-wide significant SNPs of the UK Biobank GWAS application
study, before and after data-integration with functional annotations, stratified by

the four phenotype categories. In each figure, the total number of significant loci
identified based on the UK Biobank GWAS data alone serves as a baseline. The GWAS
baseline box-plot is followed by the box-plots for the total numbers of significant loci

after integrating the UK Biobank GWAS summary statistics with functional annotations
using FINDOR (using 75 individual annotation scores), and the weighted p-value and

stratified FDR control methods (each using the CADD meta-score), analyzing 7,895,174
variants for each of the 1,132 UK Biobank traits. The 1,132 traits were rated by Nealelab

as having medium to high confidence for their heritability estimates, and they fall into
four categories: nonsig (182 traits; heritability testing p-value p > 0.05), nominal (277

traits; p < 0.05), z4 (235 traits; p < 3.17× 10−5), and z7 (438 traits;
p < 1.28× 10−12). Independent loci were defined using PLINK’s LDclumping

algorithm with a 1 Mb window and an r2 threshold of 0.1.
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FIGURE S23: Intersection of significant, independent loci of the UK Biobank
GWAS application study, before and after data-integration with functional

annotations, stratified by the four phenotype categories. The three data-integration
methods integrated the UK Biobank GWAS summary statistics with functional

annotations using FINDOR (using 75 individual annotation scores), and the weighted
p-value andstratified FDR control methods (each using the CADD meta-score),

analyzing 7,895,174 variants for each of the 1,132 UK Biobank traits. The 1,132 traits
were rated by Nealelabas having medium to high confidence for their heritability
estimates, and they fall intofour categories: nonsig (182 traits; heritability testing

p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits; p < 3.17× 10−5), and z7 (438
traits; p < 1.28× 10−12). Independent loci were defined using PLINK’s LDclumping

algorithm with a 1 Mb window and an r2 threshold of 0.1.
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(B) Stratified by SNP-heritability estimates
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FIGURE S24: Recall results of the UK Biobank GWAS application study stratified
by (A) the four phenotype categories (B) SNP-heritability estimates, for all 722

traits with m1,t>0. Recallt = TPt/m1,t, where m1,t is the number of genome-wide
significant independent loci prior to data-integration for trait t, and TPt is the number of

true positives after data-integration. The three data-integration methods integrated the
UK Biobank GWAS summary statistics with functional annotations using FINDOR
(using 75 individual annotation scores), and the weighted p-value andstratified FDR

control methods (each using the CADD meta-score), analyzing 7,895,174 variants for
each of the 1,132 UK Biobank traits. The 1,132 traits were rated by Nealelabas having

medium to high confidence for their heritability estimates, and they fall intofour
categories: nonsig (182 traits; heritability testing p > 0.05), nominal (277 traits;

p < 0.05), z4 (235 traits; p < 3.17× 10−5), and z7 (438 traits; p < 1.28× 10−12).
Independent loci were defined using PLINK’s LDclumping algorithm with a 1 Mb

window and an r2 threshold of 0.1.
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FIGURE S25: Recall results of the UK Biobank GWAS application study stratified
by the four phenotype categories, for 402 traits with m1,t>5. Recallt = TPt/m1,t,

where m1,t is the number of genome-wide significant independent loci prior to
data-integration for trait t, and TPt is the number of true positives after data-integration.

The three data-integration methods integrated the UK Biobank GWAS summary
statistics with functional annotations using FINDOR (using 75 individual annotation
scores), and the weighted p-value andstratified FDR control methods (each using the
CADD meta-score), analyzing 7,895,174 variants for each of the 1,132 UK Biobank

traits. The 1,132 traits were rated by Nealelabas having medium to high confidence for
their heritability estimates, and they fall intofour categories: nonsig (182 traits;

heritability testing p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits;
p < 3.17× 10−5), and z7 (438 traits; p < 1.28× 10−12). Independent loci were defined
using PLINK’s LDclumping algorithm with a 1 Mb window and an r2 threshold of 0.1.
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FIGURE S26: Contrast of the numbers of significant loci before and after
data-integration for 942 traits with m1,t ≤ 50. m1,t is the number of genome-wide

significant independent loci prior to data-integration for trait t, The three data-integration
methods integrated the UK Biobank GWAS summary statistics with functional

annotations using FINDOR (using 75 individual annotation scores), and the weighted
p-value and stratified FDR control methods (each using the CADD meta-score),

analyzing 7,895,174 variants for each of the 1,132 UK Biobank traits. The 1,132 traits
were rated by Nealelabas having medium to high confidence for their heritability
estimates, and they fall intofour categories: nonsig (182 traits; heritability testing

p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits; p < 3.17× 10−5), and z7 (438
traits; p < 1.28× 10−12). Independent loci were defined using PLINK’s LDclumping

algorithm with a 1 Mb window and an r2 threshold of 0.1.
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FIGURE S27: Contrast of the numbers of significant loci before and after
data-integration for 980 traits with m1,t ≤ 100. m1,t is the number of genome-wide

significant independent loci prior to data-integration for trait t, The three data-integration
methods integrated the UK Biobank GWAS summary statistics with functional

annotations using FINDOR (using 75 individual annotation scores), and the weighted
p-value and stratified FDR control methods (each using the CADD meta-score),

analyzing 7,895,174 variants for each of the 1,132 UK Biobank traits. The 1,132 traits
were rated by Nealelabas having medium to high confidence for their heritability
estimates, and they fall intofour categories: nonsig (182 traits; heritability testing

p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits; p < 3.17× 10−5), and z7 (438
traits; p < 1.28× 10−12). Independent loci were defined using PLINK’s LDclumping

algorithm with a 1 Mb window and an r2 threshold of 0.1.
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FIGURE S28: Contrast of the numbers of significant loci before and after
data-integration for all 1,132 traits, i.e. m1,t ≥ 0. m1,t is the number of genome-wide
significant independent loci prior to data-integration for trait t, The three data-integration

methods integrated the UK Biobank GWAS summary statistics with functional
annotations using FINDOR (using 75 individual annotation scores), and the weighted

p-value and stratified FDR control methods (each using the CADD meta-score),
analyzing 7,895,174 variants for each of the 1,132 UK Biobank traits. The 1,132 traits

were rated by Nealelabas having medium to high confidence for their heritability
estimates, and they fall intofour categories: nonsig (182 traits; heritability testing

p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits; p < 3.17× 10−5), and z7 (438
traits; p < 1.28× 10−12). Independent loci were defined using PLINK’s LDclumping

algorithm with a 1 Mb window and an r2 threshold of 0.1.
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(B) 795 traits with ≤ 10 UK Biobank GWAS findings, m1,t ≤ 10
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FIGURE S29: Eigen results of the UK Biobank GWAS application study, before and
after data-integration with functional annotations, stratified by the four phenotype

categories. (A) Recallt = TPt/m1,t, where m1,t is the number of genome-wide
significant independent loci prior to data-integration for trait t, and TPt is the number of
true positives after data-integration. Recall estimation is not stable when m1,t is small

so for m1,t ≤ 10, (B) contrasts the number of significant loci preserved after
data-integration with m1,t. The three data-integration methods integrated the UK

Biobank GWAS summary statistics with functional annotations using FINDOR (using
75 individual annotation scores), and the weighted p-value andstratified FDR control

methods (each using the Eigen meta-score), analyzing 7,895,174 variants for each of the
1,132 UK Biobank traits. The 1,132 traits were rated by Nealelabas having medium to
high confidence for their heritability estimates, and they fall intofour categories: nonsig
(182 traits; heritability testing p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits;
p < 3.17× 10−5), and z7 (438 traits; p < 1.28× 10−12). Independent loci were defined
using PLINK’s LDclumping algorithm with a 1 Mb window and an r2 threshold of 0.1.
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(A) Stratified by the four trait types
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(B) Contrasting with the SNP-heritability estimates
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FIGURE S30: The Eigen results of the total New Discoveries of the application
study (A) stratified by the four trait types or (B) Contrasting with the

SNP-heritability estimates. The three data-integration methods integrated the UK
Biobank GWAS summary statistics with functional annotations using FINDOR (using
75 individual annotation scores), and the weighted p-value andstratified FDR control

methods (each using the Eigen meta-score), analyzing 7,895,174 variants for each of the
1,132 UK Biobank traits. The 1,132 traits were rated by Nealelabas having medium to
high confidence for their heritability estimates, and they fall intofour categories: nonsig
(182 traits; heritability testing p > 0.05), nominal (277 traits; p < 0.05), z4 (235 traits;
p < 3.17× 10−5), and z7 (438 traits; p < 1.28× 10−12). Independent loci were defined
using PLINK’s LDclumping algorithm with a 1 Mb window and an r2 threshold of 0.1.
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FIGURE S31: Performance of weighted p-value and sFDR methods using different
weighting schemes and stratification for the UK Biobank GWAS application study.
The two data-integration methods integrated the UKBiobank GWAS summary statistics
with CADD meta-score, analyzing 7,895,174 variants for each of the 1,132 UK Biobank
traits. Independent loci were defined using PLINK’s LDclumping algorithm with a 1 Mb

window and an r2 threshold of 0.1. For the weighted p-value approach, the parameter
values represent β = 1, 2 and 10 for the cumulative weighting scheme,

wi = m
Φ(zi,add−β)∑
i Φ(zi,add−β) , where zi,add is the CADD meta-score for variant i. For the sFDR

approach, the parameter values 2, 10 and 20 represent the number of strata used, where
the stratification is based on quantiles of zi,add, the CADD meta-score for variant i.
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