

Supplemental Figure 1. No leakage of Wt1 ${ }^{\text {CreERT2/+. }}$

Representative micrographs of HDAC3 and GFP immunofluorescence staining of E12.5 Hdac3 ${ }^{f /+} ;$ Wt1CreERT2/+; R26R ${ }^{\text {eYFP/+ }}$ and Hdac3 ${ }^{\text {ff/f; }}$ Wt1 ${ }^{\text {CreERT2/+ }} ; R 26 R^{\text {eYFP/+ }}$ hearts. Corn oil was given to dams intraperitoneally ($150 \mathrm{mg} / \mathrm{kg}$ body weight) at E8.5 (scale bars: $25 \mu \mathrm{~m}$). eYFP immunosignal was detected by GFP antibody. In the absence of tamoxifen administration, there was neither Hdac3 deletion nor eYFP reporter activity in the epicardium.

Supplemental Figure 2. Reduction of EPDCs in Hdac3 ${ }^{\text {eko }}$ hearts.

Representative micrographs of GFP immunofluorescence staining of E14.5 $\mathrm{Hdac3}^{\mathrm{f/+}}$;
 hearts. Quantifications of percentage of EPDCs/heart and derivation percentage of each cell type are shown on the right (${ }^{*} P<0.05$ by Student's t-test; CF, cardiac fibroblast (Vimentin+); SMC, smooth muscle cells (smMHC11+); Endo, endothelial cells (CD31+); CM, cardiomyocyte (ACTC1+); scale bar, $250 \mu \mathrm{~m}$). EPDCs (GFP+, denoted by red arrows) were significantly fewer in Hdac3eko hearts as compared to CTL hearts, whereas the contribution to each lineage by EPDCs was not significantly different between Hdac3eko and CTL hearts.

Supplemental Figure 3. No significant change for cell death in Hdac3eko hearts.
Representative micrographs of TUNEL staining of E13.5 Hdac3 ${ }^{\text {fff; }}$ Wt1 ${ }^{\text {CreERT2/+ }}\left(\right.$ Hdac3 $^{\text {eko }}$) and $\mathrm{Hdac3}^{\text {f/t }}$; Wt1 ${ }^{\text {CreERT2/+ }}$ (CTL) and hearts. TUNEL+ signals are in green. Quantification of TUNEL+ cardiomyocytes (CMs) is shown on the right (N.S., not significant; scale bars: $250 \mu \mathrm{~m})$.

Supplemental Figure 4. Reduced expression of FGF9 and IGF2 in Hdac3eko hearts. Representative immunofluorescence staining of FGF9 (A) and IGF2 (B) on E13.5 Hdac3 ${ }^{\text {fff; }}$ Wt1 ${ }^{\text {CreERT2/+ }}$; R26R ${ }^{\text {eYFP/+ }}$ and (Hdac3 ${ }^{e k o}$) Hdac3 $^{f / 4} ;$ Wt1 $^{\text {CreERT2/+ }} ; R 26 R^{\text {eYFP/+ }}$ (CTL) hearts. Vimentin was used to mark cardiac fibroblasts, cardiac endotheliccal cells and the epicardium. Quantifications of immunofluorescence intensity of FGF9 and IGF2 are shown on the right (scale bars: $25 \mu \mathrm{~m}$).

Supplemental Figure 5. The downstream signaling of FGF9 or iGF2 in cultured cardiomyocytes. Representative western blots of $p-E R K$, $p-F G F R 1$, or $p-I G F 1 R$ in serum-starved cultured E13.5 cardiomyocytes after treatment of MEC supernatants and/or mouse recombinant FGF9 or IGF2 proteins (final concentration: $100 \mathrm{ng} / \mathrm{ml}$).

Full unedited gels for

Figure 2A

Figure 2E

Figure 4B

Figure 5D

Figure 6B

Figure 7A

Supplemental Figure 6. Documentation of full scans of Western blots.

Supplemental Table 1. qRT-PCR primers

	Forward	Reverse
Fgf9	5'-GGGGAGCTGTATGGATCAGA-3'	5'-TCCCGTCCTTATTTAATGCAA-3'
Igf2	5'-CGCTTCAGTTTGTCTGTTCG-3'	5'-GCAGCACTCTTCCACGATG-3'
Gapdh	5'-TCCTGGTATGACAATGAATACGGC- 3'	5'-TCTTGCTCAGTGTCCTTGCTGG-3'

Supplemental Table 2. ChIP qRT-PCR primers

	Forward	Reverse
Primer 1	5'-GGATGGTTTTTGTGCTTTCC-3'	5'-TAAGCCACGCCA CTGAAAAT-3'
Primer 2	5'-CAACTTAAGGAGTGGGGCTGT-3'	5'-CAATGAATGCTGGGTCCTTT-3'
Primer 3	5'-GCATGGCATCTGCAACATTA-3'	5'-CTCACTCCCTGGGTTTGTGT-3'
Gene Desert	5'-CAGCATGAAAATGGAGGTCA-3'	5'-TGAGGGTAAAGGTGCTTGCT-3'

Supplemental Table 3. Antibody used for immunofluorescence or western blot

Antibody	Species	Vendor	Catalog \#
BrdU	Mouse	eBioscience	14-5071-80
p-H3	Rabbit	Cell Signaling	9701S
ACTC1	mouse	ARP	03-61075
ACTC1	Rabbit	Abcam	Ab46805
WT1	Mouse	Santa Cruz	sc-7385
GFP	Goat	Abcam	ab6673
HDAC3	Rabbit	Abcam	ab7030
HDAC3	Rabbit	Santa Cruz	Sc-11417
CD31	Rat	Dianova	Dia-310
smMHC11	Mouse	Abcam	Ab683
Vimentin	Rabbit	Cell Signaling	5741
IGF2	Goat	Thermo Fisher	PA5-47946
FGF9	Rabbit	Abcam	ab206408
FGF9	Mouse	Santa Cruz	Sc-8413
FGFR1	Rabbit	Cell Signaling	9740S
p-FGFR1 (Tyr653/654)	Rabbit	Cell Signaling	52598S
IGFR1	Rabbit	Cell Signaling	3027S
p-IGFR1	Rabbit	Sigma	SAB4300069
ERK	Mouse	BD Biosciences	610123
p-ERK	Rabbit	Cell Signaling	9101
H3K27Ac	Rabbit	Abcam	ab4729
H3	Rabbit	Abcam	ab176842
B-actin	Rabbit	Cell Signaling	4970
GAPDH	Mouse	Proteintech	HRP-60004

