
Identifying and correcting multiple sources of misspecification
in GWAS summary statistics for polygenic scores

Florian Privé,1,∗ Julyan Arbel,2 Hugues Aschard,3,4 and Bjarni J. Vilhjálmsson1,5

1National Centre for Register-Based Research, Aarhus University, Aarhus, 8210, Denmark.
2Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, 38000, France.
3Department of Computational Biology, Institut Pasteur, Paris, 75015, France.
4Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health,
Boston, MA, 02115, USA.
5Bioinformatics Research Centre, Aarhus University, Aarhus, 8000, Denmark.
∗To whom correspondence should be addressed.

Contact: florian.prive.21@gmail.com

Abstract

Are genome-wide association studies (GWAS) summary statistics of good enough quality for performing

follow-up analyses? Can we detect possible misspecifications in GWAS summary statistics and correct for

them in order to improve predictive performance of polygenic scores?
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1 Introduction

Contrary to individual-level genotypes and phenotypes, summary statistics resulting from genome-wide as-

sociation studies (GWAS) are widely available. Therefore, they have been extensively used e.g. to derive

polygenic scores (PGS). However, GWAS summary statistics come with uneven qualities, such as the impu-

tation qualities of each variant reported. There is also some heterogeneity in the methods used for performing

the individual GWAS and their meta-analyses, as well as the information reported in the resulting summary

statistics. Moreover, many PGS methods such as PRS-CS, SBayesR, and LDpred2 (Ge et al. 2019; Lloyd-

Jones et al. 2019; Privé et al. 2020b) use Bayesian models, which can be sensitive to model misspecifications

(Walker 2013; Miller and Dunson 2018). Previously, to make sure that input parameters passed to LDpred2

were consistent with its modeling assumptions, we proposed a quality control (QC) based on comparing

standard deviations inferred from GWAS summary statistics with the ones computed from a reference panel

(Privé et al. 2020b). This was particularly important for LDpred2-auto, which directly estimates key model

parameters from the data.

Here, we investigate some of the possible misspecifications that come with GWAS summary statistics

and propose corrections in order to improve the predictive performance of polygenic scores. We approach

this from three different angles. First, based on additional summary information such as the imputation INFO

scores and allele frequencies from the GWAS summary statistics, we refine our previously proposed QC

Privé et al. (2020b). For instance, we show that standard deviations of imputed genotypes (allele dosages)

are lower than the expected values under Hardy-Weinberg equilibrium. Second, we investigate possible

corrections to apply to the input parameters of polygenic methods, namely the reference LD (linkage dis-

equilibrium) matrix, the GWAS effect sizes, their standard errors and the corresponding sample sizes. For

example, we show that GWAS effect sizes computed from imputed dosages are larger in magnitude com-

pared to if true genotypes were available. Third, we introduce two new optional parameters in LDpred2-auto

to make it more robust to these types of misspecification. We focus our investigations on LDpred2 and lasso-

sum for two reasons. First, multiple studies have shown that LDpred2 and lassosum are consistently ranking

best among methods for polygenic prediction (Mak et al. 2017; Privé et al. 2020b; Pain et al. 2021; Kulm

et al. 2021). Second, we reimplement and use a new version of lassosum, called lassosum2, that uses the

exact same input parameters as LDpred2, which makes it easy for us to test the QCs and corrections pre-

sented here. We perform our investigations using simulations first, then we use public summary statistics

while restricting to the widely-used HapMap3 variants, finally we investigate two alternative sets with more

variants.

2 Results

2.1 Misspecification of GWAS sample sizes

We design simulations where variants have different GWAS sample sizes, which is often the case when

meta-analyzing GWAS from multiple cohorts without the same genome coverage. Using 40,000 variants

from chromosome 22 (Methods), we simulate quantitative phenotypes with a heritability of 20% and 2000
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causal variants. We then divide the 40,000 variants into three groups: for half of the variants, we use 100%

of 300,000 individuals for GWAS, but use only 80% for one quarter of variants and 60% for the remaining

quarter. We then run C+T, lassosum, lassosum2 (Methods), LDpred2-inf, LDpred2(-grid), and LDpred2-

auto (Privé et al. 2019; Mak et al. 2017; Privé et al. 2020b) by using either the true per-variant GWAS sample

sizes, the total sample size, or imputed sample sizes. Note that we initially included PRS-CS and SBayesR in

our comparison (Ge et al. 2019; Lloyd-Jones et al. 2019). However, results for SBayesR always diverged and

the overlap with the LD reference provided for PRS-CS was too small. Averaged over 10 simulations, when

providing true per-variant GWAS sample sizes, squared correlations between the polygenic scores and the

simulated phenotypes are of 0.123 for C+T, 0.161 for lassosum, 0.169 for lassosum2, 0.159 for LDpred2(-

grid), 0.140 for LDpred2-auto, and 0.141 for LDpred2-inf (Figure 1). Results when using imputed (instead

of true) sample sizes are quite similar. Note that C+T does not use this sample size information. When

using the total GWAS sample size instead of the per-variant sample sizes, predictive performance slightly

decreases to 0.157 for lassosum and to 0.163 for lassosum2, but dramatically decreases for LDpred2 with

new values of 0.134 for LDpred2-grid, 0.119 for LDpred2-auto, and 0.123 for LDpred2-inf (Figure 1). This

extreme simulation scenario shows that LDpred2 can be sensitive to GWAS sample size misspecification,

whereas lassosum (and lassosum2) seems little affected by this.
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Figure 1: Results for the simulations with sample size misspecification, averaged over 10 simulations for each
scenario. Reported 95% confidence intervals are computed from 10,000 non-parametric bootstrap replicates
of the mean. The GWAS sample size is “true” when providing the true per-variant sample size, “max” when
providing instead the maximum sample size as a unique value to be used for all variants, “imputed” (Methods),
or “any” when the method does not use this information (the case for C+T). Red bars correspond to using the
LD with independent blocks (Methods).
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We conduct further investigations to explain results of figure 1. First, the results for LDpred2-auto

are the same as with LDpred2-inf because it always converges to an infinitesimal model (p = 1) in these

simulations. To solve this limitation, we introduce two new parameters to make LDpred2-auto more robust,

referred to as “LDpred2-auto-rob” here (Methods). Second, for lassosum2, results for a grid of parameters

(over λ and δ) are quite smooth compared to LDpred2 (Figures S2 and S3). In these simulations with

misspecified sample sizes, it seems highly beneficial to use a small value for the SNP heritability hyper-

parameter h2 in LDpred2, e.g. a value of 0.02 or even 0.002 when the true value is 0.2 (Figure S3). Indeed,

using a small value for this hyper-parameter induces a larger regularization (shrinkage) on the effect sizes.

When running LDpred2(-grid) with a grid of hyper-parameters including these low values for h2, we refer

to this as “LDpred2-low-h2” here. Results with LDpred2-low-h2 improves from 0.159 to 0.169 when using

true sample sizes and from 0.134 to 0.163 when using the maximum sample size. Finally, we introduce a last

change for robustness here: we form independent LD blocks in the LD matrix to prevent small errors in the

Gibbs sampler to propagate to too many variants (Methods). This change seems to solve convergence issues

of LDpred2 in these simulations (Figure S3) and further improves predictive performance for all LDpred2

methods (Figure 1).

2.2 When using allele dosages from imputation

Marchini and Howie (2010) showed that the IMPUTE INFO measure is highly concordant with the MACH

measure r̂2j =
var(Gj)

2θ̂j(1−θ̂j)
, where θ̂j is the estimated allele frequency of Gj , the genotypes for variant j.

Therefore, when using the expected genotypes from imputation (dosages), their standard deviations are

often lower than the expected value under Hardy-Weinberg equilibrium, because INFOj ≈ var(Gj)

2θ̂j(1−θ̂j)
. In

simulations (cf. Methods section “Data for simulations”), we verify that sd(Gj)true ≈ sd(Gj)imp/
√

INFOj

(Figure S6). We also show that GWAS effect sizes γ̂ computed from imputed dosages are over-estimated:

γ̂true
j ≈ γ̂imp

j ·
√

INFOj and se(γ̂j)true ≈ se(γ̂j)imp ·
√

INFOj (Figures S8 and S7). This is the first correction

of summary statistics we consider in the simulations below. Note that we recompute INFO scores for the

subset of 362,307 European individuals used in this paper as they can differ substantially from the ones

reported by the UK Biobank for the whole data (Figure S5). As a second option, instead of using dosages

to compute the GWAS summary statistics, it has been argued that using multiple imputation (MI) would

be more appropriate (Palmer and Pe’er 2016). In simulations, we show that γ̂MI
j ≈ γ̂

imp
j · INFOj and

ZMI
j ≈ Z

imp
j · INFOj , where Z = γ̂/se(γ̂) (Figure S9). This is the second correction of summary statistics

we implement in the simulations below, along with nj = N · INFOj . Finally, we consider an in-between

solution as a third correction, using γ̂j = γ̂
imp
j · INFOj , se(γ̂j) = se(γ̂j)imp ·

√
INFOj , and nj = N · INFOj .

Using 40,000 variants from chromosome 22, we simulate quantitative phenotypes assuming a heritabil-

ity of 20% and 2000 causal variants using the “true” dataset (cf. Methods section “Data for simulations”).

We compute GWAS summary statistics from the dosage dataset and use these summary statistics to run

LDpred2 and lassosum2 with either no correction of the summary statistics, or with one of the three correc-

tions described above. The LD reference used by LDpred2 and lassosum2 is computed from the validation

set using the dataset with the “true” genotypes. For lassosum2 and LDpred2(-grid) which tune parame-

ters using the validation set, correcting for imputation quality slightly improves predictive performance in
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these simulations (Figure 2). However, correcting for imputation quality can dramatically improve pre-

dictive performance for LDpred2-auto. Moreover, new additions for robustness introduced before, namely

LDpred2-low-h2, LDpred2-auto-rob, and forming independent blocks in the LD matrix also improve pre-

dictive performance for all corrections (Figure 2).

In the real data applications hereinafter, we choose to use the first correction, “sqrt_info”, which is simple

because it is equivalent to post-processing PGS effects by multiplying them by
√

INFO.
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Figure 2: Results of predictive performance for the simulations using GWAS summary statistics from imputed
dosage data, averaged over 10 simulations for each scenario. Reported 95% confidence intervals are computed
from 10,000 non-parametric bootstrap replicates of the mean. Correction “sqrt_info” corresponds to using
γ̂imp
j ·

√
INFOj and se(γ̂j)imp ·

√
INFOj . Correction “info” corresponds to using γ̂imp

j · INFOj and N · INFOj .
Correction “in_between” corresponds to using γ̂imp

j · INFOj , se(γ̂j)imp ·
√

INFOj , and N · INFOj . Red bars
correspond to using the LD with independent blocks (Methods).

2.3 Application to breast cancer summary statistics

Breast cancer summary statistics are interesting because they include results from two mega analyses (Michaili-

dou et al. 2013, 2015, 2017), which means there is some larger precision in the parameters reported, such

as the INFO scores and the sample sizes. Imputation INFO scores for the OncoArray summary statistics

(after having restricted to HapMap3 variants) are generally very good (Figure S11) and better than the ones

from iCOGS (Figure S10), probably because the chip used included around 200K variants only, compared

to more than 500K variants for the OncoArray. For both summary statistics, we first compare the standard
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deviations inferred from the reported allele frequencies (i.e.
√
2f(1− f) where f is the allele frequency,

and denoted as sd_af) versus the ones inferred from the GWAS summary statistics (Equation (2), and de-

noted as sd_ss). When coloring by INFO scores, we see a clear trend with sd_ss being lower than sd_af as

INFO decreases; indeed, using sd_ss/
√

INFO provides a very good fit for sd_af, except for some variants

of chromosome 6 and 8 for the OncoArray summary statistics (Figures 3 and S14). Most of these outlier

variants are in regions 25-33 Mbp of chromosome 6 and 8-12 Mbp of chromosome 8 (Figure S12), which

are two known long-range LD regions (Price et al. 2008). We hypothesize that this is due to using principal

components (PCs) as covariates in GWAS that capture LD structure instead of population structure (Privé

et al. 2020a). To validate this hypothesis, we simulate a phenotype using HapMap3 variants of chromosome

6 for 10,000 individuals from the UK Biobank, then we run GWAS with or without PC19 as covariate. PC19

from the UK Biobank was previously reported to capture LD structure in region 70-91 Mbp of chromsome

6 (Privé et al. 2020a). In these simulations, the same bias as in figure 3B is observed for the variants in this

region (Figure S13), confirming our hypothesis.

Figure 3: Standard deviations inferred from the OncoArray breast cancer GWAS summary statistics (Equation
2) versus the ones inferred from the reported GWAS allele frequencies (

√
2f(1− f)). Only 100,000 HapMap3

variants are represented, at random.

Therefore, providing an accurate imputation INFO score is important for two reasons. First, it allows for

correcting for a reduced standard deviation when using imputed data in the QC step we propose, in order

to better uncover problems with the summary statistics. Second, using one of the proposed corrections may

lead to an improved prediction when deriving polygenic scores. We apply this correction to the two breast

cancer summary statistics. We first compare the standard QC proposed in Privé et al. (2020b) (which ends

up filtering on MAF here, which we call “qc1”). We then also filter out the two long-range LD regions of
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chromosome 6 and 8 for the OncoArray summary statistics and remove around 500 variants when filtering

on differences of MAFs between summary statistics and the validation dataset (“qc2”). As for the correction

for the INFO scores, we use the first correction, “sqrt_info”, which is simple because it is equivalent to

post-processing PGS effects by multiplying them by
√

INFO. Although results for both QC used are very

similar, correcting for the INFO score slightly improves prediction when deriving polygenic scores based

on iCOGS summary statistics (Figure 4). All other improvements introduced before have little or no effect

here, probably because misspecifications are much smaller than in the simulations.
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Figure 4: Raw partial correlations (for all models) for predicting breast cancer in the UK Biobank when using
either the OncoArray or the iCOGS summary statistics. These are computed using function pcor of R package
bigstatsr where 95% confidence intervals are obtained through Fisher’s Z-transformation.

2.4 Other phenotypes and larger sets of variants

We use external summary statistics for which INFO scores are reported (Table 1); they all have a very high

mean INFO score (larger than 0.94), except for BRCA-iCOGS (0.841) and T1D-affy (0.885). QC plots

comparing standard deviations usually show little deviation from x = y (after the INFO score correction),

except for coronary artery disease (CAD) summary statistics (Figures S14-S19). We show previous results

as figure 4 for other phenotypes in figures S20-S23; most changes introduced before have little or no impact

on the predictions, except for the second quality control performed for CAD when using LDpred2-auto

(Figure S20). We then introduce two new sets of variants as possible replacement for HapMap3 variants

(Methods). These sets include more variants (more than 2M), therefore possibly of lower quality on average.

We present similar results with these two new sets of variants in figures S24-S28. Using the “maxtag” set

generally provides larger predictive performance than using HapMap3 variants, especially when predicting

prostate cancer (Figure S27).
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3 Discussion

We have investigated misspecifications in GWAS summary statistics, focusing on the impact of sample size

heterogeneity and imputation quality. Previously, we proposed a quality control (QC) based on comparing

standard deviations inferred from GWAS summary statistics with the ones computed from a reference panel

(Privé et al. 2020b). Here we show that we can refine this quality control by deriving the latter directly

from the reported allele frequencies in the GWAS summary statistics, and by correcting the former using

the GWAS imputation INFO scores (e.g. see figure 3). Using this refined QC, we are able to identify a

potential issue with how principal components were derived in a set of breast cancer summary statistics.

Fortunately, this has practically no effect on the predictive performance of the derived polygenic scores.

Additional QC can also be performed, e.g. comparing reported GWAS allele frequencies with the ones from

the LD reference panel, e.g. to detect genotyping or allelic errors. We do perform this additional QC as part

of “qc2” here, and also when designing the large set of variants from the UK Biobank (Methods). One can

also run other QC tools such as DENTIST (Chen et al. 2021).

Note that, in this study, we use summary statistics that include extended information (e.g. INFO scores

and allele frequencies), yet most GWAS summary statistics do not. We acknowledge that, in the case of a

meta-analysis from multiple studies, providing a single INFO score per variant may not be possible; would

a weighted averaged INFO score work? Nevertheless, this quality control could be performed within each

study before pooling results, to make sure that summary statistics have the best possible quality for follow-

up analyses such as deriving polygenic scores. Another information, the effective sample size per variant,

is often missing from GWAS summary statistics. Sometimes, it can even be challenging to recover the total

effective sample size from large meta-analyses. We recall that if some studies of a meta-analysis have an

imbalanced number of cases and controls, the global effective sample size should not be computed from the

total numbers of cases and controls overall, but instead from the sum of the effective sample sizes of each

study. Indeed, take the extreme example of meta-analyzing two studies, one with 1000 cases and 0 controls,

and another one with 0 cases and 1000 controls, then the effective sample size of the meta-analysis is 0, not

2000. Fortunately, an overestimated sample size can be detected from the QC plot we propose, where the

slope is then less than 1 for case-control studies using logistic regression; otherwise the standard deviation

of the phenotype is also needed (Equation 1), but can be estimated (Privé et al. 2020b).

We have assessed the impact of these misspecifications in GWAS summary statistics on the predictive

performance of some polygenic score methods. Using both the Bayesian LDpred2 models (Privé et al.

2020b) and our reimplementation of the frequentist lassosum model (Mak et al. 2017) for deriving poly-

genic scores, we have introduced and investigated some changes to possibly make these models more robust

to misspecifications. Overall, these changes have provided large improvements of predictive performance in

simulations with large misspecifications. However, they have almost no effect when using the real GWAS

summary statistics we chose, except for breast cancer and coronary artery disease summary statistics. Al-

though these results are somewhat unfortunate, they are reassuring because it means that the summary

statistics we use in this study are usually of good quality for follow-up analyses such as deriving polygenic

scores.
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4 Materials and Methods

4.1 Data for simulations

We use the UK Biobank imputed (BGEN) data (Bycroft et al. 2018). We restrict individuals to the ones

used for computing the principal components (PCs) in the UK Biobank (Field 22020). These individuals

are unrelated and have passed some quality control including removing samples with a missing rate on

autosomes larger than 0.02, having a mismatch between inferred sex and self-reported sex, and outliers

based on heterozygosity (more details can be found in section S3 of Bycroft et al. (2018)). To get a set of

genetically homogeneous individuals, we compute a robust Mahalanobis distance based on the first 16 PCs

and further restrict individuals to those within a log-distance of 5 (Privé et al. 2020a). This results in 362,307

individuals. We sample 300,000 individuals to form a training set (e.g. to run GWAS), 10,000 individuals to

form a validation set (to tune hyper-parameters), and use the remaining 52,307 individuals to form a test set

(to evaluate final predictive models).

Among genetic variants on chromosome 22 and with a minor allele frequency larger than 0.01 and an im-

putation INFO score larger than 0.4 (as reported by the UK Biobank), we sample 40,000 of them according

to the inverse of the INFO score density so that they have varying levels of imputation accuracy (Figure S4).

We read the UK Biobank data into two different datasets using function snp_readBGEN from R package

bigsnpr (Privé et al. 2018), one by reading the BGEN data at random according to imputation probabilities,

and another one reading it as dosages (i.e. expected values according to imputation probabilities). The first

dataset is used as what could be the real genotype calls and the second dataset as what would be its imputed

version; this design technique was used in Privé et al. (2019).

4.2 Data for real analyses

We also use the UK Biobank data, and use the same individuals as described in the previous section. We

sample 10,000 individuals to form a validation set and use the remaining 352,307 individuals as test set. We

restrict to the genetic variants to the 1,054,315 HapMap3 variants used in the LD reference provided in Privé

et al. (2020b). We also try two new sets of variants (see next section).

To define phenotypes in the UK Biobank, we first map ICD10 and ICD9 codes (UKBB fields 40001,

40002, 40006, 40013, 41202, 41270 and 41271) to phecodes using R package PheWAS (Carroll et al. 2014;

Wu et al. 2019). We use published GWAS summary statistics listed in table 1 to derive polygenic scores.

4.3 Two new sets of variants

We also design two larger sets of imputed variants to compare against using only HapMap3 variants for

prediction. Following Privé et al. (2021), we first restrict to UKBB variants with MAF > 0.01 and INFO >

0.3. We then compile frequencies and imputation INFO scores from other datasets, iPSYCH and summary

statistics for breast cancer, prostate cancer, coronary artery disease, type-1 diabetes and depression (Bybjerg-

Grauholm et al. 2020; Michailidou et al. 2017; Schumacher et al. 2018; Nikpay et al. 2015; Censin et al.

2017; Wray et al. 2018). We restrict to variants with a mean INFO > 0.3 in these other datasets, and
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Trait GWAS citation
Effective GWAS

sample size
# GWAS variants

# matched variants

with INFO > 0.4
Mean INFO

Breast cancer (BRCA) [iCOGS] Michailidou et al. (2017) 87,037 11,792,542 1,051,242 0.841

Breast cancer (BRCA) [OncoArray] Michailidou et al. (2017) 104,442 11,792,542 1,054,233 0.968

Type 1 diabetes (T1D) [Affymetrix] Censin et al. (2017) 5516 8,996,866 934,712 0.885

Type 1 diabetes (T1D) [Illumina] Censin et al. (2017) 7982 8,996,866 949,334 0.942

Prostate cancer (PRCA) Schumacher et al. (2018) 135,316 20,370,946 818,400 0.969

Depression (MDD) [without UKBB] Wray et al. (2018) 110,464 9,874,289 1,049,455 0.968

Coronary artery disease (CAD) Nikpay et al. (2015) 129,014 9,455,778 1,052,200 0.982

Table 1: Summary of external GWAS summary statistics used. PRCA summary statistics have many variants
with a missing INFO score, which we discard.

also compute the median frequency per variant. To exclude potential mismappings in the genotyped data

(Kunert-Graf et al. 2020) that might have propagated to the imputed data, we compare median frequencies

in the external data to the ones in the UK Biobank. As we expect these potential errors to be localized

around errors in the genotype data, we apply a moving-average smoothing on the frequency differences to

increase power to detect these errors and also reduce false positives. We define the threshold (of 0.03) on

these smoothed differences based on visual inspection of their histogram. This results in an initial set of

9,394,361 variants.

We then define the two sets from this large set of variants. One is based on clumping, using a threshold

r2 = 0.9 over a radius of 100 Kbp and prioritizing HapMap3 variants and larger INFO scores. This results in

a set “clump” of 2,465,478 variants, among which there are 554,655 of the initial HapMap3 variants. For the

second set, we aim at maximizing the tagging of all the initial 9,394,361 variants, i.e.
∑

i∈all maxj∈set |Ri,j |,
whereRi,j is the correlation between variants i and j (inspired from the alternative sensitivity of Agier et al.

(2016)). We design a greedy algorithm that first selects all HapMap3 variants, then adds one variant at a

time, the one that maximizes the addition to this sum, until no variant can add more than 0.2. This results in

a set “maxtag” of 2,029,086 variants.

4.4 GWAS sample size imputation

In this paper, we extensively use the following formula

sd(Gj) ≈
sd(y)√

nj se(γ̂j)2 + γ̂2j

, (1)

where γ̂j is the marginal (GWAS) effect of variant j, nj is the GWAS sample size associated with variant

j, y is the vector of phenotypes and Gj is the vector of genotypes for variant j. This formula is used in

LDpred2 Privé et al. (2020b, 2021). Note that, for a binary trait for which logistic regression is used, we

have instead

sd(Gj) ≈
2√

neff
j se(γ̂j)2 + γ̂2j

, (2)

where neff
j = 4

1/ncases
j +1/ncontrols

j
.
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We can then impute nj from equation (1) using

nj ≈
var(y)/var(Gj)− γ̂2j

se(γ̂j)2
, (3)

and impute neff
j from equation (2) using

neff
j ≈

4/var(Gj)− γ̂2j
se(γ̂j)2

. (4)

In practice, we also bound this estimate to be between 0.5 · N and 1.1 · N , where N is the global sample

size.

4.5 New implementation of lassosum in bigsnpr

Instead of using a regularized version of the correlation matrix R parameterized by s, Rs = (1− s)R + sI

(where 0 < s ≤ 1), we use Rδ = R + δI (where δ > 0), which makes it clearer that lassosum is also using

L2-regularization (therefore elastic-net). Then, from Mak et al. (2017), the solution from lassosum can be

obtained by iteratively updating

β
(t)
j =

sign
(
u
(t)
j

)(∣∣∣u(t)j ∣∣∣− λ) /(X̃T
j X̃j + δ

)
if
∣∣∣u(t)j ∣∣∣ > λ ,

0 otherwise.

where

u
(t)
j = rj − X̃T

j

(
X̃β(t−1) − X̃jβ

(t−1)
j

)
.

Following the notations from Privé et al. (2020b) and denoting X̃ = 1√
n−1CnGS

−1, where G is the geno-

type matrix, Cn is the centering matrix and S is the diagonal matrix of standard deviations of the columns

of G. Then X̃T
j X̃ = Rj,. = RT.,j and X̃T

j X̃j = 1. Moreover, using the notations from Privé et al. (2020b),

u
(t)
j = β̂j −RT.,jβ(t−1) + β

(t−1)
j , where rj = β̂j =

γ̂j√
nj se(γ̂j)2 + γ̂2j

and γ̂j is the GWAS effect of variant

j and n is the GWAS sample size (Mak et al. 2017; Privé et al. 2021). Then the most time-consuming part

is computing RT.,jβ
(t−1). To make this faster, instead of computing RT.,jβ

(t−1) at each iteration (j and t),

we can start with an initial vector of 0s only (for all j) since β(0) ≡ 0, and then updating this vector when

β
(t)
j 6= β

(t−1)
j only. Note that only positions k for which Rk,j 6= 0 must be updated in this vector RT.,jβ

(t−1).

In this new implementation of the lassosum model, the input parameters are the correlation matrix R,

the GWAS summary statistics (γ̂j , se(γ̂j) and nj), and the two hyper-parameters λ and δ. Therefore, except

for the hyper-parameters, this is the exact same input as for LDpred2 (Privé et al. 2020b). We try δ ∈
{0.001, 0.005, 0.02, 0.1, 0.6, 3} by default in lassosum2, instead of s ∈ {0.2, 0.5, 0.8, 1.0} in lassosum. For

λ, the default in lassosum uses a sequence of 20 values equally spaced on a log scale between 0.1 and 0.001.

We use instead a sequence between λ0 and λ0/100 by default in lassosum2, where λ0 = maxj

∣∣∣β̂j∣∣∣ is the

minimum λ for which no variable enters the model because the L1-regularization is too strong. Note that we

do not provide an “auto” version using pseudo-validation (as in Mak et al. (2017)) as we have not found it to
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be very robust (Figure S29). Also note that, as in LDpred2, we run lassosum2 genome-wide using a sparse

correlation matrix which assumes that variants further away than 3 cM are not correlated, and therefore we

do not require splitting the genome into independent LD blocks anymore (as done in lassosum).

4.6 New LD reference

We make three changes to the LD reference. First, when using imputed data, we multiply the correlation

between variants j and k by
√

INFOj · INFOk (for j 6= k) since it approximates well the correlation from

non-imputed data (Figure S30). Second, we also define nearly independent LD blocks using the optimal

algorithm developed in Privé (2021). For different numbers of blocks and maximum number of variants in

each block, we use the split with the minimum cost within the ones reducing the original number of non-

zero values to less than 60% (70% for chromosome 6). Having a correlation matrix with independent blocks

prevents the small errors in the algorithm (e.g. the Gibbs sampler in LDpred2) from propagating to too many

variants. It also makes running LDpred2 (and lassosum2) faster, taking about 60% of the initial time (since

only 60% of the initial non-zero values of the correlation matrix are kept). Finally, we have developed a

new “compact” format for the SFBMs (sparse matrices on disk). Instead of using something similar to the

standard “compressed sparse column” format which stores all {i, x(i, j)} for a given column j, we only

store the first index i0 and all the contiguous values {x(i0, j), x(i0 + 1, j), . . . } up to the last non-zero

value for this column j. This makes this format about twice as efficient for both LDpred2 and lassosum2.

4.7 LDpred2-low-h2 and LDpred2-auto-rob

Here we introduce the small changes made to LDpred2 (-grid and -auto) in order to make them more robust.

First, LDpred2-low-h2 simply consists in running LDpred2-grid by testing h2 within {0.3, 0.7, 1, 1.4}·h2LDSC

(note the added 0.3 compared to Privé et al. (2020b)), where h2LDSC is the heritability estimate from LD score

regression. Indeed, we show in simulations here that using lower values for h2 may provide higher predictive

performance in the case of misspecifications (thanks to more shrinkage of the effects). In simulations,

because of the large misspecifications, we use a larger grid over {0.01, 0.1, 0.3, 0.7, 1, 1.4} · h2LDSC.

For LDpred2-auto, we introduce two new parameters. The first one, shrink_corr, allows for shrink-

ing off-diagonal elements of the correlation matrix. This is similar to parameter ‘s’ in lassosum, and act as a

regularization. We use a value of 0.9 in simulations and 0.95 in real data when running “LDpred2-auto-rob”

(and the default value of 1, without any effect, when running “LDpred2-auto”). The second new parame-

ter, allow_jump_sign, controls whether variants can change sign over two consecutive iterations of the

Gibbs sampler. When setting this parameter to false (in the method we name “LDpred2-auto-rob” here), this

forces the effects to go through 0 before changing sign. This is useful to prevent instability (oscillation and

ultimately divergence) of the Gibbs sampler under large misspecifications, and is also useful for accelerating

convergence of chains with a large initial value for p, the proportion of causal variants.
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Code availability

All code used for this paper is available at https://github.com/privefl/paper-misspec

/tree/master/code. The latest version of R package bigsnpr can be installed from GitHub. Two

tutorials on running LDpred2 and lassosum2 using R package bigsnpr are available at https://priv

efl.github.io/bigsnpr/articles/LDpred2.html and https://privefl.github

.io/bigsnpr-extdoc/polygenic-scores-pgs.html. We have extensively used R packages

bigstatsr and bigsnpr (Privé et al. 2018) for analyzing large genetic data, packages from the future framework

(Bengtsson 2021) for easy scheduling and parallelization of analyses on the HPC cluster, and packages from

the tidyverse suite (Wickham et al. 2019) for shaping and visualizing results.
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