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Abstract 

Background: Transcutaneous auricular vagus nerve stimulation (taVNS) is a 

non-invasive neuromodulation technique with promising therapeutic potential in the 

context of epilepsy, pain, and depression and which may also have beneficial effects 

on social cognition. However, the underlying mechanisms of taVNS are unclear and 

evidence regarding its role in social cognition improvement is limited. 

Objective: In order to investigate the impact of taVNS on social cognition we have 

studied its effects on gaze towards emotional faces using an eye-tracking task and also 

on release of the neuropeptide oxytocin which plays a key role in influencing social 

cognition and motivation. 

Methods: A total of fifty-four subjects were enrolled in a sham-controlled, 

participant-blind crossover experiment, consisting of two treatment sessions, 

separated by one week. In one session participants received 30-min taVNS (tragus), 

and in the other, they received 30-min sham (earlobe) stimulation with the treatment 

order counterbalanced across participants. Gaze duration towards the faces and facial 

features (eyes, nose, and mouth) were measured together with resting pupil size. 

Additionally, saliva samples were taken for the measurement of oxytocin 

concentrations by enzyme-linked immunoassay. 

Results: Saliva oxytocin concentrations increased significantly after taVNS compared 

to sham stimulation, while resting pupil size did not. In addition, taVNS increased 

fixation time on the nose region irrespective of face emotion, and this was positively 

correlated with increased saliva oxytocin concentrations.  
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Conclusion: Our findings suggest that taVNS biases visual attention towards socially 

salient facial features across different emotions and this is associated with its effects 

on increasing endogenous oxytocin release. 
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Transcutaneous auricular vagus nerve stimulation; oxytocin; eye-tracking; face 

emotion recognition; fixation time 
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Introduction 

Vagus nerve stimulation (VNS) has been widely used in many clinical conditions 

for several decades, ranging from neurological disorders to splanchnic diseases, due 

to the important role of the vagus nerve in communicating with the brain and visceral 

organs [1,2]. Initially VNS primarily involved a stimulation device invasively 

attached to the cervical branch of the vagus nerve, and resulting in inevitable risks 

from the surgery required to implant the device [3]. Recently, transcutaneous 

auricular vagus nerve stimulation (taVNS) has been developed as a non-invasive 

alternative with Ventureyra (2000) proposing it as a new therapy for epilepsy [4]. 

Subsequently, taVNS has been increasingly used to help alleviate symptoms not only 

of epilepsy but also depression, headache and heart failure [5,6].  

Studies in healthy populations have also demonstrated that taVNS can enhance 

cognitive performance [7], notably in the context of social cognition and emotion 

recognition [7–9], and enhances attention to direct eye gaze [10]. Thus, taVNS may 

help to increase attention to salient social cues from faces to aid recognition of both 

identity and emotion. Importantly, taVNS also has some promising therapeutic effects 

on disorders with impaired social cognition, including anxiety [11,12], depression 

[13,14] and post-traumatic stress disorder (PTSD) [15,16]. However, although 

previous studies suggest that taVNS may improve emotion recognition and attention 

towards faces, none have directly investigated whether it influences the pattern of 

gaze directed towards different face emotions using an eye-tracking approach. The 

main objective of the current study was therefore to investigate whether taVNS 
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influenced attention towards specific salient parts of emotional faces (i.e. eyes, nose 

and mouth).    

Although both preclinical and clinical studies have indicated promising benefits 

from taVNS, the underlying mechanism(s) involved remain unclear [17]. It has been 

established that stimulation of the vagus nerve can directly modulate the activation of 

the brainstem locus coeruleus-norepinephrine (LC-NE) network [18–21]. Increased 

cortical and hippocampal concentrations of norepinephrine (NE) have been found in 

rat models via activation of afferent vagal nerve using invasive VNS (iVNS) [19] and 

iVNS increases firing rates of NE neurons in the locus coeruleus (LC) [22]. Increased 

pupil dilation has been proposed to be an indirect indication of increased LC-NE 

activity [17,23,24], although findings on effects of taVNS on pupil dilation in humans 

have been inconsistent [25–29].  

Brainstem NE networks (i.e. LC and nucleus of the solitary tract, NTS) are the 

primary recipients of vagal nerve afferent fibers [24] and in turn project to limbic and 

hypothalamic regions controlling emotion and motivation as well as a range of 

endocrine functions. Notably, two key hypothalamic regions receiving these 

projections are the paraventricular (PVN) and supraoptic nuclei containing neurons 

which synthesize the neuropeptide oxytocin (OXT) and regulate its release both into 

the blood via the posterior pituitary and also within the brain [30,31]. The ascending 

vagal pathway is therefore likely to influence the release of endogenous oxytocin and 

indeed evidence from rats models suggests that stimulation of vagus nerve 

significantly increases short term neuronal activation of both the NTS and PVN [32] 
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and, more directly, plasma oxytocin concentrations have been found to increase 

immediately after iVNS, even under anesthesia [33]. In addition, both iVNS and 

taVNS have been demonstrated to increase the activation of the hypothalamus as well 

as other relevant regions such as the NTS, amygdala, hippocampus and orbital frontal 

cortex [34,35]. Importantly in the context of observed taVNS effects on social 

cognition, oxytocin plays a key role in this respect via increasing the salience of social 

cues [36], and eye-tracking tasks have revealed that oxytocin can bias visual attention 

towards social stimuli, such as static and dynamic social images [37], as well as 

emotional faces [38]. Oxytocin is also increasingly being proposed as a potential 

pharmacotherapy for a variety of psychiatric conditions involving social dysfunction 

[39]. Based on this evidence, we therefore hypothesized that taVNS may influence 

social cognition via modulating oxytocin release and we have therefore investigated 

this by taking saliva samples before and after real or sham stimulation. Both basal and 

stimulated changes in peripheral OXT can be measured reliably in saliva samples 

[40].  

We hypothesized that any effects of taVNS in altering gaze towards salient facial 

features during recognition of face emotions may be associated with its modulation of 

endogenous oxytocin release. We additionally measured pupil dilation, given some 

evidence that it may represent an index of the effectiveness of taVNS, and 

hypothesized that any effects of taVNS on pupil dilation would be associated with its 

behavioral and endocrine effects. 

Material and methods 
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Participants 

A total of fifty-four healthy adult Chinese university students were enrolled in 

our study. In an initial interview, all participants reported being free from medical or 

psychiatric disorders, current or regular medication and did not consume any alcohol, 

caffeine or nicotine on the day of the experiment. All subjects had normal or corrected 

to normal vision. Three subjects were excluded due spending insufficient time 

viewing the face stimuli in the face emotion recognition task (< 2s) and two due to 

technical problems, leaving 49 participants (32 males, 19.88±1.62 years old) who 

were included in the final analysis. The study procedures were approved by the ethical 

committee of the University of Electronic Science and Technology of China and were 

in accordance with the latest revision of the declaration of Helsinki. The study was 

also pre-registered as a clinical trial (ClinicalTrials.gov ID: NCT04890457). All 

subjects provided written informed consent and were financially compensated for 

their participation.  

Procedure  

We conducted a sham-controlled, participant-blind, crossover eye-tracking 

experiment consisting of two treatment sessions, separated by one week (see Fig. 1 

for the protocol). In one session, participants received taVNS (tragus), and in the other 

they received sham (earlobe) stimulation with the order of treatment counterbalanced 

across participants. Upon first arrival, each participant completed a number of 

questionnaires measuring personality traits, including Chinese versions of State-Trait 
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Anxiety Inventory (STAI; [41]), Beck’s Depression Inventory II [42,43], Autism 

Spectrum Quotient [44], Social Responsiveness Scale [45] and Toronto Alexithymia 

Scale [46,47]. Participants additionally completed the Positive and Negative Affect 

Schedule (PANAS; [48]) as a measure of current mood both before and immediately 

after the experiment in both treatment sessions.  

After the completion of questionnaires, participants were asked to sit looking at a 

display screen in a dimly-lit room to acquire the eye-gaze data (rest and emotion 

recognition task) using an EyeLink 1000 Plus system (SR Research, Ottawa, Canada). 

The system was used in monocular mode (right eye) at a sampling rate of 2000 Hz.  

Participants were instructed to place their head on a chin rest (57 cm from the screen) 

both for resting pupil size and eye gaze data collection during the face emotion 

recognition task in order to avoid artifacts due to head movement. A 9-point 

calibration was performed before each eye tracking procedure to ensure every 

participant’s pupil was captured (drift correction < 1 of visual angle).   

Prior to the formal procedure, participants’ sensitivity to different current 

intensities of active taVNS or sham stimulation was determined according to their 

subjective report of whether it induced a “tingling” but not “painful” feeling in line 

with previous studies [49,50]. The sensitivity to stimulation reported from subjects 

was different in the real and sham conditions (taVNS: 0.863±0.047 mA; sham: 

1.494±0.076 mA) but we considered it more important to match the sensation 

reported in the two conditions rather than simply match the stimulation current 
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applied. Participants were then asked to rest for 15 minutes in order to avoid any 

confounding effects of the current stimulation intensity adjustment. Saliva samples 

were taken immediately after the rest period for measuring baseline oxytocin 

concentrations (T1), and then 1 minute of resting pupil size was recorded while 

subjects were instructed to fixate on a white cross centered on the black screen. 

Subsequently, all participants were asked to do nothing but rest with eyes open during 

30 minutes of taVNS or sham stimulation. A second saliva sample (T2) was taken 

immediately after stimulation and then a second resting pupil size measurement (1 

minute) was performed. This was followed by a face emotion recognition task (about 

5 minutes). After the task participants were taken to another room and shown the face 

emotion pictures again and instructed to rate the face emotions in terms of valence (1, 

very unpleasant, to 9, very pleasant), intensity (1, not strong, to 9, very strong) and 

arousal (1, not arousing, to 9, very arousing) respectively. When participants had 

completed their rating a third saliva sample (T3) was collected.  

Transcutaneous auricular vagus nerve stimulation 

Electrical pulses (width, 250 μ s) were delivered using a customized 

transcutaneous electrical stimulator (Fig. 1A, Wuxi Shenping Xintai Medical 

Technology Co., Ltd) at a frequency of 25Hz with a pre-determined 

participant-dependent current intensity. On and off periods of stimulation alternated 

every 30 s, consistent with a number of previous studies [7–9]. In the taVNS 

condition, an ear-clip electrode was attached to the left tragus (Fig. 1B), which is 
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partly innervated by the auricular branch of vagus nerve [51,52] and its effectiveness 

in activating vagus nerve projections in the central nervous system has been 

demonstrated in previous studies [34,49].In the sham condition, the electrode was 

attached to the left earlobe (Fig. 1B), which was not expected to induce vagus-related 

brainstem or cortical activation [6]. 

Face emotion-recognition eye-tracking task  

The present study adopted a face emotion-recognition task (see Fig. 1C). Each 

trial started with a white fixation cross (1s), which was positioned equivalent to the 

nasion of the face and on a black background. Face pictures with different emotions 

(angry, happy and neutral) were randomly presented for 5s in the center of a 17-inch 

monitor at a resolution of 1024×768 pixels (60Hz) using E-prime 2.0 (Psychology 

Software Tools, Inc). Subsequently, participant was instructed to indicate whether the 

face emotion was “angry” or “happy” as soon as possible by pressing two buttons (“F” 

or “J”) and there was no time limit for responses on each presentation. Following a 

500-1000 ms interval, a new trial started again. All face pictures were grayscale 

images, equalized in size and cumulative brightness. This task included 36 pictures 

(12 for each emotion: angry, happy and neutral) of 18 Chinese female and 18 Chinese 

male faces [53]. Two arousal (t(22) = 0.426, p = 0.673) and intensity (t(22) = −0.702, p 

= 0.487) matched face datasets were evaluated by an independent sample for 

treatment sessions. Accuracy/bias for emotion recognition and response times (RTs), 

as well as post rating scores (valence, arousal and intensity) were collected. 
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Saliva sampling and oxytocin measurement  

Saliva samples was collected three times (T1, T2, T3) using Salivette tubes with 

cotton swab (SARSTEDT, no.51.1534) which were immediately cooled and 

centrifuged at 1000g for 2 minutes at 4 °C within an hour of collection. Centrifuged 

saliva was immediately aliquoted into chilled tubes and stored at -80 °C for further 

oxytocin analysis. All samples were analyzed within 3 months after collection and 

oxytocin concentrations in 0.5 ml saliva samples measured in duplicate using a 

commercial enzyme-linked immunosorbent assay (ENZO Oxytocin ELISA kit, 

Catalog #: ADI-901-153A, Enzo Life Science) and microplate reader (infinite 200 

PRO, TECAN Life Sciences). Assay procedures were performed in accordance with 

the manufacturer’s instructions, including extraction, standards and spiked controls. 

The extraction step incorporated a 2-fold concentration of saliva samples using a 

vacuum concentrator (Concentrator plus, Eppendorf, Germany) resulting in a 

detection sensitivity of 3pg/ml. All samples had detectable concentrations and intra- 

and inter-assay coefficients of variation were < 9%. 

 

Eye-tracking and pupillometry recording and data processing 

Raw gaze data was initially processed using the Eyelink DataViewer 4.1 (SR 

Research, Mississauga, Ontario, Canada). For pupil size data, low-pass filtering was 

performed to remove jittering and linear interpolation was applied to artifacts such as 

blinks and missing data points when sections of missing data points did not exceed 

250ms. To avoid the acute pupil size fluctuation induced by fixating on the screen, we 
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excluded data from the first 5s of the resting pupil size analysis. For the eye gaze data 

collected during the face emotion recognition task, all raw data with at least 80% gaze 

weight were analyzed. Fixation duration on each salient facial feature (i.e., eyes, nose 

and mouth) was calculated using four non overlapping areas of interest (AOI, see Fig. 

S1, left eye = 3645 pixels, right eye = 3645 pixels, nose = 6955 pixels, mouth = 7420 

pixels). 

Statistical analysis 

All statistical analyses were performed using SPSS 25.0 (SPSS Inc., Chicago, IL, 

USA). For behavioral data, response time, response bias (the proportion of 

recognizing neutral faces as angry or happy), response accuracy (indexed by A prime, 

for details see Supplementary materials) and post behavioral ratings (intensity, arousal 

and valence) were analyzed. For response time, two-way repeated ANOVA was 

performed with two within-subject factors: treatment (taVNS vs. sham) and perceived 

face emotions (angry vs. happy). For response accuracy and bias, paired t tests were 

used with treatment (taVNS vs. sham) as a within-subject factor. For post-task ratings, 

two-way repeated ANOVA was conducted with two within-subject factors: treatment 

(taVNS vs. sham) and face emotions (angry vs. happy vs. neutral). For saliva oxytocin 

concentration and resting pupil size data, two-way repeated ANOVAs were 

performed with treatment and time point [saliva OXT: baseline (T1), after 30 minutes 

stimulation (T2), end of the experiment (T3); resting pupil size: baseline, after 

stimulation] as two within-subject factors.  
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For eye-tracking data, percentage of total fixation duration in the face 

emotion-recognition task was calculated by dividing fixation time spent viewing each 

AOI (eyes, nose and mouth) by the time spent viewing the whole face and a three-way 

repeated ANOVA was conducted with three within-subject factors: treatment, face 

emotion (angry, happy and neutral) and AOIs (eyes, nose and mouth). Bonferroni 

correction was applied to all post-hoc tests. In addition, Spearman correlation analysis 

was performed to investigate the relationship between the percentage of increased 

oxytocin concentrations (after stimulation/baseline × 100) and the percentage of 

increased fixation time on facial features (percentage of fixation time after taVNS/ 

percentage of fixation time after sham stimulation ×100).   

Results 

There were no significant differences on participants’ positive and negative 

mood scores (PANAS) were found before and after tasks for taVNS and sham 

treatment (see Table 1). No significant effects of taVNS were observed on response 

times, accuracy, bias or post-task ratings of face emotions (all ps ≥ 0.132, for more 

details see in Supplementary Results).  

Effects of taVNS on oxytocin release  

A two-way repeated ANOVA showed that there was a significant treatment × 

time point interaction effect (F(2, 96) = 11.034, p < 0.001, partial �2 
= 0.187). A 

Bonferroni-corrected post-hoc analysis demonstrated that taVNS significantly 
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increased saliva oxytocin concentrations immediately after 30 minutes of stimulation 

compared to baseline (p < 0.001, Cohen’s d = 0.745) while sham stimulation did not 

(p = 0.638). There was no difference between baseline oxytocin concentrations in the 

taVNS and sham stimulation conditions (p = 0.270, see Fig. 2). 

Effects of taVNS on percentage of fixation duration on face regions 

To investigate whether taVNS would influence the percentage of fixation time 

on the three salient face regions, a three-way repeated ANOVA with treatment, face 

emotions and regions as within-subject factors was conducted. Results revealed an 

interaction effect between treatment and face regions (F(2, 96) = 4.115, p = 0.028, 

partial �2 = 0.079) and post-hoc analysis with Bonferonni correction showed that 

participants spent proportionately more time looking at the nose region after taVNS 

compared to the sham stimulation condition and irrespective of face emotions (t(48) = 

2.143, p = 0.037, Cohen’s d = 0.220, a heat map of fixation duration for one face 

emotion is shown in Fig. S2), but not for the eyes (t(48) = −1.425, p = 0.161), or mouth 

regions (t(48) = −1.650, p = 0.106) (Fig. 3A). 

Associations between fixation durations and oxytocin concentrations 

A significant positive correlation between increased proportion of fixation time 

on nose and increased oxytocin concentrations after taVNS was found via Spearman 

correlation analysis (r = 0.357, p = 0.018, see Fig. 3B), suggesting a positive 
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association between  taVNS effects on increased viewing of the nose region and 

those on increasing oxytocin release.  

Effects of taVNS on pupil size 

For analysis of taVNS effects on pupil size, a two-way repeated ANOVA was 

applied with treatment and time point as within-subject factors. There was no main 

effect of treatment (F(1, 48) = 0.119, p = 0.732) or interaction effect with treatment (F(2, 

96) = 0.332, p = 0.567). A marginal main effect of time point was found (F(1, 48) = 3.997, 

p = 0.051, partial �2 = 0.077), indicating a decrease in pupil diameter from baseline 

measurement to 30 minutes following stimulation in both taVNS and sham conditions 

(Cohen’s d = 0.095). 

Discussion 

The present study investigated the impact of taVNS on patterns of eye gaze 

during face emotion recognition using an eye-tracking task and also on peripheral 

release of the neuropeptide oxytocin and on pupil diameter. Results revealed that 

taVNS promoted increased oxytocin release but did not affect resting pupil size. In 

addition, taVNS increased fixation time spent on the nose region irrespective of face 

emotion. Furthermore, increased fixation time on the nose region was positively 

correlated with increased saliva oxytocin concentrations.  

We found that taVNS compared to the sham condition increased the proportion of 

time spent viewing the nose region irrespective of face emotions. Preferential 
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scanning of the nose region during discrimination of own-race faces in Asian subjects 

has been reported in several previous studies [54–57]. Thus the nose seems to be a 

particularly social salient feature for Asians to process faces and emotions in social 

situations and this nose-centric strategy may help facilitate holistic processing of faces 

[58]. It is unlikely that our finding was influenced by the location of the fixation cross 

on the screen prior to each face presentation since this was deliberately positioned at 

the level of the nasion (i.e. above the AOI we used for the nose region). It is likely 

that this increased viewing time of the nose region may aid recognition of both the 

identity and emotions being expressed by faces. In the current study, we deliberately 

used only a small number of easily recognized face emotions to focus primarily on 

patterns of gaze, and recognition accuracy was very high > 98% and response times 

very fast. Such high accuracy represents a ceiling effect which precluded any realistic 

assessment of whether taVNS improved face recognition accuracy as a result of 

increased fixation of the nose region. Indeed, previous studies demonstrating face 

emotion recognition improvements following taVNS have primarily found them for 

difficult stimuli [32].   

As predicted, we found that taVNS significantly increased endogenous 

peripheral oxytocin concentrations measured in saliva. While altered peripheral 

concentrations of oxytocin may not necessarily reflect altered concentrations within 

the brain, the association between salivary and cerebroventricular concentrations in 

humans is reasonable [59]. This is the first evidence for taVNS induced oxytocin 

release in humans and is consistent with a previous finding that iVNS increased 
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plasma oxytocin concentrations in anesthetized rats [33]. Thus, taVNS may increase 

the activity of hypothalamic neurons containing oxytocin via an ascending pathway 

from the auricular branch of vagus nerve and its brainstem target regions projecting to 

the hypothalamus [34,51]. Notably the hypothalamic paraventricular nucleus (PVN), 

which contains many oxytocin neurons both receives projections from the vagus 

nerve (VN) and sends projections to the dorsal vagal complex [31,60]. Importantly, 

taVNS-evoked oxytocin release was positively associated with increased time spent 

viewing the nose region which supports this as a possible mechanism whereby vagal 

stimulation influences social cognition. Further support for this possibility comes 

from a number of studies reporting that exogenous administration of oxytocin in 

humans via nasal spray also has potent effects on many aspects of social cognition 

[39]. Indeed, the magnitude of increased oxytocin concentrations following taVNS are 

very similar to those found after a single treatment with intranasal oxytocin at 24IU 

[61]. Furthermore, exogenous oxytocin treatment has been reported to improve social 

deficits in autism spectrum disorder and a recent study in a mouse model of autism 

has found that treatment of their social impairment is dependent on an interaction 

between oxytocin and vagus nerve function [68]. Taken together these findings 

suggest that taVNS facilitation of endogenous oxytocin release may have therapeutic 

benefits in the context of disorders with social dysfunction. 

While pupil dilation has been considered as a potential biosensor for successful 

VNS, particularly following findings in animal model studies [62,63], our results 

show no effect of taVNS on resting pupil size in humans in line with a number of 
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other studies [27–29,64]. There are several reasons why we may have failed to detect 

pupil dilation changes under taVNS relative to the sham condition: (1) the 

transcutaneous protocol used was insufficient to stimulate the vagus nerve sufficiently, 

perhaps due to the stimulation parameters (pulse width, frequency and amplitude) 

which still need further optimization [6,65]; however our current study did find both 

eye-gaze and oxytocin concentration changes after the stimulation, which suggest that 

the taVNS parameters chosen do have functional effects; (2) the procedure used to 

measure pupil dilation (i.e., the way we defined baseline pupil size and selection of 

time points) might also have influenced the results. For example, the effects of taVNS 

on pupil dilation could only be quite transient [25,26]. Indeed, two recent studies have 

reported that short trains of taVNS induced pupil dilation but which rapidly returned 

to baseline level [25,26], and so failure to detect pupil size changes after a long period 

of taVNS stimulation may simply reflect this transience. Thus, it may be useful to 

collect a resting pupil sizes more frequently after the onset of taVNS in future studies.  

Conclusions 

In summary, the present study demonstrates that taVNS as a developing 

non-invasive technique, could effectively increase fixation time on the nose region of 

faces across different emotions and increase peripheral oxytocin release. Furthermore, 

the impact of taVNS on increasing visual attention towards the nose was positively 

associated with its effects on increasing oxytocin concentrations. These findings 

suggest that taVNS may be a promising therapeutic treatment for enhancing social 
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cognitive functions and oxytocin release in clinical conditions, especially disorders 

with social deficits (i.e., autism spectrum disorder, schizophrenia, depression and 

anxiety). 
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Figure Legends 

Fig. 1. Illustration of procedure. A, Transcutaneous electrical stimulator. B, 
Stimulation electrode placement in the left ear: (1) location of the taVNS on the tragus; 
(2) location of the sham stimulation on the earlobe. C. Trial diagram of face emotion 
recognition task. 

Fig. 2. Saliva oxytocin concentrations (mean ± SEM) at three time point under taVNS 
and sham treatment. T1: baseline measurement; T2: measurement right after 30 
minutes taVNS/sham stimulation; T3: measurement at the end of experiment. ***p < 
0.001. 

Fig. 3. A, Percentage of fixation time (mean ± SEM) on different facial features (eyes, 
nose and mouth) across emotions under taVNS and sham treatment. B, Correlation 
analysis between increased fixation time on nose and increased OXT level after 
taVNS. *p < 0.05. 
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Table 1. Positive and Negative Affect Schedule (PANAS) scores in before and after 
taVNS and sham treatment (mean ± SEM) 

 
 taVNS Sham t-Value p-Value 

Pre-task   

Positive scores  25.592 ± 0.906 25.102 ± 0.806 0.628 0.533 

Negative scores 14.714 ± 1.043 15.735 ± 1.106 −1.468 0.149 

Post-task     

Positive scores 24.592 ± 0.922 24.286 ±1.008 0.398 0.692 

Negative scores 14.347 ± 1.083 14.429 ± 1.193 −0.137 0.891 
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