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Movie Legends.
Movie 1 - Using StarDist within TrackMate to track migrating cancer cells. MCF10DCIS.com cells, labelled with Sir-DNA, were
recorded using a spinning-disk confocal microscope and automatically tracked using StarDist integrated within TrackMate.
Detected nuclei and local tracks are displayed. Color indicates ID.

Movie 2 - Using StarDist within TrackMate to track migrating T cells. Activated T cell plated ICAM-1 were recorded using a
brightfield microscope and automatically tracked using StarDist integrated within TrackMate. Color indicates mean speed.

Movie 3 - Measuring ERK activity in migrating cancer cells. MDA-MB-231 cells expressing ERK-KTR-GFP and labelled with
Sir-DNA, were recorded using a widefield microscope and automatically tracked using StarDist integrated within TrackMate.
Only tracks remaining in the field of view over the whole duration of the movie are displayed. Color indicates ID.

Movie 4 - Using Weka within TrackMate to track focal adhesions. Endothelial cells expressing Paxillin-GFP were recorded live
using a spinning-disk confocal microscope. A custom Weka pixel classifier trained to segment focal adhesion was then loaded
directly into TrackMate to track focal adhesions. In the middle panel, focal adhesions are color-coded to indicate their lifetime
(red, long-lived, blue short-lived). In the right panel, track colors indicate ID.

Movie 5 - Using ilastik within TrackMate to follow bacteria growth. The growth of Neisseria meningitidis expressing PilQ-
mCherry was recorded using a spinning-disk confocal microscope. An ilastik pixel classifier trained to segment individual
bacterium was loaded directly into TrackMate to follow bacteria growth.

Movie 6 - Using cellpose and TrackMate to track stem cells. Mouse hematopoietic stem cells migrating in a hydrogel microwell
were automatically segmented using cellpose. The resulting label images were tracked using TrackMate. In the bottom left
panel, the color of the object indicates the distance travelled (red longest distance, blue shortest distance). In the bottom right
panel, track colors indicate ID.

Movie 7 - Using cellpose and TrackMate to track migrating cancer cells. MCF10DCIS.com cells expressing lifeact-RFP, la-
belled with Sir-DNA, were recorded using a spinning-disk confocal microscope. Cells were segmented using cellpose, and
label images were tracked using TrackMate. Color indicates ID.

Movie 8 - Using StarDist 2D whithin TrackMate to generate 3D labels. MCF10 DCIS.com spheroids were imaged using a
spinning-disk confocal microscope. To generate 3D labels, nuclei were detected and tracked across the Z volume using StarDist
implemented in TrackMate. The 3D rendering was performed using Arivis Vision4D.

Movie 9 - Using cellpose 2D and TrackMate to segment 3D images of Arabidopsis thaliana floral meristem. Confocal images
of Arabidopsis thaliana floral meristem were segmented using cellpose 2D implemented in ZeroCostDL4Mic. TrackMate was
used to track the 2D labels across the Z volume and generate 3D labels. Arivis Vision4D was used to perform the 3D rendering.

Movie 10 - Using cellpose 2D and TrackMate to segment 3D images of a developing Drosophila melanogaster embryo. Light-
sheet microscopy images of a developing Drosophila melanogaster embryo were segmented using cellpose (2D). TrackMate
was then used to track the 2D labels across the Z volume and generate 3D labels. Arivis Vision4D was used to perform the 3D
rendering.
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Supplementary notes.
Supplementary Note 1: Tracking performance
measurements.
Introduction. We wanted to assess whether using a detector
based on Deep-Learning has a positive impact on the tracking
accuracy of TrackMate. Two main frameworks can be used
to assess tracking performance: the single-particle tracking
challenge [1, 2] and the cell tracking challenge [3, 4]. The
cell tracking challenge deals with cell image data that are
very well suited for the new detectors shipped in this lat-
est version of TrackMate. Yet, we chose to focus on the
single-particle tracking (SPT) challenge data and metrics for
this assessment. Indeed, the SPT challenge relies on using
simulated images with varying object types, motility types,
image quality, and object density. Four scenarios simulate
each the motility of a different subcellular organelle: micro-
tubule tips, vesicles, viruses, and membrane receptors. Each
of these objects type has its own motility type, respectively:
directed motion, random walks, and switching between these
two modes. For each scenario, several movies are available
with varying signal-to-noise ratios (SNR) and particle den-
sity (12 to 15 movies per scenario). This dataset will help us
uncover the range of image quality or object density a detec-
tion algorithm primes over another one. However, the objects
simulated in the SPT challenge are subcellular organelles:
These objects are close to being sub-resolved and, therefore,
mostly shapeless. For this type of object that resembles Gaus-
sian spots, the detectors based on the Laplacian-of-Gaussian
(LoG) filter are proven to be the best, especially when im-
ages are corrupted by white noise [5]. A LoG detector was
already present in the previous version of TrackMate, and it
is the one we will use in our comparison against a new detec-
tor based on the StarDist Deep-Learning algorithm [6]. As
the data we analyze are ideal for the LoG detector, we expect
these comparison settings to favor the LoG detector.

Methods.

Generating a spot detector based on the StarDist algorithm.
Particle detection algorithms started with classical computer
vision (CV) approaches [7]. While they excel for well defi-
ned distinct blob-like particles, their performance was of-
ten found unsatisfactory in the conditions of low SNR, high
particle density, and more complex particle geometry. The
rise of DL in computer vision brought numerous new ap-
proaches in the last few years focused on particle tracking.
DL approaches now readily outperform classical algorithms
in conditions of low noise, unsteady illumination and hetero-
geneous geometry [8, 9], high-density, complex interference
patterns in 3D [10], single-molecule localization [11], mi-
crotubule tracking [12], virus particles in challenging intra-
cellular environment [13], dense particles in 3D with aniso-
tropic PSF [14].

The generation of an efficient Deep-Learning based de-
tector for single-particle represents a very significant work

that would build upon the literature cited above. This is, how-
ever, not our purpose here. Instead, for our assessment, we
created a particle detection method based on StarDist, as this
algorithm is present in the last version of TrackMate. While
StarDist was not directly created to detect single particles,
we aimed to investigate how using StarDist to resolve over-
lapping objects (common at high density) and its robustness
against noise would impact tracking performance. Also, us-
ing StarDist, we can build a single model that can harness all
of the object types present in the SPT Challenge and more.
To build this model, we generated a training dataset using the
ISBI Challenge benchmark generator [15] in Icy [16].

The generated benchmark data contains simulated mo-
vies of the four scenarios of the single-particle tracking Chal-
lenge. We included movies encompassing multiple SNR and
several object densities. We used the associated ground-truth
images to create mask images where each object is repre-
sented by a circular spot of diameter 5 pixels. We then trained
a StarDist model using the simulated images and these masks.
This custom StarDist model was trained for 200 epochs on
4800 paired image patches (image dimensions: 512×512,
patch size: 512×512 with a batch size of 4 and a mae loss
function, using a custom StarDist 2D python script. This
model was then used along with the StarDist custom model
detector of TrackMate for the performance assessment. The
generated model, the scripts to generate it and the training de-
tails are available online [17]. Importantly, the dataset used
for the performance assessment is the one used in [1] while
we trained the StarDist model on a different, newly simulated
dataset using [15].

The LoG detector. For the comparison, we used the LoG de-
tector present in TrackMate since its first release [18]. This
detector operates by filtering the source image using the LoG
filter in the Fourier space then inverting it so that the object
locations show as bright spots in the filtered image. The LoG
filter is configured with a σ value matching the object diame-
ter. The objects are detected in the filtered image by looking
for local maxima. If the filtered value of a spot is below a
threshold set by the user, it is deemed spurious and pruned
from the list of detections.

ISBI SPT Challenge metrics. The ISBI SPT Challenge ships
a specific evaluation dataset against which candidate track-
ing algorithms have been evaluated [2]. It also defines five
metrics used to measure the performance of these tracking
algorithms. Here, we sought to reproduce Figure 2 from [1]
by comparing TrackMate LoG and StarDist detectors. We
plotted three of the five metrics used in the ISBI SPT Chal-
lenge. They are described in detail in [1], but we summa-
rize them here. 1. The α value is a measure of the distance
from the candidate tracks to the ground truth tracks, ignor-
ing spurious tracks generated by the tracking algorithm that
are absent in the ground truth data. Its values range from 0
to 1; higher is better, reaching 1 when the candidate track
are exactly aligned to the ground-truth tracks. The α value
decreases as the particles in the candidate tracks are found
further away from the ground-truth track or missed. 2. The β
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Scenario LoG detector parameters StarDist detector parameters Linking parameters

MICROTUBULE
LoG detector; Radius = 5 pixels,
Threshold = 0.30, Sub-pixel localization
= true, Median filtering = false

NA
Kalman tracker; Search radius = 8 pix-
els; Max linking distance = 8 pixels;
Max frame gap = 1

RECEPTOR
LoG detector; Radius = 2.5 pixels,
Threshold = 2.62, Sub-pixel localization
= true, Median filtering = false

NA
Kalman tracker; Search radius = 8 pix-
els; Max linking distance = 8 pixels;
Max frame gap = 2

VESICLE
LoG detector; Radius = 2.5 pixels,
Threshold = 3.02, Sub-pixel localization
= true, Median filtering = false

NA Simple LAP tracker; Max linking dis-
tance = 8 pixels; Max frame gap = 2

Table S1. Tracking parameters used in the performance assessment.

value builds upon α but includes a penalty for spurious tracks.
It ranges from 0 to α; higher is better. 3. The RMSE mea-
sures the root-mean-square error of the position of candidate
objects with respect to the ground-truth positions. It is a pos-
itive scalar value, lower is better, and zero indicates a perfect
match.

We adapted the existing code provided by [1] to batch
computes these three metrics in a multi-threaded fashion and
without any dependencies. Our modified code is available
online here [19].

Evaluating the two detectors. Because the Java version of
StarDist only deals with 2D images, we limited ourselves to
the 2D scenarios of the SPT Challenge, namely the RECEP-
TOR, VESICLE and MICROTUBULE scenarios. Also, be-
cause we wanted to assess the impact of a new detector on
the overall tracking performance, we used the same parti-
cle linking algorithm with identical parameters in both cases.
We first ran a systematic parameter sweep to find the optimal
linking algorithm and parameter set. Instead of taking the
optimal linking parameters for individual images in the test
dataset, we retained a common detection and linking param-
eter set that yields overall good tracking results over a whole
scenario. This approach leads to somewhat sub-optimal ab-
solute performance but produces results that can be used to
compare the two detectors. The assessment parameters are
listed in the Table S1. The code that performs tracking in
batch over the benchmarking dataset and imports the results
of the StarDist detection is available publicly in a branch on
the GitHub repository of TrackMate [20].

Results and Discussion. For the RECEPTOR scenario, we
observe that, at low density, the LoG detector performance
slightly exceeds that of the StarDist detector (Figure S1).
This is expected, as for this scenario, the objects to detect
closely resemble Gaussian spots, rending the LoG detector
optimal for the task [5]. As the density of objects increases
from 100 (’low’ density) to 500 (’mid’) and 1000 (’high’) per
frame, the performance of the StarDist detector overpasses
that of the LoG detector, albeit only by a marginal value.
Except for the ’mid’ density and SNR of 2 case where the
StarDist detector significantly outperforms the LoG detector,
the two detectors perform similarly. We observed the same
behavior in the VESICLE scenario (Figure S2). Again, this
is expected as the object to track in the VESICLE scenario
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Figure S1. Results of the tracking performance assessment for the RECEPTOR
scenario. From the left to right column, the density of particles increases from 100
to 500 and 1000 objects per frame. From top to bottom, three of the performance
metrics of the ISBI SPT challenge. In each plot, the Y-axis plots the value of the
metrics. For α and β, higher is better. For RMSE, lower is better (see text for the
description of the metric). The X-axis plots the signal-to-noise ratio (SNR) value
for individual movies of one condition. In blue: results for the new StarDist based
detector. In red: results for the classical LoG detector.
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Figure S2. Results of the tracking performance assessment for the VESICLE
scenario.
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Figure S3. Results of the tracking performance assessment for the
MICROTUBULE scenario.

also resembles Gaussian spots. We conclude that a detector
based on StarDist can perform similarly to the LoG detec-
tor for sub-resolved objects. Interestingly, the StarDist-based
detector slightly exceeds the performance of the LoG detec-
tor when the object density increases, a feature we attribute
to the ability of the StarDist algorithm to resolve overlapping
objects.

In the case of the MICROTUBULE scenario, the differ-
ences in performance are more drastic (Figure S3). Indeed,
in this scenario, the StarDist detector surpasses the LoG de-
tector by a large margin in most cases. Interestingly, this is
the scenario where the objects to track are slightly more com-
plex than a Gaussian spot as they simulate the dynamic of
microtubule plus tips, and the objects to track resemble small
comets with a tail protruding backward. The LoG detector
offers better performance than the StarDist detector only for
images with an SNR≤ 2 value and with objects at ’low’ and
’mid’ densities. But this advantage diminishes as the density
increases for this particular SNR value.

This assessment concludes that DL-based detectors pos-
itively impact tracking performance against classical detec-
tors, in the case of complex objects, even when the compari-
son includes identical linking algorithms. The StarDist detec-
tor we built for this assessment is simple compared to what
others have described [8–14]. That said, this simple compar-
ison allows us to advise users to select the StarDist detector
to track their object of interest when a suitable segmentation
model is available. Using the StarDist detector is especially
advantageous as soon as the objects to track are more com-
plex than a Gaussian spot and their density is large.
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Figure S4. Following ERK activity in migrating cells. U2OS (a. and b.) and MDA-MB-231 cells (c. and d.) stably expressing
an ERK activity reporter (ERK-KTR-Clover) and labeled using SiR-DNA were recorded live using a widefield fluorescent microscope.
U2OS cells were recorded live over 3 hours (1 image every 5 minutes) and MDA-MB-231 cells were recorded live over 2 hours (1 image
every minute). Cell nuclei were automatically tracked over time by using StarDist in TrackMate. A custom StarDist model was trained
to detect the U2OS nuclei using the ZeroCostDL4Mic platform. The “Versatile fluorescent nuclei” StarDist model was used to track the
MDA-MB-231 cell nuclei. For each tracked cell, the average intensity of the ERK reporter was measured in their nucleus over time
(directly in TrackMate). Changes in ERK activity are displayed as heatmaps (blue low, yellow high). Heatmaps were generated using
PlotTwist. Scale bar = 250 µm.
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Figure S5. Tracking focal adhesions using Weka and TrackMate. Endothelial cells expressing paxillin-GFP were recorded live
using a spinning disk confocal microscope. Focal adhesions were then segmented and tracked using Weka integrated within TrackMate
(Movie 4). Raw data (inverted LUT), Weka segmentation results, tracked focal adhesion, and the focal adhesion tracks are displayed for
selected time points. Tracked focal adhesions are color-coded to indicate their lifetime (red, long-lived, blue short-lived). In the bottom
panel, track colors indicate ID. Scale bar = 25 µm.
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Figure S6. Tracking label images using TrackMate. a. Mouse hematopoietic stem cells migrating in a hydrogel microwell were
automatically segmented using cellpose (Cyto model) implemented in the ZeroCostDL4Mic platform. The resulting label images were
automatically tracked using TrackMate (Movie 6). Example raw and label images as well as local and full cell tracks are displayed.
Yellow squares highlight regions of interest that are magnified. Scale bar = 250 µm. This dataset is available from the Cell Tracking
Challenge. b. MCF10DCIS.com cells stably expressing lifeact-RFP and labeled with SiR-DNA were recorded live using a spinning disk
confocal microscope. Cells were segmented using cellpose (Cyto model) implemented in the ZeroCostDL4Mic platform. The resulting
label images were tracked using TrackMate (Movie 7). Example raw and label images as well as local and full cell tracks are displayed.
Yellow squares highlight regions of interest that are magnified. Scale bar = 250 µm.
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b

Raw data

Raw data

Video 9

Video 10

CellPose segmentation

CellPose segmentation

3D rendering

3D rendering

2D to 3D labels using TrackMate

2D to 3D labels using TrackMate

a

Figure S7. Tracking 2D labels to generate 3D labels using TrackMate. Tracking 2D labels to generate 3D labels using TrackMate.
a. Confocal images of Arabidopsis thaliana floral meristem [21, 22] and b. light-sheet images of a developing Drosophila melanogaster
embryo [3, 4, 23] were automatically segmented using cellpose 2D (Cyto2 model) implemented in the ZeroCostDL4Mic platform [24,
25]. Representative single Z plane and the corresponding cellpose segmentation results are displayed. To generate 3D labels, cellpose
2D segmentation results were then tracked using TrackMate. 3D rendering of the raw data and of the 3D segmentation results are also
shown. Scale bars: (a) = 25 µm, (b) = 100 µm.
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Sub-resolved particles (shapeless 
because their size is smaller than the 

optical resolution).
Objects that resemble a gaussian peak.

Densely packed nuclei images in 2D, 
imaged in fluorescence. Multi-channel 
images including a channel for nuclei.

Objects that resemble a nucleus (blob- 
like shape, bright).

Cells imaged in transmitted light 
(bright-field, phase-contrast or DIC).

Objects in 2D that are not nuclei, are 
dense and of complex shape.

Cells stained for their membrane 
imaged in fluorescence. 

Objects of size that varies, of complex 
shape, or identifiable by their texture.

Images for which the above approaches 
fail.

Segmenting objects in 3D images using 
a slice-by-slice approach. 

The LoG detector.
If the image is 3D and the spot size is below 8 pixels in size, the DoG detec-
tor is faster.

The StarDist detector with the built-in model.
For multi-channel image simply specify in what channel are the nuclei.

The StarDist detector with a custom model trained on the same kind of 
images.
First look for a suitable model e.g. on the BioImage Model Zoo (https://bioim-
age.io/). If nothing fitting can be found, trained your own model e.g. using Zero-
CostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki) 

The MorphoLibJ detector.
Preprocessing might be required to ensure the cell contours are closed and 
well defined. Add the result of the pre-processing as a supplemental channel 
in the input image.

The ilastik detector or the Weka detector inputing a pixel classifier trained 
on the object.
The choice of one or the other is governed by performance considerations and 
accuracy provided by the available pixel features.

Use an external segmentation tool and input its results in TrackMate using 
the Mask detector, Label-Image detector or Threshold detector.
For instance, use cellpose in ZeroCostDL4Mic.

Segment the Z-stack slice by slice, using one of the approach above, 
tricking TrackMate into thinking the 3D stack is a 2D over time movie.
Then merge the segmentation results in Z using a tracking formulation e.g. 
with the overlap tracker. Then export the results using the Export label image 
action.

built-in

custom

+, ...

3D → 2D+T

Choosing the detector in TrackMate according to your use-case.

Figure S8. Choosing a TrackMate detector according to the input image.
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Online Methods.
Cells and reagents.
MDA-MB-231 and U2OS cells were engineered to express
the Erk KTR by first producing lentiviral particles in HEK
293FT packaging cells (ThermoFisher, R70007). Cells were
co-transfected with the third generation lentiviral packaging
system composed of pMDLg / pRRE (Addgene plasmid
12251), pRSV-Rev (Addgene plasmid 12253), pMD2.G (Ad-
dgene plasmid 12259), along with the pLentiPGK Puro DEST
ERK KTRClover (a kind gift from Markus Covert; Addgene
plasmid 90227) transfer plasmid, using Lipofectamine 3000
(ThermoFisher) in OptiMEM (Gibco, 31985070), as per the
manufacturer’s protocol [26, 27]. After 24 hours the media
was changed for complete growth medium and incubated for
a further 24 hours, at which point the media was collected
and filtered through a 0.45 µm syringe filter. MDA-MB-231
and U2OS cells were transduced with lentivirus for 48 hours
in the presence of polybrene (8 µg/ml; Sigma, TR-1003-G),
before washing and selection of stable positive cells using
puromycin (2 µg/ml). Cells were then sorted by fluorescence-
activated cell sorting (FACS) to isolate a population within a
similar fluorescence range. MCF10 DCIS.COM cells were
cultured in a 1:1 mix of DMEM (Sigma-Aldrich) and F12
(Sigma-Aldrich) supplemented with 5% horse serum (16050-
122; Gibco BRL), 20 ng/ml human EGF (E9644; Sigma-
Aldrich), 0.5 mg/ml hydrocortisone (H0888-1G; Sigma-
Aldrich), 100 ng/ml cholera toxin (C80521MG; Sigma-
Aldrich), 10 µg/ml insulin (I9278-5ML; Sigma-Aldrich), and
1% (vol / vol) penicillin / streptomycin (P0781-100ML;
Sigma-Aldrich).

Tracking migrating breast cancer cells.
Migrating MCF10DCIS.com cells were tracked using either
StarDist directly implemented within TrackMate (Figure 2a)
or using Cellpose and then TrackMate (Supplementary fig-
ure S6b). To track MCF10DCIS.com cells labeled with sir-
DNA using StarDist and TrackMate, a custom StarDist model
was generated using the ZeroCostDL4Mic platform [6, 24].
This custom StarDist model was trained for 100 epochs on 72
paired image patches (image dimensions: 1024×1024, patch
size: 1024×1024) with a batch size of 2 and a mae loss func-
tion, using the StarDist 2D ZeroCostDL4Mic notebook
(v1.12.2). The StarDist "Versatile fluorescent nuclei" model
was used as a training starting point. Key python packages
used include TensorFlow (v1.15), Keras (v2.3.1), CSBdeep
(v0.6.1), NumPy (v1.19.5) and Cuda (v10.1.243). The train-
ing was accelerated using a Tesla P100 GPU. This model
generated excellent segmentation results on our test dataset
(average Intersection over union > 0.96; average F1 score >
0.96). This model, the training dataset as well as the code
used for training is available on Zenodo [28]. In TrackMate,
the StarDist detector custom model (score threshold = 0.41
and overlap threshold = 0.5) and the LAP tracker (linking
max distance = 30 µm; track segment splitting = 15 µm) were
used. Tracks were filtered in function of their total distance

traveled and tracks shorter than 80 µm were excluded.
To track MCF10DCIS.com cells expressing lifeact-RFP

(cell line described here [29]) and labeled with sir-DNA,
cells were first segmented using the ZeroCostDL4Mic Cell-
pose 2D notebook (v1.12, [24, 25]). The Cellpose model
Cyto was used for the segmentation and the lifeact staining
was used as the main segmentation channel. The Sir-DNA
channel was used as the secondary segmentation channel.
The following Cellpose parameters were used Flow thresh-
old = 0.4 and Cell probability threshold = 0, Object diam-
eter: 50. The quality of the segmentation was assessed vi-
sually. In TrackMate, the label image detector and the LAP
tracker (linking max distance = 30 µm; track segment gap
closing = 15 µm and 2 frames; track segment splitting = 15
µm) were used. Tracks were filtered in function of the total
number of spots detected and tracks with less than 40 spots
were excluded.

Tracking migrating T cells.
T cells migrating on ICAM-1 were automatically tracked us-
ing StarDist directly implemented within TrackMate (Fig-
ure 2b). In TrackMate, the StarDist detector custom model
(Score threshold = 0.41 and Overlap threshold = 0.5) and the
Simple LAP tracker (linking max distance = 30 µm; gap clos-
ing max distance = 15 µm, gap closing max frame gap = 2
frames) were used. The StarDist model used was described
previously [30] and is publicly available on Zenodo [31].

Following ERK activity in migrating cells.
MBA-MD-231 or U2OS cells stably expressing clover-ERK-
KTR were seeded on fibronectin-coated (1 µg /ml) Ibidi 8
well slides (Ibidi) one day before imaging. 4h before imag-
ing, the media was supplemented with 250 nM sirDNA (Cy-
toskeleton Inc) and 25 mM HEPES (Sigma). Cells were then
imaged live (37°C, 5% CO2) using a Nikon Eclipse Ti2-E
microscope (Nikon) equipped with a sCMOS Orca Flash4.0
camera (Hamamatsu) and controlled by the NIS-Elements
software (Nikon, v 5.11.01). MBA-MD-231 cells were im-
aged using a 20x Nikon CFI Plan Apo Lambda objective (NA
0.75), either one frame per minute for 2 h or one frame ev-
ery 5 minutes for 17 h. In these experiments, a camera bin-
ning of 2x2 was used. U2OS cells were imaged using a 10x
Nikon CFI Plan-Fluor objective (NA 0.3) every 5 minutes for
3 hours. Cell nuclei were automatically tracked over time by
using StarDist in TrackMate.

To track the nuclei of U2OS cells, a custom StarDist mo-
del was trained using the ZeroCostDL4Mic platform [24].
The training source for the model was generated from 25
manually annotated images (dimensions: 2048×2048) using
the LOCI plugin in Fiji. The generated training source and
target were randomly cropped into size 1024×1024, rotated,
flipped and multiplied by five using the Augmentor Zero-
CostDL4Mic notebook [24, 32] to generate a dataset of 120
paired images.

The custom StarDist model was trained for 200 epochs on
the 120 paired image patches (image dimensions: 1024×1024,
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patch size: 1024×1024) with a batch size of 2 and a mae loss
function, using the StarDist 2D ZeroCostDL4Mic notebook
(v1.12.2) [24]). Key python packages used include Ten-
sorFlow (v1.15), Keras (v2.3.1), CSBdeep (v0.6.1), NumPy
(v1.19.5) and Cuda (v11). The training was accelerated using
a Tesla P100GPU. This model generated excellent segmenta-
tion results on our test dataset (average F1 score > 0.918).

In TrackMate, the StarDist detector custom model (Score
threshold = 0.41 and Overlap threshold = 0.5) and the LAP
tracker (linking max distance = 20 µm; Track segment gap
closing = 25 µm, Gap closing max frame gap = 10 frames)
were used. Tracks were filtered in function of their track du-
ration and tracks shorter than 34 frames (2h 40min) were ex-
cluded.

To track the nuclei of MDA-MB-231 cells, the “Versatile
fluorescent nuclei” StarDist model was used. In TrackMate,
the StarDist detector (Score threshold = 0.41 and Overlap
threshold = 0.5) and the LAP tracker (linking max distance =
40 µm; Track segment splitting = 30 µm) were used. Tracks
were filtered in function of their duration and only the tracks
spanning the whole movie were considered for further anal-
ysis (directly in TrackMate). For each tracked cell, the av-
erage intensity of the ERK reporter was measured in their
nucleus over time (directly in TrackMate). To visualise the
changes in ERK activity over time, results were uploaded to
PlotTwist [33], data were rescaled between 0 and 1 and visu-
alised as heatmaps.

Tracking Mouse hematopoietic stem cells mi-
grating in hydrogel microwells.
Mouse hematopoietic stem cells migrating in a hydrogel mi-
crowell [34] were automatically segmented using Cellpose
(Cyto model) implemented in the ZeroCostDL4Mic platform
[24, 25]. The following Cellpose parameters were used: flow
threshold = 0.4 and cell probability threshold = 0, object di-
ameter = 17. The quality of the segmentation was assessed
visually. The resulting label images were automatically trac-
ked using TrackMate. In TrackMate, the label image detec-
tor and the LAP tracker (linking max distance = 30 µm; track
segment gap closing = 15 µm and 2 frames; track segment
splitting = 15 µm) were used. Spots were filtered in function
of their circularity and area. Tracks were filtered in function
of the total distance travelled tracks shorter than 80 µm were
excluded. This dataset is available from the Cell Tracking
Challenge website [4].

Neisseria meningitidis sample preparation
and imaging.
The Neisseria meningitidis strain 2C43 [35] pilQ/pilQ-
mCherryind was grown on GCB agar plates (Difco) contain-
ing Kellog’s supplements, 3 µg/ml vancomycin and 5 µg/ml
chloramphenicol at 37°C in moist atmosphere containing 5%
CO2. The pMGC17 plasmid was designed in order to gen-
erate the 2C43 pilQ/pilQ-mCherryind strain allowing IPTG-
inducible expression of the type IV pilus secretin protein PilQ
with a carboxy terminal fusion to mCherry expressed from

the Neisseria meningitidis chromosome. First, pilQ was PCR-
amplified from Neisseria meningitidis chromosomal DNA
with primers pilQ-F:
TTAATTAAAGGAGTAATTTTATGAATACCAAACTGAC
AAAAATC
and pilQ-R: GTCGACTCAATAGCGCAGGCTGTTGC.
This PCR fragment was cloned in a pCRII-Blunt-TOPO vec-
tor (Invitrogen). Then, the mCherry ORF was PCR-amplified
with a forward primer containing a region homologous to the
3’ of pilQ (minus the stop codon) as well as a Gly-Ser-Gly
linker, and a reverse primer containing a SalI restriction site
and a region homologous to the TOPO vector
(MUTmChCT-F:
AGCCTGCGCTATGGTTCCGGTGTGAGCAAGGGC,
and MUTmChCT-R:
CTGCAGAATTCGCCCTTGTCGACTCACTTGTACAG).
This PCR fragment was used as a mutagenesis megapri-
mer to amplify pilQ from the TOPO vector [36]. Finally, this
vector was digested with PacI and SalI restriction enzymes
and the resulting insert ligated into pMGC10. The pMGC10
plasmid was generated by inserting the lacI gene and the lac
promoter in the pMGC3 plasmid [37]. The fragment of in-
terest was PCR amplified from the pMMB207 plasmid [38]
using primers:
LacIF2: GAATTCGCTAACTTACATTAATTGCGTTGC
and LacIPR:
GTCGACGATCTTAATTAATTTCCTGTGTGAAATTGTTA
TCCG
and cloned in pMGC3 using EcoRI and SalI restriction. The
pMGC17 plasmid was used to transform Neisseria meningi-
tidis, generating an intermediate strain that carries both a na-
tive pilQ and pilQ-mCherry. This strain was then transformed
with chromosomal DNA from a pilQ mutant strain [39, 40].

Bacteria in exponential phase from a 2 hours pre-culture
in RPMI+10% FBS supplemented with 100 µM IPTG at 37°C
and 5% CO2 were diluted to an optical density of 0.015
(≈ 1.5× 107 bacteria/ml) and dropped onto a 2% agarose gel
supplemented with 100 µM IPTG. Once the bacteria-contai-
ning droplet had dried up, the agar pad was flipped down
onto a Fluorodish (Ibidi, 60 µm-Dish, 35 mm high Glass bot-
tom). Fluorescently labeled proliferating bacteria were ac-
quired using an inverted spinning-disk confocal microscope
(Nikon, TI Eclipse) equipped with a 100X immersion objec-
tive (PlanFluor, NA = 0.5 – 1.3) at 37°C in the presence of
5% CO2. Bacterial fluorescence was imaged in time-lapse
at 5 min frame rate with an exposure time of 300 ms for
5.5 hours, and recorded with a CMOS Camera (Photometrics,
95BPrime) using Metamorph Imaging Software (Molecular
Devices). The focus was maintained with the Perfect Focus
System (PFS, Nikon).

Tracking focal adhesions in endothelial cells.
Live imaging of the endothelial cells expressing Paxillin-
eGFP was described previously [41]. Briefly, human der-
mal microvascular blood endothelial cells expressing Paxillin
were imaged using a Marianas spinning disk confocal micro-
scope. This microscope was controlled by SlideBook 6 (In-
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telligent Imaging Innovations, Inc.), equipped with a Yoko-
gawa CSU-W1 scanning unit, an inverted Zeiss Axio Ob-
server Z1 body and a 100x, NA 1.4 oil (Plan-Apochromat,
M27) objective. Images were acquired every two minutes
using an Orca Flash4 sCMOS camera (chip size 2048×2048;
2×2 camera binning enabled; Hamamatsu Photonics), at 37°C
and in the presence of 5% CO2. Acquired images were then
processed using Fiji to remove background (rolling ball ra-
dius: 10 pixels), compensate for bleaching (exponential fit
method), and correct drifting (StackReg, Rigid body). A
custom Weka pixel classifier was then trained in Fiji to seg-
ment the focal adhesions. In TrackMate, the Weka detector
(Threshold on probability = 0.5) and the overlap tracker (min
IoU = 0.3, scale factor = 1) were used.

Tracking 2D labels to generate 3D labels.
To form spheroids, MCF10 DCIS.com cells were seeded as
single cells, in standard growth media, at low density (∼3,000
cells per well) on growth factor reduced (GFR) Matrigel-
coated glass-bottom dishes (coverslip No. 0; MatTek). After
12 h, the medium was replaced by a normal growth medium
supplemented with 2% (vol/vol) GFR Matrigel. After six
days, spheroids were fixed with 4% PFA for 10 min at room
temperature and labelled using Dapi. Spheroids were then
imaged using a spinning-disk confocal microscope (Z step =
0.5 µm). The spinning-disk confocal microscope used was
a Marianas spinning disk imaging system with a Yokogawa
CSU-W1 scanning unit on an inverted Zeiss Axio Observer
Z1 microscope (Intelligent Imaging Innovations, Inc.) equip-
ped with a 100x (NA 1.4) oil, Plan-Apochromat, M27 (Zeiss).
To generate 3D labels, nuclei were detected and tracked across
the Z volume using StarDist implemented in TrackMate. In
TrackMate, the StarDist detector (score threshold = 0.41 and
overlap threshold = 0.5) and the LAP tracker (linking max
distance = 1 µm, track merging and splitting enabled) were
used. Detected spots were filtered in function of their mean
intensity to exclude spots with weak intensities. Tracks were
filtered in function of the number of spots per track and only
the tracks with more than 3 spots were considered for fur-
ther analysis (directly in TrackMate). In TrackMate, tracked
nuclei were then exported as a label image to create 3D la-
bels. 3D labels were then visualized using the FPBioim-
age software [42]. The video was generated using Arivis
Vision4D (v 3.4).

Confocal images of Arabidopsis Thaliana floral meris-
tem [21, 22] and light-sheet images of a developing Droso-
phila Melanogaster embryo [3, 4, 23] were automatically
segmented using Cellpose (Cyto2 model) implemented in the
ZeroCostDL4Mic platform [24, 25]. The following Cellpose
parameters were used: flow threshold = 0.4 and cell proba-
bility threshold = 0, object diameter = 0. The quality of the
segmentation was assessed visually. To generate 3D labels,
the 2D label images were tracked using TrackMate. In Track-
Mate, the label image detector and the simple LAP tracker
were used. The video were generated using Arivis Vision4D
(v 3.4).
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