
 

 
 

1 

Substrate specialization in microbes is driven by biochemical 1 

constraints of dynamic flux sensing 2 

Severin Josef Schink1,*, Dimitris Christodoulou1,2,*, Avik Mukherjee1,3, Edward Athaide1, Viktoria 3 

Brunner2, Tobias Fuhrer2, Gary Andrew Bradshaw4, Uwe Sauer2, # and Markus Basan1, # 4 
 5 

* Equal contribution 6 
1 Systems Biology Department, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA 7 
2 Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland 8 
3 Applied Mathematics Department, Harvard College, Cambridge, MA 02138, USA 9 
4 Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, 10 

200 Longwood Ave, Boston, MA 02115, USA 11 
# Correspondence: sauer@imsb.biol.ethz.ch, markus@hms.harvard.edu 12 

 13 

Central carbon metabolism is highly conserved across microbial species, but operates 14 

in very different ways depending on the organism and their ecological niche. Here, 15 

we study the dynamic re-organization of central metabolism after switches between 16 

the two major opposing pathway configurations of central carbon metabolism, 17 

glycolysis and gluconeogenesis in differerent bacteria. We combined growth 18 

dynamics and dynamic changes of intracellular metabolite levels with a coarse-19 

grained model that integrates fluxes, regulation, protein synthesis and growth and 20 

uncovered fundamental limitations of the regulatory network: after nutrient shifts, 21 

metabolite concentrations collapse to their equilibrium, turning the cell ‘blind’ to 22 

which direction the flux is supposed to flow through the metabolic network. The cell 23 

can partially alleviate this ‘blindness’ by picking a preferred direction of regulation, 24 

at the expense of increasing lag times in the opposite direction. Moreover, decreasing 25 

both lag times simultaneously comes at the cost of reduced growth rate or higher futile 26 

cycling between metabolic enzymes. These three trade-offs can explain why 27 

microorganisms specialize for either glycolytic or gluconeogenic substrates and can 28 

help elucidate the complex growth patterns exhibited by different microbial species.  29 
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Introduction 30 

Fast growth and quick physiological adaptation to changing environments are key 31 

determinants of fitness in frequently changing environments that microorganisms 32 

encounter in the wild. But in comparison with steady state exponential growth, 33 

understanding of the physiology of growth transitions has remained largely elusive. For 34 

steady state exponential growth, metabolic models have made substantial progress over the 35 

last two decades, elucidating the flux and regulatory networks that govern the coordination 36 

of microbial metabolism (Bennett et al., 2009; Bordbar et al., 2014; Chubukov et al., 2014; 37 

Gerosa et al., 2015a; Link et al., 2013; Noor et al., 2010, 2014; Vasilakou et al., 2016). 38 

Such metabolic model were successfully expanded to dynamic environments (Zampar et 39 

al., 2013; Chassagnole et al., 2002; Chakrabarti et al., 2013; Saa and Nielsen, 2015; 40 

Andreozzi et al., 2016; Yang et al., 2019) and used to gather vital information about 41 

metabolism, using perturbations (Link et al., 2013), stimulus response experiments 42 

(Chassagnole et al., 2002) or sequential nutrient depletion (Yang et al., 2019) to validate 43 

and improve metabolic models. But, dynamic changes of metabolism like shifts in growth 44 

conditions continue to pose a considerable challenge. Changes in enzyme abundance alone 45 

cannot explain the variation of phenotypes exhibited by individual microbial species, nor 46 

between different species, and it is still unclear what determines how long bacteria need to 47 

adapt upon a change of the environment. 48 

 49 

One example of such a switch happens when microbes deplete their primary nutrient. 50 

Escherichia coli preferentially utilizes hexose sugars like glucose that are metabolized via 51 

glycolysis (Gerosa et al., 2015b). To maximize growth on sugars, E. coli excretes 52 

substantial ‘overflow’ production of acetate, even in the presence of oxygen (Basan et al., 53 

2015a, 2017). This naturally leads to bi-phasic growth, where initial utilization of glucose 54 

is followed by a switch to acetate. Similar growth transitions from preferred glycolytic 55 

substrates to alcohols and organic acids ubiquitously occur for microbes in natural 56 

environments (Buescher et al., 2012; Otterstedt et al., 2004; Zampar et al., 2013). Since 57 

these fermentation products are all gluconeogenic, they require a reversal of the flux 58 

direction in the glycolysis pathway, which results in multi-hour lag phases caused by the 59 

depletion of metabolite pools throughout the gluconeogenesis pathway (Basan et al., 2020). 60 
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Similar long lag times in glycolytic to gluconeogenic shifts were observed for Bacillus 61 

subtilis and the yeast Saccharomyces cerevisiae (Basan et al., 2020). Shifts in the opposite 62 

direction, however, from gluconeogenic substrates to glycolytic ones, occur much more 63 

quickly in E. coli and other preferentially hexose fermenting microbes, in some cases even 64 

without detectable lag phases (Basan et al., 2020).  65 

 66 

In our previous work (Basan et al., 2020), we showed how the growth rate dependence of 67 

enzyme expression leads to a universal relation between lag times and preshift growth rates 68 

and found evidence that futile cycling at irreversible metabolic reactions plays an important 69 

role for causing lag times. However, we were unable to answer the most fundamental 70 

questions raised by these observations: Why are microorganisms like E. coli or S. 71 

cerevisiae unable to overcome lag phases by expressing more metabolic enzymes or 72 

allosteric regulations that turn off futile cycling after metabolic shifts? Given the small 73 

number of enzymes involved in these irreversible reactions, their cost in terms of proteome 74 

allocation is likely minimal. Instead, microbes like E. coli appear to be intentionally 75 

limiting enzyme expression and decreasing their growth rates on many glycolytic 76 

substrates (Basan et al., 2017). Moreover, why do shifts from glycolytic to gluconeogenic 77 

conditions result in lag times of many hours, while shifts from gluconeogenic to glycolytic 78 

conditions only take minutes? Given the symmetry of central metabolism, one would 79 

expect similar lag phases in the opposite direction. Is this preference for glycolysis a 80 

fundamental property of central metabolism or rather an evolutionary choice of individual 81 

species? At the core of these questions is a gap in understanding of how central carbon 82 

metabolism adjusts itself to nutritional changes.  83 

 84 

Here, we study growth and metabolite dynamics of E. coli, Pseudomonas aeruginosa and 85 

Pseudomonas putida using a kinetic model of central carbon metabolism to overcome this 86 

challenge. Our model coarse-grains central metabolism to a low number of irreversible and 87 

reversible reactions, which allows us to focus on the dynamics of key metabolites and their 88 

regulatory action. The model couples metabolism to enzyme abundance via allosteric 89 

regulation and enzyme expression to the concentration of regulatory metabolites via 90 

transcriptional regulation and flux dependent protein synthesis. Our formulation of 91 
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metabolism and growth bridges fast metabolic time scales with slow protein synthesis. As 92 

we demonstrate, our model can explain a major reorganization of metabolism in response 93 

to nutrients shifts: the switching of the directionality of metabolic flux between glycolysis 94 

and gluconeogenesis. Dependent on the required directionality of flux in central 95 

metabolism, enzymes catalyzing the required flux direction are expressed and catalytically 96 

active, while enzymes catalyzing the opposite flux are expressed at low levels and their 97 

activities are repressed by allosteric regulation. This self-organization is key for enabling 98 

fast growth and preventing costly futile cycling between metabolic reactions in opposing 99 

directions, which can inhibit flux and deplete ATP in the process.  100 

 101 

Reestablishing this self-organization after growth shifts is limited by biochemical 102 

constraints to sense fluxes and to regulate accordingly. When metabolite levels transiently 103 

collapse, allosteric and transcriptional regulation cannot distinguish between glycolysis 104 

and gluconeogenesis, turning the cell ‘blind’ to the direction of flux. By choosing the 105 

activity of metabolic enzymes at these low metabolite levels to favor one direction, the cell 106 

can enable fast switching at the expense of the other direction. This choice of direction in 107 

the absence of information becomes the ‘default state’ of central metabolism and 108 

determines the substrate preference.  109 

 110 

According to the model, the preferred direction does not need to be glycolysis, and in 111 

principle gluconeogenic specialists with a gluconeogenic ‘default’ state could have evolved, 112 

too. Indeed, we showed that P. aeruginosa shows reversed lag time and growth phenotypes 113 

compared to those of E. coli, which verified that long lag times to glycolytic substrates are 114 

caused by the same inability to sense flux after nutrient shifts. 115 

 116 

Results 117 

An integrated, self-consistent kinetic model of glycolysis / gluconeogenesis 118 

In a shift between glycolysis and gluconeogenesis, flux in central metabolism needs to be 119 

reversed. To understand what limits the speed of adaptation between those two modes of 120 

flux, we turn to a theoretical model of central metabolism. But because the complexity of 121 

central metabolism with intertwined regulation at different levels prevents tracing 122 
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quantitative phenotypes to their molecular origins, we sought to focus on the biochemical 123 

pathway topology with its key regulations that differentiate glycolysis and gluconeogenesis  124 

and constructed a minimal model of central metabolism. The model is illustrated in Box 1 125 

and described in detail in the SI. It is based on topology of the biochemical network, the 126 

allosteric and the transcriptional regulation of the key the metabolic proteins of E. coli, all 127 

of which have been well characterized (Berger and Evans, 1991; Ramseier et al., 1995; 128 

Johnson and Reinhart, 1997; Pham and Reinhart, 2001; Kelley-Loughnane et al., 2002; 129 

Hines et al., 2006; Fenton and Reinhart, 2009).  130 

 131 

The defining feature of the model is a coarse-graining of the irreversible reactions (one-132 

directional arrows in ‘orange’ and ‘blue’, Box 1A) in the upper and lower part of central 133 

metabolism into single irreversible reactions (one-directional ‘black’ arrows in Box 1B). 134 

While not irreversible in an absolute sense, so-called irreversible reactions are 135 

thermodynamically favored so much in one direction that they can be effectively 136 

considered as irreversible (Noor et al., 2014). As a result, these irreversible reactions in 137 

central metabolism need to be catalyzed by distinct enzymes that perform distinct reactions 138 

For example, Fructose 6-phosphate (F6P) is converted to Fructose 1-6-bisphosphate (FBP) 139 

by enzyme PfkA using ATP. The opposite direction, FBP to F6P, is performed by a 140 

different enzyme, Fbp, which splits off a phosphate by hydrolysis. Each of the two 141 

reactions follows a free energy gradient and are irreversible. If both enzymes are present 142 

and active then the metabolites will be continuously interconverted between F6P and FBP 143 

and in each interconversion one ATP is hydrolyzed to ADP and phosphate. This is a ‘futile 144 

cycle’. It drains the cell’s ATP resource and prevents flux going through the biochemical 145 

network. Because of this importance of irreversible reactions and futile cycling, we 146 

implement irreversible enzymes (‘bold font, blue/orange’ in Box 1A&B) and their 147 

allosteric regulation (‘green’ and ‘red’ arrows in Box 1B) in the model. To successfully 148 

switch flux directions, the cell needs to express irreversible enzymes in the new direction, 149 

up-regulate their activity and repress enzyme activity in the opposing direction. 150 

  151 
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 152 

Box 1 Integrated kinetic model of central carbon metabolism. (A) Detailed metabolic reaction network and (B) 

minimal network of central carbon metabolism. Coarse-graining was done by combining irreversible glycolytic 

(orange) and gluconeogenic reactions (blue), as well as metabolites. Influx can either occur from glycolytic carbon 

sources (e.g. glucose) or tricarboxylic acid (TCA) cycle carbon sources (e.g. acetate). (1) Gatekeepers to the central 

section of glycolysis and gluconeogenesis are the two irreversible reactions (glyup, gngup and glylow, gnglow) that feed 

and drain FBP and PEP. The irreversible reactions are allosterically regulated by FBP (Fructose 1-6-bisphosphate) 

and PEP (phosphoenolpyruvate), where ‘outward’ facing reactions are activated (green arrows) and ‘inward’ 

facing reactions are repressed (red arrow). (2) Biomass production requires precursors from glycolytic carbons, 

PEP and TCA cycle carbon,. (3) Glycolytic and gluconeogenic enzymes are regulated by Cra, which is in turn 

modulated by FBP. (C) Mathematical formulation of the model. Numbers correspond to features in panel B. (1) 

Fluxes  of enzymes  depend on enzyme abundances , catalytic rates  and allosteric regulations, modeled 

as a Hill function below its maximal saturation Τ , where  is the concentration of the regulatory metabolite 

and  is a reference concentration. Reversible fluxes are modeled with simple mass action kinetics. (2) Biomass 

production is implemented in the model as single reaction that drains all three metabolites simultaneously at 

catalytic rate  (3) Enzyme expression depend linearly on FBP concentration . Growth rate: , steady 

state abundance: , steady state concentration  and  &  modulate the sensitivity of regulation to FBP. 

Glycolytic and gluconeogenic enzymes are produced as part of protein synthesis. Thus in the model, flux through 

metabolism automatically leads to synthesis of metabolic enzymes and biomass production, resulting in dilution of 

existing enzymes.  
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The metabolites ‘sandwiched’ between the irreversible reactions are coarse-grained into 153 

the first and last metabolites of the series of reversible reactions connecting the irreversible 154 

reactions, FBP and PEP (phosphoenolpyruvate). These metabolites regulate the activity 155 

and expression of the irreversible enzymes (Box 1B and SI Sec. 2).  156 

 157 

In total, the model encompasses four irreversible reactions, each regulated allosterically by 158 

either FBP or PEP, and transcriptionally by FBP via Cra, and one reversible reaction that 159 

connects FBP and PEP. We used measured metabolite concentrations for growth on 160 

glucose (Kochanowski et al., 2013a) and Michaelis constants (Berman and Cohn, 1970; 161 

Zheng and Kemp, 1995; Donahue et al., 2000) to constrain enzymatic parameters and 162 

biomass yield (Link et al., 2008) and density (Basan et al., 2015b) on glucose to constrain 163 

fluxes (SI Sec. 4). We used the level of futile cycling in the upper and lower reactions in 164 

exponential glucose growth, which summarize the effect of enzyme abundance and 165 

allosteric regulation, as fitting parameters such that the model reproduces the observed lag 166 

times in this paper; see SI Sec. 4.2 for details. 167 

 168 

While the model in Box 1 was formulated to coarse-grain glycolysis via the Embden-169 

Meyerhof-Parnas (EMP) pathway, other glycolytic pathways, such as the Entner-170 

Doudoroff (ED) pathway, have a similar topology. In ED glycolysis, phosphogluconate 171 

dehydratase (Edd) and KDPG aldolase (Eda) are irreversible reactions that feed into the 172 

chain of reversible reactions, analogous to 6-phosphofructokinase (pfk) in the EMP 173 

pathway. The coarse-grained model thus should capture these alternative pathways too. 174 

 175 

Central carbon metabolism self-organizes in response to substrate availability 176 

To test whether this simple model could recapitulate steady state glycolytic and 177 

gluconeogenic growth conditions, we compared it to published metabolite and proteomics 178 

data of E. coli, which is well-characterized in steady state exponential growth on glucose 179 

and acetate as sole carbon substrates (Basan et al., 2020). Indeed, the model reached distinct 180 

steady states for glycolytic and gluconeogenic conditions, which we summarized 181 

graphically with font size indicating enzyme and metabolite abundance and line widths 182 

indicating the magnitude of fluxes (Fig. 1A&B). Active regulation is shown in colored 183 
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lines, while inactive regulation are grey, dashed lines. We quantitatively compare enzyme 184 

and metabolite abundances to experimental measurements in Fig. 1C-E and find that the 185 

coarse-grained model can describe the reorganization of metabolism well, despite the 186 

simplifications of the metabolic and regulatory networks. 187 

 188 

The simulation helps to understand how central metabolism self-organizes in glycolytic 189 

and gluconeogenic conditions and how allosteric and transcriptional regulation optimize 190 

fluxes and minimize futile cycling during exponential growth. As shown in Fig. 1C, in 191 

‘orange’, during glycolytic conditions, the simulation reached a steady state with high FBP 192 

levels and low PEP levels. As illustrated in Fig. 1A, the high FBP pool activates lower 193 

glycolysis, while the low PEP pool derepresses upper glycolysis and deactivates upper 194 

gluconeogenesis. This suppression of gluconeogenic fluxes in glycolysis reduces futile 195 

cycling, i.e., circular fluxes at the irreversible reactions, thereby streamlining metabolism. 196 

Figure  1 Self-organization of metabolism in glycolysis and gluconeogenesis. (A&B) Graphic summary of the 

reorganization in glycolysis and gluconeogenesis. Linewidth of reactions arrows indicate magnitude of flux. Font size 

of metabolites and enzymes indicate metabolite concentrations and enzyme abundances, respectively. Active 

regulation is indicated by red/green color, inactive regulation is grey and dashed. (C, D&E) Comparison of theoretical 

and experimental (from (Basan et al., 2020)) metabolite concentrations and enzyme abundances. Note the striking, 

differential regulation of FBP and PEP, high in one condition and low in the other.  
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On a transcriptional level, the high FBP pool represses Cra, which in turn derepresses the 197 

expression of glycolytic enzymes and inhibits the expression of gluconeogenic enzymes. 198 

This results in high levels of glycolytic enzymes and low levels of gluconeogenic enzymes 199 

in the simulation (Fig. 1D&E, right panels).  200 

 201 

In gluconeogenic conditions (‘blue’ in Fig. 1), we find precisely the complementary 202 

configuration of central carbon metabolism. Simulation and experiments show low FBP 203 

and high PEP pools (Fig. 1C). As illustrated in Fig. 1B, high PEP represses upper glycolysis 204 

and activates upper gluconeogenesis, while low FBP deactivates lower glycolysis. Low 205 

FBP also derepresses Cra, which leads to high expression of gluconeogenic enzymes and 206 

low expression of glycolytic enzymes (Fig. 1D, right panels).  207 

 208 

Next we tested if the model could recapitulate how varying growth rates on glycolytic and 209 

gluconeogenic nutrients affects metabolite levels and protein expression in E. coli (Gerosa 210 

et al., 2015b; Hui et al., 2015). In particular, it has been shown experimentally that FBP 211 

acts like a flux sensor and FBP concentration linearly increases with glycolytic flux (Fig. 212 

S1A) (Kochanowski et al., 2013b), which is recapitulated by our simulation (Fig. S1D), 213 

under the condition that the speed of the reversible reaction is slow compared to the 214 

irreversible reactions. The linear increase of FBP concentration with growth rate results in 215 

a linear growth rate dependence of gluconeogenic and glycolytic enzyme abundances in 216 

the simulation, in good agreement with experimental measurements of enzyme abundances 217 

from proteomics (Fig. S1 compare B&C with E&F) (Hui et al., 2015). Together, these 218 

results show that integrating the transcriptional and allosteric regulation of FBP and PEP 219 

in the coarse-grained model suffices to describe the major re-configuration of central 220 

metabolism in glycolysis and gluconeogenesis.  221 
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 222 

Central carbon metabolism of E. coli is primed for switches to glycolysis 223 

Equipped with this model, we next address the mechanistic basis for the extended lag 224 

phases of E. coli upon nutrient shifts from glycolytic to gluconeogenic conditions. When 225 

shifted from glucose to acetate E. coli shows a lag time with almost no growth for around 226 

5h (Fig. 2A, data: (Basan et al., 2020)). We can reproduce this lag with our model (Fig. 2B, 227 

Fig. S2-5) when we fit pre-shift futile cycling, which is a measure for enzyme abundances 228 

and allosteric regulations; see SI Sec. 4.2 for details. All model solutions for E. coli shown 229 

in this paper are generated with the parameters generated from this fit. The model captures 230 

the slow adaptation of glycolytic and gluconeogenic enzymes, the major change of which 231 

occurs only towards the end of the lag phase (Fig. S7). Investigating the origin of the 232 

growth arrest in the simulation, we found that during lag phase, the concentrations of upper 233 

glycolytic precursors (which includes Fructose 6-phosphate (F6P) and Glucose 6-234 

phosphate (G6P)) remained very low compared to their steady state values, which matches 235 

published experimental evidence of F6P measurements (Basan et al., 2020) (Fig. 236 

Figure 2 Shifts between glycolysis and gluconeogenesis. (A) Experimental and (B) model of optical density after shift 

of E. coli from glucose to acetate. Growth shows a substantial lag before it recovers. (C) Experimental and (D) model 

of F6P (normalized to the final state) collapses after shit to acetate, and continues to stay low throughout lag phase. 

Because F6P is an essential precursor for biomass production, this limitation effectively stops biomass growth. (E&F) 

Fluxes of all irreversible reactions in units of intracellular concentration per time. Especially fluxes in lower  

glycolysis/gluconeogenesis are of equal magnitude, leading to a futile cycle, where no net flux (red line) through 

central carbon metabolism can be established. (G-J) Optical density and metabolic fluxes for the reversed shift from 

acetate to glucose shows immediate growth and no intermittent futile cycling. The dynamics of all enzyme 

abundances, regulation and fluxes for both shifts are shown in Fig. S2-6 in detail. The model also correctly predicts 

that enzyme abundances only adapt late in the lag phase (Fig. S7). 
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simulation: 2C, data 2D). This indicates that essential precursors are limited, and thereby, 237 

according to Eq. (4) growth rate during lag phase stalls. 238 

 239 

In the simulation, the F6P limitation is caused by low net fluxes in upper and lower 240 

gluconeogenesis (Fig. 2E&F, red lines). Previously, it was suggested that futile cycling 241 

between gluconeogenic and glycolytic enzymes could contribute to this flux limitation 242 

(Basan et al., 2020), supported by the observation that overexpression of glycolytic 243 

enzymes in upper or lower glycolysis strongly impaired switching and resulted in much 244 

longer lag times (Basan et al., 2020). The simulation allows us to probe the effect of futile 245 

cycling in silico, which cannot be directly measured experimentally. Indeed, we found for 246 

our default E. coli parameters that residual lower glycolytic flux almost completely 247 

canceled the flux from gluconeogenesis, i.e., 𝑟gly
low ≈ 𝑟gng

low (solid and dashed black lines in 248 

Fig. 3F), such that net gluconeogenic flux remained close to zero (red line, Fig. 2E&F). 249 

Thus, this futile cycling appears to be the main reason for limiting net flux throughout the 250 

lag phase.  251 

 252 

The biochemical network and regulation are almost completely symmetric with respect to 253 

the direction of flux, so one might naively expect a shift from gluconeogenesis to glycolysis 254 

to also result in a long lag. However, experimentally the shift in the opposite direction from 255 

gluconeogenesis to glycolysis occurs very quickly in E. coli (Fig. 2G) (Basan et al., 2020). 256 

Our simulations with the standard E. coli parameters can recapitulate that central 257 

metabolism adjusted very quickly and growth resumed without a substantial lag phase (Fig. 258 

2H). In striking contrast to the shift to gluconeogenesis, futile cycling played no role in the 259 

shift to glycolysis, because both upper and lower glycolytic fluxes got repressed 260 

immediately after the shift (Fig. 2I-J, solid black line), such that net flux could build up 261 

(Fig. 2I-J, red line). The absence of transient futile cycling, despite the symmetry of 262 

regulation and metabolic reactions, means that it must be the allosteric and transcriptional 263 

regulations that ‘prime’ central metabolism of E. coli for the glycolytic direction. 264 

 265 

Molecular cause of preferential directionality 266 
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To understand the molecular cause of the asymmetric response and lag phases, we 267 

investigated the role of allosteric and transcriptional regulation in our simulation. During 268 

steady state growth, the differential regulation during glycolysis and gluconeogenesis is 269 

achieved by PEP and FBP, the metabolites that are “sandwiched” between the two 270 

irreversible reactions and connected by a series of reversible enzymes, coarse-grained in 271 

our model into the ‘super-eno’ enzyme. First, we focused on regulation during exponential 272 

growth and wanted to investigate how the cell achieves differential regulation of glycolytic 273 

and gluconeogenic enzymes using the metabolites FBP and PEP. In equilibrium, forward 274 

and backward reactions would balance, i.e., 𝑟ENO+ = 𝑟ENO−, and no net flux could run 275 

through central metabolism, meaning that the cell could not grow. Using Eqs. (2&3), the 276 

balance of forward and backward fluxes results in a fixed quadratic dependence of FBP 277 

and PEP in equilibrium, 278 

  𝑐FBP
eq

= 𝑘ENO− 𝑘ENO+Τ  (cPEP
eq

)
2

. (7) 

 279 

Close to the equilibrium, FBP and PEP levels go up and down together, rather than the 280 

opposing directions, as observed for glycolytic and gluconeogenic growth (Fig. 1A&B). 281 

This results in low net flux and very slow growth. Hence, for steady state growth, the 282 

equilibrium must be broken and FBP ≫ PEP or FBP ≪ PEP, such that either glycolytic 283 

flux is bigger than gluconeogenic or vice-versa (𝑟ENO+ ≫ 𝑟ENO−  and 𝑟ENO+ ≪ 𝑟ENO− , 284 

respectively). This is achieved by the irreversible reactions, which drain and supply 285 

metabolites to the ‘super-eno’. Because of the positive feedback between enzyme activity 286 

and non-equilibrium of the ‘super-eno’, this regulation topology achieves differential 287 

regulation during glycolysis and gluconeogenesis. As we observed in the analysis of the 288 

glycolytic and gluconeogenic steady states (Fig. 1), this differential regulation adjusts 289 

enzyme levels via transcriptional regulation and suppresses futile cycling at the irreversible 290 

reactions. 291 

 292 
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While regulation of central metabolism efficiently organizes FBP-PEP in a far from 293 

equilibrium state during exponential growth, nutrient shifts expose the limitations of this 294 

regulatory system. To understand why, we plot FBP against PEP, with both metabolites 295 

normalized to their gluconeogenic steady state (Fig. 3A). We indicated several time-points 296 

along the dynamics, and the final steady state is shown with a grey symbol. Initially, both 297 

FBP and PEP drop close to zero, followed by a very slow joint increase of FBP and PEP 298 

over the course of hours (Fig. 3A). This joint increase, rather than a differential increase, 299 

is the hallmark of a close-to-equilibrium state.  300 

 301 

The slow recovery can be understood from the simulation, which shows that FBP and PEP 302 

proceed close to the equilibrium line of Eq. (7), where growth is slow (Fig. 3B). As a guide 303 

to the eye, we drew an equilibrium parabola in Fig. 3A along the joint increase, too. 304 

 305 

We previously showed that throughout most of the lag phase, higher gluconeogenic flux 306 

from increasing levels of gluconeogenic enzymes is almost completely lost to a 307 

corresponding increase in futile cycling because increasing FBP activates lower glycolysis, 308 

instead of deactivating it (Fig. 2F). The overshoot of FBP in Fig. 3A (data) and Fig. 3B 309 

Figure 3 Molecular cause for asymmetric recovery dynamics in E. coli. (A) Recovery of FBP and PEP of after a shift 

from glucose to acetate, shows a distinctive joint increase, followed by an overshoot of FBP. Data from Ref. [4]. Red 

line is a quadratic guide to the eye. Final acetate steady state is drawn as grey symbol and used to normalize both 

FBP and PEP levels. (B) Model solution of FBP and PEP. After the fast collapse of metabolite levels (triple arrow to 

white circle), the dynamics closely follows the quadratic FBP-PEP equilibrium Eq. (7). Eventually recovery will 

diverge away from the equilibrium line, towards the non-equilibrium steady states of gluconeogenesis (grey circle) 

(C) For a shift to glycolysis, metabolite levels do not collapse, but instead land already far from equilibrium (triple 

arrow to white circle), such that flux is immediately established, and recovery is quick. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.05.07.443112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443112
http://creativecommons.org/licenses/by/4.0/


 

 
 

14 

(model) is what finally allows the cell to establish net flux because it is breaking the 310 

equilibrium: PEP concentration is high enough to activate upper gluconeogenesis 311 

sufficiently to drain FBP via upper gluconeogenesis (see Fig. 2E). Lower FBP then shuts 312 

down futile cycling in lower glycolysis/gluconeogenesis (Fig. 2F), pushing FBP and PEP 313 

concentrations to a state far from the equilibrium line (see Fig. 3B) and allowing the cell 314 

to grow at a faster rate. 315 

 316 

The fundamental difference between shifts to gluconeogenesis and glycolysis in E. coli is 317 

that glycolytic shifts immediately land far from equilibrium (Fig. 3C, triple arrow to white 318 

circle), such that cells immediately grow at faster rates, allowing them to express the new 319 

enzymes needed to recover quickly. But why does one direction immediately land far from 320 

equilibrium, while the other lands close to equilibrium? 321 

 322 

Three trade-offs constrain lag times to glycolysis and gluconeogenesis 323 

The out-of-equilibrium state is caused by net flux going through metabolism. Therefore, 324 

we investigated what causes fluxes not to flow in a uniform direction after shifts to 325 

glycolysis and gluconeogenesis. In principle, metabolite flux brought to the ‘super-eno’ 326 

can exit via two drains: upper gluconeogenesis, activated by PEP, and lower glycolysis, 327 

activated by FBP (Fig. 4A). How much flux exits via either drain depends on the current 328 

protein abundances and the allosteric regulation. If the allosteric regulation and protein 329 

abundances favor the lower drain, then after a switch to glycolysis, FBP builds up, PEP is 330 

drained and a net flux is immediately accomplished. In a shift to gluconeogenesis, however, 331 

flux that enters central metabolism from the TCA cycle will immediately drain back to the 332 

TCA cycle, leading to an in-and-out flux but no net flux. In this situation, FBP and PEP 333 

stay in equilibrium and the recovery stalls. If on the other hand, the upper drain was favored 334 

over the lower drain, then we would expect the behavior to be reversed and gluconeogenic 335 

flux would be immediately accomplished, while the glycolytic recovery would stall.  336 

 337 
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In the simulation, we are able test the hypothesis that the the upper and lower drains 338 

determines the preferential directionality of the central metabolism by varying enzyme 339 

abundances and the strength of allosteric interactions in upper and lower drains in silico. 340 

We let metabolism adapt to gluconeogenic and glycolytic conditions and calculate lag 341 

Figure 4  Trade-offs between glycolysis and gluconeogenesis. (A) Two drains in central metabolism deplete central 

metabolites. (B-C) Changing abundance  or allosteric regulation strength  in either lower or upper drain leads to 

a shift of lag times, decreasing lags in one direction at the cost of the other. Chosing strength of the drains such that 

either top or bottom is stronger, will lead to a fast recovery in on direction, and a slow in the other. (D) Reversible 

enzymes in the central metabolism (coarse-grained here into ‘super-eno’). Abundance of reversible enzymes scale 

linearly with growth rate [16]. (E-F) Decreasing abundance of reversible enzymes decreases lag times. This effect is 

due to regulatory metabolites being in a far-from-equilibrium state when abundances are low, which allows 

differential regulation via FBP and PEP. For high abundance, regulation is weak and lag times long. (G) There are 

two futile cycles in central metabolism. (H-I) Increasing abundance of enzymes of the opposing direction in pre-shift, 

e.g. gluconeogenic enzymes in glycolytic growth, increases futile cycling and decreases lag times. Because in futile 

cycles free energy is dissipated, usually in the form of ATP hydrolysis, futile cycling has an energetic cost. 
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times (Fig. 4B&C). Indeed, we found that a decrease of lag time in one direction led to an 342 

increase of lag time in the opposite direction.  343 

 344 

Varying the outflow from metabolism is not the only determinant of lag times. The set of 345 

reversible enzymes, coarse-grained in our model into the ‘super-eno’, plays another key 346 

role because it interconverts the regulatory metabolites FBP and PEP (Fig. 4D). If this 347 

conversion is fast, the concentrations of FBP and PEP will be close to their equilibrium 348 

relation in Eq. (7), and differential regulation will be impossible. As a result, lag times in 349 

both directions increase if we increase the abundance of reversible reactions (Fig. 4E-F). 350 

This is a counter-intuitive result, as one would have naïvely expected more enzymes to 351 

speed up reactions. But instead, in metabolism more enzymes will collapse the differential 352 

regulation and slow down adaptation rates. This trade-off is anavoidable for fast growing 353 

cells because the cell needs a sufficient amount of reversible glycolytic enzymes to catalyze 354 

metabolic flux. 355 

 356 

Figure 5 Large-scale parameter scan reveals Pareto optimality between lag times and futile cycling. (A-B) Model 

calculated for randomized sets of protein abundancies, reaction rates, Michaelis constants, allosteric interactions, 

transcriptional regulation, see SI. Each point corresponds to a parameter set that allows exponential growth on both 

glycolytic and gluconeogenic carbons, as well switching between both conditions. Data is colored according to the 

total regulation R, i.e., the sum of fold-changes of enzyme activities between glycolysis and gluconeogenesis, 

( ൗ ) , where and  are protein abundances in glycolysis and gluconeogenesis of protein i and  

the strength of the allosteric regulation. For standard E. coli parameters R = 23. R>104 are likely unphysiological. 

Lines indicate Pareto front and are drawn by hand. (C) Parameter sets from panels A&B with low futile cycling 

highlighted over the background of all parameter sets (grey). 
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Finally, lag times depend on the amount of futile cycling, i.e., the circular conversion of 357 

metabolites in the upper and lower irreversible reactions (Fig. 4G). Increasing the 358 

abundance of gluconeogenic enzymes in glycolytic growth or glycolytic enzymes in 359 

gluconeogenic growth increases futile cycling but decreases lag times (Fig. 4I&H). 360 

Because futile cycling dissipates ATP, which is not explicitly built into our model, this 361 

third trade-off means that organisms can decrease their switching times by sacrificing 362 

energetic efficiency. 363 

 364 

Are these three trade-offs a fundamental consequence of the regulatory structure or are 365 

there parameter combinations that avoid the trade-offs by simultaneously enabling rapid 366 

growth and rapid switching without costly futile cycling? To answer this question we 367 

performed an extensive scan of model parameters by randomly choosing sets of 368 

biochemical parameters and simulating the resulting model. Of those parameter sets we 369 

chose those that allowed steady state growth in both glycolytic and gluconeogenic 370 

conditions and were able to switch between both states. We plotted the sum of futile cycling 371 

in the upper and lower irreversible reactions in the pre-shift conditions against the 372 

subsequent lag times for shifts to gluconeogenesis (Fig. 6A) and to glycolysis (Fig. 6B). In 373 

addition, we colored individual parameter sets according to the total allosteric regulation, 374 

defined as the sum of fold-changes of enzyme activities between glycolysis and 375 

gluconeogenesis (black: R < 102, red/green: 104 > R > 102, grey: R > 104). These fold 376 

changes are the result of both allosteric and transcriptional variations. We found that 377 

metabolism in the majority of randomly generated models is inefficient and dominated by 378 

futile cycling; only a minority of models were able to reduce futile cycling in glycolysis 379 

and gluconeogenesis. Remarkably, despite probing variations of all possible model 380 

parameters, including Michaelis Menten parameters of enzymes and the strengths of 381 

allosteric and transcriptional regulation, lag times could not be reduced at-will by the cell. 382 

Instead, individual parameter sets with similar allosteric regulation (colors) are bound by a 383 

‘Pareto frontier’ (solid lines) between futile cycling in preshift conditions and lag times. 384 

Points close to the ‘Pareto frontier’ are Pareto-optimal, meaning that any further decrease 385 

of either parameter must come at the expense of the other. Overall, stronger allosteric 386 

regulation shifted the Pareto frontier but was not able to overcome it. Parameter 387 
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combinations that led to low futile cycling in either glycolysis or gluconeogenesis showed 388 

long lag times in at least one condition (Fig. 5C, ‘black’ and ‘yellow’) compared to the 389 

background of all simulated parameter sets (‘grey’). Thus, from this analysis, it seems that 390 

organisms with the regulatory architecture of Box 1 cannot overcome long lag times 391 

without paying a futile cycling cost during steady state growth. 392 

 393 

Gluconeogenesis specialists are constrained by the same trade-offs 394 

Taken together, the results of Fig. 4&5 suggest that microbial cells cannot achieve fast 395 

growth, low futile cycling and fast adaptation simultaneously in both glycolysis and 396 

gluconeogenesis. Instead, trade-offs between these six extremes constrain the evolutionary 397 

optimization of microbial metabolism, such that any optimal solution is on a surface of a 398 

multidimensional Pareto frontier, where any improvement in one phenotype will come at 399 

the expense of others. To test this hypothesis, we next asked whether a gluconeogenic 400 

specialist would indeed be constrained by the same trade-offs as E. coli and other glycolytic 401 

specialists. For this purpose we chose P. aeruginosa, a well-studied gluconeogenesis 402 

specialist that has a similar maximal growth rate in minimal medium as E. coli (E. coli 403 

0.9/h on glucose, P.aeruginosa 1.0/h on malate) and grows on a wide variety of substrates.  404 

 405 

Strikingly, P. aeruginosa grows fast on gluconeogenic substrates that are considered ‘poor’ 406 

substrates for E. coli, but slow on glycolytic substrates that are considered ‘good’ (Fig. 6A). 407 

From our model, we would expect that such a specialization for gluconeogenic substrates 408 

would go along with a reversal in lag phases, too. Indeed, switching between glycolytic 409 

and gluconeogenic substrates, P. aeruginosa exhibits a mirrored pattern of lag phases 410 

compared to E. coli (compare Fig. 6B to 6C), with a long multi-hour lag phase when 411 

switched to glycolysis. 412 

 413 

To investigate if both E. coli and P. aeruginosa are constrained by the same trade-offs, we 414 

investigated the effect of pre-shift growth rate, which according to Fig. 4 should have a 415 

negative effect on growth rates. For E. coli it is known that shifts from glycolysis to 416 

gluconeogenesis depend on the pre-shift growth rate (Fig. 6D, data: (Basan et al., 2020)), 417 

which we can capture in our model if we take FBP-dependent transcriptional regulation 418 
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into account (Fig. 6E). We tested the corresponding lag times for P. aeruginosa by varying 419 

gluconeogenic substrates and found a similar dependency in shifts to glycolytic substrates 420 

(Fig. 6F&G).  Hence as expected from the model, these findings show that P. aeruginosa 421 

is constrained by the same trade-offs as E. coli.   422 

 423 

To decipher whether P. aeruginosa lag times are constrained on a molecular level by the 424 

same inability to break the equilibrium after nutrient shifts, we investigated metabolite 425 

concentration dynamics in central metabolism. Because P. aeruginosa uses the ED 426 

pathway for hexose catabolism (Wang et al., 1959; Vicente and Cánovas, 1973), we needed 427 

to adapt our model slightly. The irreversible reactions in the ED pathway convert 428 

gluconate-6-phosphate to glyceraldehyde 3-phosphate (GAP) and pyruvate. In the 429 

reversible chain of reactions, the first metabolite in glycolysis is thus GAP rather than FBP. 430 

Figure 6 Comparison of E. coli and P. aeruginosa during growth and shifts. (A) Growth rates on glycolytic carbons 

(orange) are faster for E. coli than on gluconeogenic carbons (blue). For Pseudomonas, this dependence is 

reversed. No growth indicated with “n.g”. (B-C) Shifts for E. coli and P. aeruginosa between glycolytic and 

gluconeogenic carbon substrates. The preferential order of P. aeruginosa is reversed in comparison to E. coli (D) 

E. coli shows an increase of lag times to gluconeogenesis with increasing pre-shift growth rate. Lag times diverge 

around growth rate 1.1/h. (E) The model predicts diverging growth rates without further fitting, based on the 

growth rate dependent expression levels of glycolytic and gluconeogenic enzymes (Fig. 2E-F). (F) P. aeruginosa 

shows a strikingly similar growth rate to lag time dependence as E. coli, when switched to glycolysis, with lag 

times diverging around 1.0/h. (G) The model can recapitulate observed P. aeruginosa lag times if pre-shift 

glycolytic enzymes are decreased as a function of pre-shift growth rate. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.05.07.443112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443112
http://creativecommons.org/licenses/by/4.0/


 

 
 

20 

Because GAP is difficult to quantify in mass spec-based metabolomics, we used the closely 431 

related compound dihydroxyacetone phosphate (DHAP) as a proxy. DHAP is in chemical 432 

equilibrium with GAP via a single fast and reversible isomerase (Nikel et al., 2015).  433 

 434 

Analogous to Fig. 3, we plot the dynamics of DHAP versus PEP, normalized to their 435 

glycolytic steady state values, for both shifts (Fig. 7A&B). The dynamics starts and ends 436 

at their respective steady states (grey symbols and dashed lines) and follows the direction 437 

of the indicated arrow. In the chemical equilibrium, DHAP depends linearly on PEP, 438 

𝑐DHAP
eq

= 𝑘ENO− 𝑘ENO+Τ  cPEP
eq

,  analogous to Eq. (7), but without the square because of the 439 

1-to-1 stochiometry between DHAP and PEP. This equilibrium is indicated with a red line. 440 

During the long lag time of P. aeruginosa in a shift from malate to glucose, we see that 441 

initially both DHAP and PEP collapse, followed by a slow increase along the equilibrium 442 

line (Fig. 7A). Thus, despite substantial amounts of metabolites being built-up, ‘super-eno’ 443 

remains close to equilibrium. Only after 5.6 h, when the DHAP-PEP dynamics deviates 444 

from the line, the equilibrium is broken and net flux can be achieved. 445 

 446 

In the reverse shift from glucose to malate, P. aeruginosa, in constrast, can immediately 447 

establish a non-equilibrium and grow. Thus not only is the asymmetry in lag times reversed 448 

Figure 7 Metabolite dynamics of P. aeruginosa during shifts from malate to glucose and vice-versa. (A) DHAP and 

PEP during shift from malate (‘gng’) to glucose (‘gly’), normalized to the final glycolytic steady state. Recovery 

follows a direct proportionality, indicating that central metabolism is close to equilibrium (red line) during the 

recovery. (B) DHAP and PEP reach the final steady state (‘gng’) without creeping along the equilibrium line. 
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compared to E. coli, it is also caused by the same inability to break the equilibrium and 449 

establish net flux in central metabolism. 450 

 451 

But, microbes do not have to be optimized for either direction. One such case is P. putida 452 

with moderate lag times of about 1 to 2 h in both directions and only a slight preference for 453 

gluconeogenic susbtrates (Fig. S8). According to the model, such a generalist strategy can 454 

also be a Pareto-optimal solution of the biochemical trade-offs of Fig. 4-5, but it must come 455 

at the expense of no fast recovery (Fig. 4A-C) and reduced growth because of the trade-456 

offs with reversible enzymes (Fig. 4D-F) and futile cycling (Fig. 4G-I). This is indeed the 457 

case for P. putida. Lag times are in the fast direction are twice as long compared to P. 458 

aeruginosa and the growth rate is about 20% slower (Fig. S8). 459 

 460 

Discussion 461 

In this work, we presented a coarse-grained kinetic model of central carbon metabolism, 462 

combining key allosteric and transcriptional regulation, as well as biomass production, 463 

enzyme synthesis, and growth. This model elucidates the remarkable capacity of central 464 

carbon metabolism to self-organize in response to substrate availability and flux 465 

requirements. During exponential growth, regulatory metabolites adjust to far-from-466 

equilibrium steady states, providing the cell with an elegant mechanism to sense the required 467 

directionality of the flux. But the model reveals a key limitation of this flux sensing. Because 468 

after a nutrient shift the concentration of the metabolites collapses to its equilibrium, the 469 

cell becomes ‘blind’ to the direction that the flux is supposed to flow through the system. 470 

By implementing a preferred direction, the cell can partially overcome lag times in one 471 

direction at the cost of increasing lag times in the opposite direction. In addition, two more 472 

trade-offs constrain the ability to simultaneously decrease both lag times, because it 473 

impacts growth rate and the level of futile cycling during growth.  474 

 475 

Microbial species can maximize their proliferation only up to the Pareto-frontier spanned 476 

by these trade-offs, which can lead to evolution of substrate specialization. We validated 477 

this key model prediction in different bacterial species. In P. aeruginosa we showed a 478 

reversal of substrate preference as compared to E. coli, which coincided with a complete 479 
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reversal of the phenomenology of lag phases and metabolite dynamics. In P. putida we 480 

found a generalist strategy with moderate lag times in both direction. 481 

 482 

One of the results from our model is that lag times could be substantially reduced by 483 

allowing futile cycling, e.g., by expressing irreversible enzymes for both directions at all 484 

times. The energetic cost of such a wasteful strategy would be relatively low. Because 485 

energy production pathways only constitute a relatively small fraction (around 20%) of the 486 

total cellular proteome, the cell could compensate ATP dissipated in futile cycling by 487 

increasing ATP production at a relatively low proteome cost. However, experimentally it 488 

appears that E. coli chooses to keep futile cycling in check by transcriptionally regulating 489 

irreversible enzymes. We thus hypothesize that the cost of futile cycling must be 490 

considered in conditions where the energy budget is much more limited, such as growth 491 

shifts and during starvation. In fact, it has been recently shown that the energy budget of 492 

the cell is around 100-fold smaller during carbon starvation and that energy dissipation can 493 

increase death rates several-fold (Schink et al., 2019). Therefore, even levels of futile 494 

cycling that are modest during steady state growth should severely affect survival of cells 495 

in these conditions 496 

 497 

Our findings indicate that the identified trade-offs are inherent properties of central carbon 498 

metabolism, at least given the existing allosteric and transcriptional regulation. But could 499 

different regulation overcome this limitation? In principle, the cell could use a direct input 500 

signal from the carbon substrate to allosterically inhibit or even degrade undesired 501 

metabolic enzymes. This would uncouple enzyme abundances and activies in pre- and post-502 

shift growth and circumvent the trade-offs. But with dozens of glycolytic and 503 

gluconeogenic substrates, this would result in a much higher degree of regulatory 504 

complexity, quickly exceeding the regulatory signal capacity that microbes with their small 505 

genomes could sense and integrate. In addition, any wrong decision to degrade or inhibit 506 

metabolic enzymes, for example when combinations of nutrients are present or when 507 

supply is only briefly inhibited, would drastically impair growth. Thus the regulatory 508 

network that microbes use might not be maximizing growth, but at least it is robust and 509 

prevents misregulation.  510 
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 511 

Another reason why no such regulation has evolved could be related to the observation that 512 

the regulation of upper and lower glycolysis/gluconeogenesis and directionality of flux are 513 

performed by the metabolite concentrations of FBP and PEP, which are cut off from the 514 

rest of metabolism by irreversible reactions. We propose that the logic for this regulatory 515 

architecture is product inhibition, which ensures that this essential part of central carbon 516 

metabolism is adequately supplied with metabolites, but also ensures that uncontrolled and 517 

potentially toxic accumulation of metabolites does not occur. In fact, because the reactions 518 

of upper and lower glycolysis are effectively irreversible, even a slight misbalance in flux 519 

between these enzymes and biomass demand would result in uncontrolled accumulation of 520 

metabolites and, in the absence of a cellular overflow mechanism, these metabolites would 521 

quickly reach toxic concentrations, e.g., via their osmotic activities. As demonstrated by 522 

the simulation, the existing regulation of central metabolism successfully resolves this 523 

problem. 524 

 525 

The regulatory architecture of central metabolism accomplishes efficient regulation of 526 

fluxes and metabolite pools in response to diverse external conditions while avoiding toxic 527 

accumulation of internal metabolites and integrating multiple conflicting signals with only 528 

two regulatory nodes. Central metabolism is a remarkable example of self-organization of 529 

regulatory networks in biology. It provides an elegant solution to the complex, obligatory 530 

problem, posed by the biochemistry of central carbon metabolism. All organisms that need 531 

to switch between glycolytic and gluconeogenic flux modes face this problem, and we 532 

argue that this explains the striking degree of conservation of the phenomenology of shifts 533 

between glycolytic and gluconeogenic conditions that we found in different microbial 534 

species, ranging from E. coli, B. subtilis, and even wild-type strains of the lower eukaryote 535 

S. cerevisiae to the reversed phenotypes in P. aeruginosa. Conversely, we argue that the 536 

quantitative phenotypes exhibited by microbes in such idealized growth shift experiments 537 

in the lab can reveal much about their natural environments, ecology and evolutionary 538 

origin.  539 

 540 
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Methods 551 

Bacterial cultures 552 

Strains used in this paper are wild-type Escherichia coli K-12 NCM3722 (Soupene et 553 

al., 2003), Pseudomonas aeruginosa PAO1 (Stover et al., 2000) and Pseudomonas 554 

putida NIST0129. The culture medium used in this study is N−C− minimal medium 555 

(Csonka et al., 1994), containing K2SO4 (1 g), K2HPO4·3H2O (17.7 g), KH2PO4 (4.7 556 

g), MgSO4·7H2O (0.1 g) and NaCl (2.5 g) per liter. The medium was supplemented 557 

with 20 mM NH4Cl, as the nitrogen source, and either of the following carbon sources: 558 

20 mM Glucose-6-phosphate, 20 mM gluconate, 0.2 % glucose, 20 mM succinate, 20 559 

mM acetate, 20 mM citrate, 20 mM malate or 20 mM fumerate. 560 

 561 

Growth was then carried out at 37 °C in a water bath shaker at 200 rpm, in silicate 562 

glass tubes (Fisher Scientific) closed with plastic caps (Kim Kap). Cultures spent at 563 

least 10 doublings in exponential growth in pre-shift medium. For growth shifts, 564 

cultured were transferred to a filter paper and washed twice with pre-warmed post-565 

shift medium. Cells were resuspended from the filter paper in post-shift medium and 566 

subsequently diluted to an OD of about 0.05. 567 

 568 

Preparation of metabolite samples 569 

Each metabolite sample was filtered, and the filter was immediately plunged in 4 ml 570 

ice cold Methanol (40 %)+Acetonitrile (40 %)+water (20 %) and kept in 50 ml tube. 571 

Bacteria were washed off from the filter by pipetting, and the solution was 572 

transferred to 15 ml tube. Original 50 ml tube was further washed with 4 ml of ice 573 
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cold Methanol+Acetonitrile+Water mix and added to respective 15 ml tube (total 8 574 

ml). Each sample was dried by speed vac, and dried extracts were sent for Mass spec 575 

analysis. 576 

 577 

Quantification of intracellular metabolite levels 578 

The dried metabolite extracts were resuspended in 150 µL MilliQ water, centrifuged 579 

at 4 °C, 10,000 rpm for 10 min, and 100 µL precipitate-free supernatant was 580 

transferred to a master 96-well plate. 25 µL of the master plate were transferred to a 581 

96-well plate for acquisition, of which 10 µL were injected into a Waters Acquity 582 

ultraperformance liquid chromatography (UPLC) system (Waters) with a Waters 583 

Acquity T3 column coupled to a Thermo TSQ Quantum Ultra triple quadrupole 584 

instrument (Thermo Fisher Scientific) as described previously (Buescher et al., 2010). 585 

Compound separation was achieved using a gradient of two mobile phases: A, 10 mM 586 

tributylamine (ion-pairing agent), 15 mM acetate and 5% (v/v) methanol in water; 587 

and B, 2-propanol. Data was acquired in negative ionization mode using previously 588 

published MRM settings (Buescher et al., 2010). Peak integration was performed 589 

using an in-house software based on MatLab. A dilution series of standards was used 590 

to calculate the concentrations of metabolites in the samples. The final intracellular 591 

concentration was calculated from the sample concentration and the extracted 592 

intracellular volume. 593 

 594 

Theoretical modelling  595 
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The integrated minmal model of metabolism and growth was implemented in 596 

MATLAB using the SimBiology toolbox and is described in detail in the Supporting 597 

Information. 598 

  599 
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