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Deep learning models have recently gained success in various
tasks related to understanding information coded in biological
sequences. Although offering state-of-the art predictive perfor-
mance, the predictions made by deep learning models can be
difficult to understand. In virtually all biological research, the
understanding of how a predictive model works is as, or even
more important as the raw predictive performance. Thus in-
terpretation of deep learning models is an emerging hot topic
especially in context of biological research. Here we describe
PlotMI, a mutual information based model interpretation tool
that can intuitively visualize positional preferences and pairwise
dependencies learned by any machine learning model trained
on sequence data such as DNA, RNA or amino acid sequence.
PlotMI can also be used to compare dependencies present in
training data to the dependencies learned by the model and to
compare dependencies learned by different types of models that
are trained to perform the same task. PlotMI is freely available
at https://github.com/hartonen/plotMI.
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Introduction
Simultaneous rapid development of modern deep learning
(DL) methods, computing hardware and high-throughput bi-
ological measurements has opened up avenues for successful
application of DL to different problems in the fields of biol-
ogy and medicine (1). DL models are especially well suited
for analysis of large data sets of biological sequences as in-
dicated for example by an early success story applying con-
volutional neural networks (CNNs) to learning binding mo-
tifs of transcription factors (TFs) (2) or more recent signifi-
cant improvements in protein structure prediction using deep
learning (e.g. (3)).
Biological interactions manifest themselves as dependencies
in the data and learning these dependencies can often times
explain why a DL model outperforms a traditional machine
learning (ML) model such as linear regression. The internal
representations of dependencies learned by a DL model are,
however, typically non-intuitive and difficult to present in a
human comprehensible format. This creates a demand for
tools that can visualize dependencies learned by a DL model

in an intuitive manner.
Traditionally DL has been viewed as a "black box" method
giving state-of-the-art performance at the cost of losing in-
tepretability of the model. In many biological problems the
ability to explain the decisions made by an ML model is at
least as important as the accuracy of the predictions. Thus
several methods for interpretation of DL models trained on
biological sequence data have been developed. In the follow-
ing we highlight interpretation tools of DL models trained on
biological sequence data as full review of DL interpretation
efforts is out of the scope of this work.
One of the most straightforward methods to visualize features
learned by the DL model is to directly visualize the convolu-
tional filters of the first layer of the network (e.g. (2)). First
layer filters have also been interpreted by constructing motif
logos from parts of input sequences that result to high acti-
vation of the individual filters (4). Interpretation of the first
layer filters is however not straightforward and the network
architecture has been shown to greatly affect what kind of
features the first layer filters tend to learn (5).
In silico saturation mutagenesis (ISM) (used e.g. in (2) and
(4)) is an intuitive approach that measures changes in model
output produced by simulated mutations. With ISM, the idea
is to introduce all possible single position variants to an input
sequence and score each variant with the trained DL model.
The main drawback of ISM is that it is computationally ex-
pensive, as the whole model needs to be evalueted for each
variant scored. Similarly to ISM, the so called feature attri-
bution methods weigh individual positions in selected input
samples based on internal DL model metrics such as gradi-
ents or activation levels (e.g. (6–8)), but with use of back-
propagation making the computation much faster. However,
methods such as DeepLIFT (7) compute the feature attribu-
tion scores against certain reference sequences and the choice
of the reference sequence can affect the feature attributions.
Strength of both ISM and feature attribution methods in DL
model interpretation is that the feature importances and pre-
dicted effects of variants can be intuitively visualized for each
input sample as a sequence logo. Concentrating on individ-
ual samples can however make it difficult to recognize more
complicated features and thus approaches like motif discov-
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ery guided by the deep learning model (9), sampling the max-
imum entropy distribution around sample inputs (10) and vi-
sualization of feature maps learned by the DL model (11)
have been proposed.

A model-agnostic approach of interpreting DL model pre-
dictions is to feed random input to a pre-trained model and
study features found from the high-scoring subset of the in-
put (used e.g. in (12)). Here, we propose a visualization
tool PlotMI, that combines this idea with a measure of pair-
wise dependency between two variables, mutual information
(MI) (13). We use a pre-trained DL model to score sets of
biological (or other) sequences, select sequences of interest
based on model predictions, and compute MI between pair-
wise position-specific k-mer distributions. Computing MI
within sequences selected based on model predictions allows
discovery of dependencies learned by the model. The advan-
tage of this approach is that it simultaneously samples a large
space of high-scoring sequences and projects the pairwise de-
pendencies learned by the model into an easily interpretable
two-dimensional visualization (14) that can highlight posi-
tions of important features as well as specific distances sepa-
rating features learned by the model.

Additionally, PlotMI can also be used to compare the inter-
action patterns learned by the model to the patterns present
in the training data. Biological data can contain different
types of dependencies caused by different processes and only
a subset of them may be important for the task the DL model
has been trained to perform. Thus comparing the dependen-
cies learned by the model to dependencies present in the data
can offer insight into which dependencies are important for
the task at hand. This type of analysis can also reveal if
the model has not learned some dependencies present in the
training data and thus further training or a change of model
architecture might be beneficial. Similarly, PlotMI can be
used to compare dependencies learned by different types of
models trained to perform the same task to highlight possi-
ble reasons for different predictions. Visualization of MI in
input samples filtered using a DL model highlights positions
and spacings of dependencies learned by the model and can
be used together with for example motif discovery to iden-
tify the interacting features. Although in this work we use
PlotMI to interpret ML models trained on DNA, RNA and
amino acid sequence, the implementation is agnostic to the
type of the model or the sequence used to train the model.

Materials and Methods

Computing mutual information between position-spe-
cific k-mer distributions. Assuming an input set S of se-
quences of equal length, let us denote with Pi(a) the ob-
served frequency of k-mer a at position i in the set of se-
quences S and with Pij(a,b) the observed joint frequency of
k-mer a at position i and b at position j. By k-mer we mean
contiguous subsequences of length k in any alphabet (for ex-
ample A, C, G and T for DNA). The frequencies Pi(a) are

Pi(a) = 1
NS +γ

γ/αk+
NS∑
n=1

δ(κni = a)

 , (1)

where the summation runs over the NS sequences in set S
and δ(κni = a) is Kronecker delta that equals to 1 only if k-
mer κ at position i of sequence n is a. We add a "pseudocount
mass" γ to the total count of k-mers accounting for the unob-
served k-mers. Thus the normalization comes from the fact
that there are αk k-mers (where α is the alphabet length), and
pseudocount mass γ is divided between all k-mers, while Ns
k-mers are observed from the input sequences. Similarly, the
observed joint frequency of k-mers a and b is computed as:

Pij(a,b) = 1
NS +γ

γ/α2k+
NS∑
n=1

δ(κni = a,ηnj = b)

 ,
(2)

where the number of 2k-mers is α2k. Note that this is equiv-
alent to counting 2k-mers with gaps. With these observed
frequencies, one can compute the mutual information (origi-
nally described in (13)) between pairs of positions in the set
S as

MIij =
∑
a∈K

∑
b∈K

Pij(a,b) log2

(
Pij(a,b)
Pi(a)Pj(b)

)
, (3)

where K denotes the set of all k-mers and only position pairs
where the k-mer distributions do not overlap with each other
are considered.
Adding pseudocount to the observed k-mer counts essentially
means assuming that contribution from the unobserved k-
mers to the total MI is non-zero. If no pseudocount is used,
the joint probability of any unobserved k-mer with any other
k-mer is zero. Changing the value of pseudocount only af-
fects the magnitude of the estimated MI values but not the
overall shape of the interaction patterns highlighted by the
MI plot if MI is calculated for unaligned data (see Figure
S5 a-d). When visualizing models that have learned a very
strict interaction, like in Figure 1 e, pseudocount drastically
changes how the MI plot looks like. Figures S5 e-h show
the data from Figure 1 e plotted with four different pseudo-
count values (10, 5, 1 & 0, respectively). Here the CACGTG-
motif is present in each input sequence meaning that without
adding a pseudocount it is not possible to detect any interac-
tion involving this middle position. The dark blue "bars" cor-
responding to MI between the CACGTG in the middle and
other positions equal exactly 0, which is less than the MI in-
troduced by random noise between non-interacting positions.
Even when using a pseudocount (Figure S5 e-g) these darker
bars are still visible because the joint probability distributions
of k-mers are heavily concentrated at the one observed k-mer
pair at these positions. This bias is related to how the MI
is estimated and vanishes when the observed k-mer counts
tend towards infinity, either by increasing sample size or by
increasing pseudocount.
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To obtain a complete picture of pairwise dependencies
learned by the machine learning model it is beneficial to visu-
alize MI with and without pseudocount and to consider what
the differences mean. For example Figure S5 h, plotted with-
out a pseudocount, shows a dependency between the flanking
positions corresponding to the ELF5 motifs mirroring the fact
that in the training data there is always only one ELF5 mo-
tif embedded per sequence. This interaction is much more
difficult to see with pseudocount. On the other hand consid-
ering only the MI estimated without a pseudocount will lead
to missing interactions with features that are always or almost
always present in the input sample.
Estimation of MI from finite samples is a non-trivial problem
and different ways of estimating MI are thoroughly discussed
in (15). The assumptions made here in estimating MI are 1)
when the observed sample count of a k-mer approaches zero,
the estimated probability of observing this k-mer approaches
a non-zero constant and 2) Pi(a) =

∑
j,bPi,j(a,b). In our

application, the exact values of MI are not important as the
main goal is to visualize the interaction patterns learned by
the ML model. We have observed that setting γ = 5×Ns
usually produces good visualizations and all figures shown
here have been plotted using this, unless otherwise stated.
Value of pseudocount can be set by the user.
Selecting the length of k-mers to use in the MI analysis is
somewhat dependent on the type of the sequence used to train
the models and requires some domain knowledge on what is
a typical scale for interactions in that type of data. For exam-
ple, in DNA at the regulatory regions of the genome such as
promoters, the interactions are typically between TF binding
sites, and setting k = 3 can capture both interactions within
TF binding motifs, that are typically around 5-15 bp long, and
between parts of different binding motifs further away from
each other. Figures S6 a-d show the sequences used in Figure
1 d plotted with values of k between 1 and 4, and Figures
S6 e-h the same for the sequences used in 1 e, respectively.
In this case, the same dependencies are observed regardless
of k-mer length used to compute MI. However, for k = 4 the
data starts to already get sparse (29,442 sequences in Figures
S6 a-d and 13,331 sequences in Figures S6 e-h) and we see a
similar effect than when not using pseudocount in Figure S5
(in Figure S6, γ = 5×Ns for all panels). On the other hand,
interactions in protein structures are typically between indi-
vidual amino acid residues, making k = 1 a suitable choice
for protein sequence. Current implementation of PlotMI has
been mainly tested with k-mer lengths up to 3.

Measuring similarity of pairwise k-mer distributions.
The similarity measures of probability distributions used in
Figure S1 were computed as follows. The Jensen-Shannon
distance was computed using the SciPy (16) (version 1.6.3)
function spatial.distance.jensenshannon, defined as:

JSD(Pi,Pj) =
√
D(Pi||M)/2+D(Pj ||M)/2, (4)

where M = (Pi + Pj)/2 and D(X||Y ) is the Kullback-
Leibler divergence (17) between distributions X and Y .
Bhattacharyya distance (18) was computed as:

DB(Pi,Pj) =− log
(∑
a∈K

√
Pi(a)Pj(a)

)
. (5)

Hellinger distance (19) was computed as:

H(Pi,Pj) =
√

1−
∑
a∈K

√
Pi(a)Pj(a). (6)

Visualization of dependencies in unaligned versus
aligned sequences. PlotMI can visualize dependencies re-
gardless of whether the input sequences are aligned based on
some feature or not. As demonstrated in Figure 1, the same
dependencies will look different in aligned versus unaligned
sequences. In aligned sequences, a specific spacing between
feature A used to align the sequences and any feature B will
result into a dependency where both the positions of A and
B are fixed. If the sequences are not aligned, the exact same
interaction will result into a dependency, where only the spac-
ing between the features is fixed, but the relative position of
the feature pair within the sequences varies. If the model has
not been trained on aligned sequences, it can still be used
to score sequences aligned based on a feature learned by the
model and dependencies within the aligned sequences can
then be vsiualized using PlotMI as demonstarated in Figure
1.

Data and models. For the examples based on simulated
data shown in Figure 1, the data was generated as fol-
lows: random DNA sequences were generated using ran-
domReads script (https://github.com/hartonen/
randomReads) by sampling each base separately from ran-
dom uniform background distribution. Motifs were embed-
ded to the sequences using the option to sample the embedded
sequences from the corresponding position frequency ma-
trices (PFMs). This means that the motif-sequence embed-
ded to each background sequence was drawn at random from
the corresponding PFM. The PFMs used for MAX, ELF5,
KLF12 and HOXA9 transcription factors were generated us-
ing the multinomial method and have been previously pub-
lished (20). The PFM matrices are given in Supplementary
Table 1. Order of the motifs within embedded motif pair
was drawn at random, as was the position of the motif pair
within the sequence. The spacing between the drawn motif-
sequences (distance from end of motif-sequence 1 to start of
motif-sequence 2) in the MAX-ELF5 pairs was 30 bp (see
Figure S1 a). The spacing of the drawn motif-sequences in
the KLF12-HOXA9 pairs was 50 bp (Figure S1 b). Logo-
maker (21) Python package was used to visualize the PFMs
in Figures S1a-b.
Convolutional neural network (CNN) classifiers were trained
for binary classification task where class 1 sequences con-
tain random uniform 200bp DNA sequences with a pair of
motif sequences drawn at random from the MAX and ELF5
PFMs inserted at random positions exactly 50bp apart from
each other (50 bp spacing meaning the distance between
the end of the first motif-sequence and the start of the sec-
ond motif-sequence), in random order. Class 0 sequences
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are also 200bp long random uniform DNA where a sin-
gle motif sequence drawn at random from either MAX or
ELF5 motif is inserted at random position. This data was
divided at random into training (100,000 sequences), vali-
dation (20,000 sequences) and test (20,000 sequences) sets
where classes are balanced. The CNN models consist of
convolutional modules with a 1D convolutional layer fol-
lowed by batch normalization, ReLu activation and a dropout
layer. The following hyperparameters of the model were op-
timized using grid search: number of convolutional modules:
{1,2,3,4,5,6,7}, number of convolutional filters per mod-
ule: {32,64}, dropout rate: {0.3,0.4,0.5}. Batch size 128
and convolutional kernel size 5 were used. The convolutional
modules used dilated convolution (22) with dilation rate of
the ith layer i2. The final layer is a dense layer of two nodes
with sigmoid activation. The models were implemented with
Keras (https://keras.io/) using TensorFlow 1.14.0
backend (23) and trained using Adam optimizer with default
parameter values. Training was stopped once binary accuracy
on validation data did not improve within 200 epochs. Final
model was selected based on best binary accuracy on vali-
dation data (0.990) and had the following hyperparameters:
number of convolutional modules = 7, number of filters per
module = 64. dropout rate = 0.3. The final model achieved
area under precision-recall curve (AUprc) score 0.997 on un-
seen test data.

Motif discovery from 3,037 sequences obtaining a class 1
probability >0.9 (a subsample of sequences shown in Fig-
ure 1 b) was conducted using the MEME-ChIP (24) tool by
setting motif width between 6 and 25, looking for maximum
of 4 motifs and otherwise using default parameters. The best
motif reported by the STREME-tool (25) from MEME-ChIP
was compared to database motifs with TOMTOM (26), and
the best matching motif (JASPAR (27) ID: MA0825.1, shown
in Figure 1 e) was selected for generating the data for Figure
1 e. Full MEME-ChIP results can be found from Supple-
mentary File 1. Sequence logo of the sequences shown in the
MI-plot in Figure 1 e was made using WebLogo (28).

Next, we trained similar CNN models to classify between hu-
man genomic promoters and non-promoter sequences (Fig-
ures 2 a-c). The 29,598 human transcription start site (TSS)
positions and the±50bp sequences around them for hg38 ref-
erence genome were downloaded from the Eukaryotic Pro-
moter Database (EPD) (29). These sequences were divided
at random into training (20,000 sequences), test (4,799) and
validation (4,799) datasets and used as class 1 for the binary
classifiers. Balanced class 0 sets were created by randomly
shuffling the class 1 sequences while preserving their 3-mer
frequencies using the fasta-shuffle-letters tool from MEME
Suite (30). The CNN architecture and training was similar
to what is described above. Hyperparameters were optimzed
using grid search over the following values: number of con-
volutional modules: {1,2,3,4,5,6}, number of convolutional
filters per module: {64,128}, dropout rate: {0.3,0.4,0.5}.
Final model was selected based on best binary accuracy on
validation data (0.882) and had the following hyperparame-
ters: number of convolutional modules = 6, number of fil-

ters per module = 128. dropout rate = 0.4. The final model
achieved AUprc score 0.949 on unseen test data.
The final CNN models used to filter the data shown in Figures
1 d-e and Figures 2 a-c are deposited to Zenodo along with
their respective training, validation and test data sets under
DOI: 10.5281/zenodo.5508698.
As an additional example of models trained on genomic
DNA, we studied dependencies learned by a non deep
learning model trained to recognize nucleosome favoring
sequences, N-score (31) (Figure 2 d). We downloaded
the pre-trained N-score implementation from https://
bcb.dfci.harvard.edu/~gcyuan/nscore.zip
and used it to score random synthetic DNA sequences as is
without modifications.
In Figure 3, we demonstrated the use of PlotMI with mod-
els trained to classify RNA sequences to those that bind
a specific RNA-binding protein (RBP) and to those that
do not. We downloaded the DeepBind (2) (version 0.11)
models from http://tools.genes.toronto.edu/
deepbind/download.html and used them to score ran-
dom synthetic RNA sequences as is without modifications.
The 10 million synthetic RNA sequences were generated
from random uniform background distribution using the ran-
domReads script. The DeepBind IDs of the used models are:
D00123.001 (MSI1) and D00198.001 (RBMS1).
As a final example, we used PlotMI to interpret depen-
dencies learned by models that were trained to predict
the fitness of amino acid sequences to function as func-
tional proteins (Figure 4). The pre-trained protein fitness
models (32) were downloaded from the GitHub repository
https://github.com/gitter-lab/nn4dms and
used to score random synthetic amino acid sequences as
is without modifications. The 10 million synthetic amino
acid sequences were generated from random uniform
background distribution using the randomReads script.
The contact map for GB1 protein domain (Protein Data
Bank ID: 2QMT (33)) was computed with a custom BioPy-
thon (34) script using distances between α-carbons of
each amino acid residue. The wild type GB1 sequence
was the same used in (32): "MQYKLILNGKTLKGETT-
TEAVDAATAEKVFKQYANDNGVDGEWTYDDATK-
TFTVTE". The fitness scores from the different models for
this sequence were: -0.07492757 for graph convolutional
neural network (GCN), -0.21727669 for sequence convo-
lutional neural network (CNN) and -2.4499352 for linear
regression (LR).

Results
Mutual information (MI) measures dependence between two
probability distributions. When MI is computed between
k-mer distributions at all pairs of positions in a set of se-
quences (e.g. DNA or amino acid), it will highlight those
position pairs where certain pair, or pairs, of k-mers appear
at different frequencies than expected assuming no interac-
tions (see for example (14)). Figure 1 a) shows an example
of an MI-plot where pairwise MI was calculated between all
position-specific 3-mer distributions in a synthetic example
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Fig. 1. Mutual information (MI) based visualization reveals pairwise and positional dependencies. a) Example MI visualization of a dataset where two different pairs of
transcription factor (TF) binding motifs have been embedded with different spacings (30bp and 50bp) on DNA sequences drawn from random uniform nucleotide background.
MI was computed between position-specific 3-mer distributions. Signal (higher values of MI) on the main diagonal of the MI-plot highlights parts of the input sequences where
adjacent positions have dependencies with each other. Signal off the main diagonal highlights pairwise longer-range dependencies. Exact positions of the interacting pairs
exhibiting longer-range dependencies can be found by drawing lines parallel to the x- and y-axes towards the main diagonal, as illustrated with the white arrows here. b) Two
possible visualization workflows using PlotMI. MI can reveal the distance between interacting features if the visualized model is trained on unaligned data and the PlotMI input
sequences are also unaligned (blue arrows). If either the model is trained on aligned data, or the PlotMI input sequences have been aligned based on a feature used by the
model, MI can reveal the exact positions of the interacting features (orange arrows). The values at the x and y axes indicate positions along the input sequences. Panels d
and e illustrate how alignment of input data based on a feature learned by a convolutional neural network (CNN) model alters MI plot. c) MI-plot of the 50,000 positive class
training data sequences for the CNN classifier containing the embedded MAX+ELF5 motif pair embedded at random positions but exactly 50bp from each other. The MI-plot
highlights this spacing which is learned by the CNN model as shown in panel d. d) If the test data is not aligned, PlotMI will pick up interactions as lines parallel to the main
diagonal of the MI matrix showing the preferred distance between the interacting features. MI-plot computed between position-specific 3-mer distributions shows that a CNN
trained on a simulated dataset to classify between sequences with a specific MAX+ELF5 TF binding motif pair and sequences with either a MAX-, or ELF5-motif has learned
the interaction embedded into the training data. e) If the test data is aligned based on a specific feature (or the model is trained on aligned data), interactions between features
show off the main diagonal of the MI matrix. Motif discovery from the sequences visualized in panel e found a CACGTG-motif corresponding to the MAX-motif embedded into
the training data of the CNN. Using the same CNN model to score sequences where this CACGTG-motif was embedded at position 100 shows that the CNN has learned a
specific interaction with the CACGTG-motif and another motif that corresponds to the ELF5-motif embedded into the simulated training data (Figure S1 f).

dataset containing two spiked-in dependencies between DNA
sequence motifs. The shorter range interaction was created
by spiking in a pair of transcription factor (TF) binding mo-
tifs, MAX and ELF5, into half of the sequences at random
positions with a spacing of 30 bp between the motifs (see
Methods and Figure S1 a). The longer range interaction was
spiked-in into the other half of the sequences, consisting of
a sequence motif pair KLF12 and HOXA9 separated by a 50
bp spacing (see Methods and Figure S1b. Main diagonal of
the MI-plot shows dependencies between k-mer distributions
at adjacent positions, highlighting for example TF binding
motifs in case of DNA sequences. Signal off the main diag-
onal corresponds to interactions between more distant posi-
tions. The white arrows in Figure 1 a highlight how the ex-
act interacting positions are read from the MI-plot by draw-
ing arrows from the off-diagonal signal to the main diagonal.
Figure 1 a illustrates how the MI-plot clearly highlights the
two distinct interactions present in the data, whereas metrics
designed for computing the distance between two probabil-
ity distributions, such as Jensen-Shannon distance, Hellinger
distance or Bhattacharyya distance, do not (Figures S1 c-e).

Workflow for the analysis of pairwise dependencies learned
by a deep learning (DL) model using PlotMI is shown in Fig-
ure 1 b. Details of calculation of MI are described in Meth-
ods. To illustrate the capability of PlotMI to capture interac-
tions learned by a DL model, we created a binary classifica-
tion task where class 1 consist of DNA sequences sampled at
random from uniform nucleotide background distribution and
where binding motifs of TFs MAX and ELF5 were embedded
into random positions in each of the sequences with exactly
50 bp spacing between the motifs. Class 0 sequences have
similar background, but a single instance of either MAX-, or
ELF5-motif was embedded into each sequence at random po-
sition (see Methods). Figure 1 c shows an MI-plot computed
between positional 3-mer distributions in the training set se-
quences with the embedded interaction. A convolutional neu-
ral network (CNN) was trained to classify between these two
classes and subsequently used to score 10 million DNA se-
quences drawn from random uniform nucleotide background.
All sequences obtaining a class 1 probability > 0.9 (29,442
sequences) were visualized with PlotMI (Figure 1 d). PlotMI
visualization highlights that the CNN model has learned the
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embedded interaction (see also Figure S2). Strongest MI is
found between positions separated by 60 bp, as this is the dis-
tance between the most defined bases in the embedded mo-
tifs.

To demonstrate how MI plot can be used to discover specific
pairwise interactions, we ran STREME (25) motif discovery
on the high-scoring sequences and discovered a CACGTG-
motif corresponding to the MAX-motif, one of the motifs in
the embedded motif pair (see Methods). We then created an-
other set of 1 million random DNA sequences and embed-
ded the CACGTG-motif in the middle of these sequences.
The sequences were similarly scored using the CNN and
sequences obtaining class 1 probability > 0.9 (13,331 se-
quences) were visualized with PlotMI. Figure 1 e shows that
the CNN scores highly those sequences where another mo-
tif is approximately 60 bp off from the centered CACGTG-
motif and that there is strong MI between these positions. A
sequence logo of these 13,331 sequences revealed that this
other motif corresponds to the ELF5-motif (Figure S1 f).

To study interactions learned from real datasets we down-
loaded 29,598 experimentally validated human transcrip-
tion start site (TSS) positions from the Eukaryotic Promoter
Database (29) and trained a CNN model to classify between
±50 bp sequences around the TSS and shuffled versions of
these sequences. We generated 1 million 100 bp long ran-
dom DNA sequences with uniform nucleotide frequencies
and scored them using the CNN yielding 49,261 sequences
with promoter probability > 0.9. PlotMI visualization shows
that the highest MI is found between adjacent positions right
around the TSS, and that also a highly localized pairwise in-
teraction between the TSS and the canonical TATA-box po-
sition at around 30 bp upstream from the TSS (Figure 2 a) is
learned. Plotting only the MI at the main diagonal helps to
pinpoint the exact positions of high MI features learned by
the model (Figure 2 b). Mean MI of each diagonal of the MI-
plot shows the strength of MI between 3-mer distributions as
function of distance separating the distributions (Figure 2 c)
illustrating that most of the pairwise dependencies learned by
the CNN model are very short-ranged, with the exception of
a peak corresponding to dependencies between features sep-
arated by 25-30 bp (TSS and the TATA-box).

To demonstrate the use of PlotMI with non-DL models, we
used PlotMI to analyse dependencies learned by a previously
published model N-score, a wavelet-based logistic regression
classifier developed to predict the nucleosome binding affin-
ity of 131 bp long sequences in yeast (31). As PlotMI vi-
sualization is not dependent on the architecture of the ma-
chine learning model, it can be used to visualize pairwise
dependencies of many different types of models. We gener-
ated 2.5 million synthetic DNA sequences with uniform nu-
cleotide background, scored them with N-score and selected
the highest-scoring 10% of the sequences for visualization.
Figure 2 b) shows that, interestingly, N-score has learned a
dependency pattern where strongest MI outside the main di-
agonal is observed between positions equidistant from the
middle position of the 131 bp sequences. Moreover, the
strength of these dependencies varies with a period of 9 bp

(Figure S3 a). Main diagonal of the MI matrix shows that
all positions share MI with their adjacent positions. Interest-
ingly, PlotMI visualization of the bottom 10% lowest-scoring
sequences shows an even more prominent symmetric and pe-
riodic dependency pattern (Figure S3 b). These examples
demonstrate that PlotMI can visualize different types of de-
pendency patterns learned by different kinds of models with-
out needing parameter or workflow adjustments.

Next, we used PlotMI to analyse dependencies learned by
DeepBind deep learning models (2) trained to recognize
binding sites of specific RNA-binding proteins (RBPs). In
addition to recognizing linear binding motifs similar to bind-
ing sites of TFs on DNA, some RBPs are known to rec-
ognize RNA secondary structure features (see for example
(36)) which can introduce longer range dependencies a model
needs to learn in order to optimally recognize binding sites
of such RBPs. In Figure 3 we visualize the dependencies
learned by two DeepBind RBP models: RBMS1 that has
been previously reported to recognize a stem-loop structure
(36), and MSI1 that binds to a linear motif (36). The PlotMI
analysis was conducted by generating 10 million random syn-
thetic RNA sequences and scoring each of them with both
DeepBind models. Then separately for both models, top 1%
of the highest-scoring sequences were used for computing MI
between positional 3-mer distributions. Figures 3 a-b show
that the RBMS1 model uses pairwise dependencies up to 15
bp apart in the RNA sequence for predicting the optimal RBP
binding sites, consistent with the earlier reported binding mo-
tif for RBMS1 where the bases binding the stem part of the
stem-loop structure are 9-18 bp apart (36). In contrast to this,
the MSI1 model has only learned local dependencies up to
approximately 6 bp. This analysis shows that PlotMI can re-
veal additional information about how models for different
RBPs make predictions that cannot be directly inferred by
only examining the motif logos learned by the models.

PlotMI can also be used to highlight different dependencies
learned by different models trained to do the same task. This
can help understand why some more complex models are
able to outperform simpler models. As an example, we down-
loaded linear regression (LR), sequence convolutional neu-
ral network (CNN) and graph convolutional neural network
(GCN) models trained to predict insulin binding affinity (re-
ferred to as fitness in the following) of 56 amino acid long
GB1 protein sequences (32). The MI-plot shown in Figure 4e
shows the top 5% training set amino acid sequences accord-
ing to measured fitness from the deep mutational scanning
experiment in (35) used to train these models. Notably, only
single and double mutants of the wild type GB1 sequence
were included in the training data set, meaning that only a
very small fraction of the possible sequence space, and only
very near the wild type sequence, was available for the mod-
els during training. Additionally, structural graph of GB1
protein domain was used in training of the GCN model (32).
Contact map showing the physical distances between each
amino acid residue pair computed from this structure (Meth-
ods) is shown in Figure 4 d.

To test what dependencies each of the models have learned,
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Fig. 2. PlotMI-visualizations of machine learning models trained on genomic DNA sequences. a) PlotMI reveals that a CNN classifier trained on 100 bp long sequences
centered at human genomic transcription start site (TSS) positions has learned an interaction between the TSS and TATA-box region around 30 bp upstream from TSS. b)
Mutual information (MI) at the main diagonal of the MI-matrix shows exact positions of the highest local MI features. c) Average MI of each diagonal of the MI-matrix further
illustrates that the CNN model of human promoters has learned both the short-range dependencies corresponding to neighboring 3-mer distributions (TF binding motifs)
and longer range interactions corresponding to the dependencies between individual features. d) PlotMI visualization of N-score model trained to distinguish 131 bp long
nucleosome binding DNA from non-nucleosomal DNA (31) from yeast genome shows that N-score has learned a periodic interaction pattern where 3-mer distributions at
positions separated from each other by multiplicatives of a fixed period are dependent on each other (See also Figure S3). The learned interaction is symmetric relative to
the middle position of the 131 bp sequences such that the strongest pairwise dependencies are observed between positions same distance away from the middle position,
but to opposite directions. Both MI-analyses were done using position-specific 3-mer distributions.

we created 10 million random synthetic amino acid se-
quences and scored them with the three models. We choose
top 100,000 (1%) of the random sequences according to the
predicted fitness for visualization with PlotMI (Figures S4
d-f show the MI-plots for sequences with predicted fitness
higher than the predicted fitness of the wild type sequence).
MI was computed between position-specific 1-mer distribu-
tions. Figures 4 and S4 d-f show that, unsurprisingly, the
GCN model where the structural information was utilized
during training had learned more of the important pairwise
dependencies highlighted by the contact map than the other
models. Interestingly, in (32) the authors report no signifi-
cant difference in performance of the GCN and CNN models
in predicting fitnesses of protein variants tested in deep mu-
tational scanning experiments (Pearson correlation ≈ 0.98),
even though the MI-plots show that the CNN utilizes only

a small fraction of the pairwise dependencies present in the
contact map. Based on this, it seems that the structural graph
used in training of the GCN helps to assign realistic fitness
values for proteins that are further away from the wild type
sequence than any examples in the deep mutational scanning-
based training data. The CNN seems to have hard time in
recognizing variants with very poor fitness as it gives almost
any sequence at least the same score as for the wild type (Fig-
ure S4 b) but can still predict the fitness of variants close to
the wild type as well as the GCN. Also the LR model pre-
dicts that more than half of the random amino acid sequences
have a higher fitness than the wild type GB1 sequence (Fig-
ure S4 c), whereas the GCN model predicts that only a few
percent of the random synthetic amino acid sequences have
higher fitness than the wild type (Figure S4 a). In contrast
to the GCN and CNN model architectures, the LR model can
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Fig. 3. PlotMI-visualizations of selected DeepBind (2) RNA-binding protein (RBP) models. PlotMI analysis shows that some of the DeepBind RBP models have learned
longer-range dependencies, consistent with the RBP recognizing a stem-loop structure, while others only consider very short-range dependencies when predicting which
RNA sequences the RBP binds to. a & b) MI-plot and mean MI of each diagonal of the MI-plot, respectively, for the RBMS1 DeepBind model, shows MI also off the main
diagonal indicating that this model has learned longer-range dependencies. c & d) MI-plot and mean MI of each diagonal of the MI-plot, respectively, for the MSI1 DeepBind
model, shows MI signal only at the main diagonal corresponding to the model using short-range dependencies only.

only learn additive effects between positions. Still the pair-
wise positional dependency pattern learned by the LR model
is relatively similar to the CNN. Based on the analysis with
PlotMI, it seems that the limited sequence space available
for these protein models during training prohibits the CNN
and LR models from learning a realistic representation for
the functional GB1 protein, even though the models can still
make relatively good predictions for mutational effects near
the wild type sequence. The PlotMI analysis shows that even
though the performance of the GCN and the CNN models is
similar in predicting mutational effects near the wild type se-
quence, the structural graph used to constrain the training of
the GCN model has allowed it to learn a more generalizable
model that better captures the dependencies required for the
functional GB1 protein.

Conclusions and discussion

Here we apply the well-known measure of mutual depen-
dency of random variables, mutual information (MI), to ex-
tract information about interactions learned by deep learning
(DL) models. The aim of this approach is to project the in-
formation about pairwise and position-specific dependencies
learned by a DL model into a simpler model that can be in-
tuitively visualized. This is done by feeding random input
into a pre-trained model and using the model as a filter to se-
lect a subset of input samples containing features learned by
the model. The high-scoring sequences can be further mu-
tated, or aligned based on some feature discovered using e.g.
de novo motif mining to capture higher information content
features. Some high information content features may effec-
tively not be present in a completely random sample that is
sufficiently small that it can be scored with a given machine
learningn (ML) model in reasonable time. Learned features
visualized using random input sequences to PlotMI can be,
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Fig. 4. PlotMI-visualizations of models predicting protein fitness reveal different types of dependencies learned by different models. MI-plots created using position-
specific 1-mer distributions showing the pairwise dependencies learned by a) the GCN model, b) the CNN model and c) the linear regression model from (32). d) Contact
map of GB1 protein domain derived from 2QMT PDB structure (33) that is used in training of the GCN model. Color indicates distance between each pair of alpha carbons.
Note that darker colors mean longer distance so that the heatmap can be readily compared with the MI-plots, where darker colors mean lower pairwise MI. e) MI-plot showing
the top 26,804 (5%) training set amino acid sequences according to fitness in the deep mutational scanning experiment of the GB1 protein domain (35). Notice that only the
GCN model (panel a), that has been trained with both the mutational scanning (panel e) and the structural (panel d) data, has learned bulk of the interactions important for
the structure of the functional protein.

however, used to aid in search of more complex interactions,
like we show in Figures 1 d-e, where a TF binding motif dis-
covered by scoring random input is in turn embedded into
random sequences to reveal its interaction parter. Epistatic
interactions can be captured by studying features present in
low-scoring samples. The overall importance of features and
interactions learned by an ML model and discovered using
this type of exploratory analysis can then be quantified for
example with the recently introduced global importance anal-
ysis (37).
Importantly, the approach described here is not limited to MI
visualization, but can be used to project information learned
by a DL model to any other easily interpretable model.
PlotMI is a flexible tool that can be used to interpret different
types of ML models from simple linear regression to complex
deep neural networks. The examples provided here demon-
strate usefulness of PlotMI for classification and regression
tasks and for models trained on DNA, RNA and amino acid
sequences. In principle PlotMI can be used to visualize pair-
wise dependencies learned by any ML model trained with
sequence data.
Although the idea of interpreting a DL model by feeding it
random input and studying features present in high-scoring
input samples is not new, a general visualization tool like
PlotMI that can visualize pairwise interactions in an intuitive
manner has to our knowledge not been previously described.
The PlotMI visualization script is freely available and can be
used in conjunction with virtually any pre-trained ML model.

We believe that the visualization approach described here will
be a useful addition to the expanding toolbox of model inter-
pretation methods available for scientists using ML to under-
stand information encoded into DNA, protein and other types
of biological sequence.
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