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Materials and Methods 

 

Dataset acquisition 

 

Plant-frugivore network data were obtained through different online sources and 

publications (Table S1). Only networks that met the following criteria were retrieved: i) the 

network contains quantitative data (a measure of interaction frequency) from a location, pooling 

through time if necessary; ii) the network includes avian frugivores (all other taxa were removed 

from analyses); iii) the network (after removal of non-avian frugivores) contains more than two 

species in each trophic level, and iv) network sampling was not taxonomically restricted, that is, 

sampling was not focused on a specific taxonomic group, such as a given plant or bird family. 

Note, however, that authors often select focal plants or frugivorous birds to be sampled, but this 

was not considered as a taxonomic restriction if plants and frugivores were not selected based on 

their taxonomy (e.g., focal plants were selected based on the availability of fruits at the time of 

sampling, or focal birds were selected based on previous studies of bird diet in the study site). The 

first source for network data was the Web of Life database (35), which contains 33 georeferenced 

plant-frugivore networks from 28 published studies, of which 12 networks met our criteria. 

We also accessed the Scopus database on 04 May 2020 using the following keyword 

combination: (“plant-frugivore*” OR “plant-bird*” OR “frugivorous bird*” OR “avian 

frugivore*” OR “seed dispers*”) AND (“network*” OR “web*”) to search for papers that include 

data on avian frugivory networks. The search returned a total of 532 studies, from which 62 

networks that met the above criteria were retrieved. We also contacted authors to obtain plant-

frugivore networks that were not publicly available, which provided us a further 110 networks. 

We complemented our dataset by checking the references from a recently published study (10). 

Finally, 196 quantitative avian frugivory networks were used in our analyses (Fig. S2). 

 

Standardizing the taxonomy 

 

Considering the variety of authors and studies in our dataset, which identified plants and 

birds with differing resolution, it was necessary to reduce the taxonomic uncertainty in a uniform 

way. For this, we extracted the frugivore and plant species lists from all networks and performed 

a series of filters in order to remove non-existent species names (e.g., morphospecies labels) and 

standardize synonymous names according to reference databases. 

 

Frugivore species  

 

To account for spelling errors, we checked the matching of frugivore species names in our 

database to those from several taxonomic sources using the Global Names Resolver (GNR) (36). 

We accessed this database using the function gnr_resolve from the ‘taxize’ package in R (37) (Fig. 

S3; step 1). This function provides a matching score and the name from any of GNR’s sources that 

most closely matches each name in our species list. Matching is determined by a combination of 

checking for exact matches against the names in the data sources and fuzzy matching (of canonical 

forms or parts of the names) using the TaxaMatch algorithm (38). Because we were only interested 

in birds, we used the function classification from the same package to retrieve the taxonomic 

hierarchy and remove non-avian species, using the National Center for Biotechnology Information 

(NCBI) (39) as the reference database (Fig. S3; step 2). For those species classified as birds, we 
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used the function gnr_resolve one more time using BirdLife International (40) as the reference 

database (Fig. S3; step 3). We used data from the Integrated Taxonomic Information System (ITIS) 

(41) and the synonyms function from the ‘taxize’ package (37) to obtain the synonyms of the 

species cross-checked with BirdLife International, as well as of those that were not found in the 

BirdLife database but were previously classified as birds (Fig. S3; step 4). We did this because, 

while obsolete bird species names usually did not have a match in BirdLife, one of its synonyms 

could: e.g., the black-fronted piping-guan was not found in the BirdLife database when its former 

scientific name, Penelope jacutinga, was entered; however, its currently accepted scientific name, 

Pipile jacutinga, was found as being one of the synonyms of Penelope jacutinga, and this synonym 

was revealed during step 4.  

We also downloaded the Handbook of the Birds of the World (HBW) and BirdLife 

International (42) and automatically checked for matches of species names in our frugivore list 

with the names from the columns ‘scientific name’ and ‘synonym’ of the HBW-BirdLife 

spreadsheet (Fig. S3; step 5). By doing this, we were able to retrieve all the scientific names 

associated with the matched name in HBW-Birdlife. We used a fuzzy matching algorithm based 

on the Levenshtein distance between two strings to search for other possible names on the HBW-

BirdLife spreadsheet for the species without good matches in any of the GNR’s sources or BirdLife 

International, as well as for those species that were not found in the ITIS database (Fig. S3; step 

6). On some occasions, even this fuzzy matching algorithm could not find matches for a species 

name, which usually occurred when the genus name was incorrect or obsolete (note that in the vast 

majority of cases obsolete scientific names were fixed during steps 4 and 5, but some obsolete 

names were not present in either the ITIS or HBW-BirdLife databases). For those species, we 

automatically searched for their epithet names in the columns ‘scientific name’ and ‘synonym’ of 

HBW-BirdLife and retrieved only those that had one single match in each column (Fig. S3; step 

7). The reason for restraining our search for those with one single match is because some epithet 

names are common and do not necessarily represent the same species. However, even this 

restriction is not a guarantee that the species with a given epithet in our list is the same species 

with the epithet in HBW-Birdlife, since a misspelled epithet name may coincidentally match the 

epithet of other species. Thus, we checked manually the taxonomy of all species corrected using 

this method (n = 17 species). We did this by searching for both the original species name (before 

the data cleaning process) and the matched name in the Avibase (43) and BirdLife (40) databases. 

By applying this series of filters, we were able to correct and validate the names and synonyms of 

1,019 bird species. For the remaining 16 species, we checked the taxonomy manually by inspecting 

the same databases as in the previous step.  

Finally, we generated a list object in R (44) in which element names correspond to scientific 

names accepted by either BirdLife International - obtained using the gnr_resolve function from 

the ‘taxize’ package (37) in 28/07/2020 - or HBW-BirdLife (42), while strings within elements 

correspond to all their synonyms and original species names. We used this list to standardize the 

taxonomy of the bird species in our local networks, so that synonyms would not be treated as 

different species. All species that were removed during the cleaning process (non-bird species and 

those without genus and/or species names, such as Undefined sp. and Turdus sp.) were removed 

from our local networks and further analyses (n = 82 species). Around 86% of frugivore species 

remained per network after the data cleaning (including the further removal of frugivore species 

for which all interaction partners were lost during the data cleaning process). Figure S3 shows a 

summary of the steps of the frugivore data cleaning.  
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Plant species  

 

We checked the matching of plant species names with several taxonomic sources from the 

Global Names Resolver (GNR) (36) using the function gnr_resolve from the ‘taxize’ package (37) 

(Fig. S4; step 1), as with birds above. For those species without matches in any of GNR’s sources, 

we applied a fuzzy matching algorithm based on the Levenshtein distance between two strings to 

compare these species’ names with the matched names from GNR (Fig. S4; step 2). We did this 

because some of the species’ names without matches in our step 1 were misspelled names of plant 

species already included in our dataset but not found by the gnr_resolve function. After this 

process, we relied on the gnr_resolve function one more time to compare the list of matched names 

from GNR with the list from the International Plant Names Index (IPNI) (45) (Fig. S4; step 3). 

The reason for using gnr_resolve twice is because we first wanted to make sure that the species 

had a match with at least one of the taxonomic sources from GNR (i.e., confirm that it is a scientific 

name) and then check whether the matched name represents a scientific name accepted by IPNI. 

By doing this, we were able to evaluate which species had high matching scores during our first 

step but not during the third, indicating that they are not internationally accepted scientific names. 

 We used data from the Tropicos database (46) to obtain the synonyms of the plant species 

that had been cross-checked with IPNI. We also relied on the IPlant collaborative database (47) to 

complement the synonyms list and retrieve the most recent accepted names of the species (Fig. S4; 

step 4). Using this series of filters, we were able to correct and validate the names and synonyms 

of 1,562 plant species. Finally, we generated a list object in R (44) in which element names 

correspond to accepted scientific names of species (cross-checked with the IPNI database on 

15/09/2020) and strings within elements correspond to all their synonyms and original species 

names (before the data cleaning process). We used this list to standardize the taxonomy of the 

plant species in our local networks, as we did for birds.  

Because our plant list contained cases in which two (or more) accepted species shared a 

synonym within their elements (n = 121), we had to deal with the standardization of these names. 

We did this by attributing the same name for all the occurrences of the species sharing a synonym 

only if the shared name was already present in our dataset. For example, Cecropia digitata is one 

of the synonyms of C. angustifolia, C. obtusifolia and C. pachystachya (and is therefore within the 

elements of these three species), but C. digitata was not present in any of the networks in our 

dataset, such that we could maintain the names C. angustifolia, C. obtusifolia and C. pachystachya 

in our local networks. We did this because shared synonyms that were not present in our dataset 

usually represented obsolete species that are no longer accepted. Alternatively, for the cases in 

which the shared synonym was present in our dataset (n = 37), we attributed the same name in the 

local networks for all the species that shared that given name. We adopted this conservative 

approach because, in this case, shared synonyms were usually species that were described multiple 

times by different authors, or species with several subspecies and varieties (note, however, that 

authors rarely include this level of taxonomic information on networks). Therefore, the shared 

name could potentially be any of the species that possess it as one of its synonyms.  

Considering the high number of species (n = 184) with a valid genus name but without a 

valid epithet name (as indicated by the absence of matches in our steps 1 and 3, or by the low 

matching scores to any of the GNR’s sources), as well as unresolved species names without good 

matches in the IPNI database (hereafter, problematic species) in our plant species list, we added 

two steps to evaluate whether such problematic species could be considered as a separate species 

from the other species in our dataset. For example, a species without an epithet (e.g., labelled in a 
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study as ‘Miconia sp.’) could still be treated as a distinct species in the analysis, provided we could 

be certain that it was not the same as another congeneric (Miconia) species, with or without epithet, 

in our dataset. Similarly, an unresolved species name that is not internationally accepted could 

only be considered as a distinct species in our analysis if we could disentangle it from its 

congeneric species in the dataset. Importantly, we did not perform these additional steps for birds 

because there were only a few cases of birds with valid genus but invalid epithet names. 

To determine whether problematic species could be treated as a distinct species for 

analysis, we evaluated whether the distribution of any of the congeners of problematic species in 

our dataset overlapped with the location of the problematic species, such that we cannot be 

confident that the problematic species is not simply another occurrence of one or more of its 

congeners already in the dataset. For this process, we used the coordinates of the networks in which 

each problematic species occurred and generated buffer zones (diameter = 500 km) around these 

network locations. Considering that the size of the buffer zones could potentially affect our results, 

we also conducted the analysis using buffer zone sizes of 100 km and 1000 km (note, however, 

that our results still hold independently of the buffer zone size used; Tables S9 to S33). We 

collected occurrence data for all other species in the same genus in our dataset to evaluate whether 

the occurrence points of any of these congeneric species overlapped with the buffer zone of the 

problematic species (Fig. S4; step 5). For collecting occurrence points, we used data from the 

Global Biodiversity Information Facility (GBIF) (48) and applied a series of filters (for details, see 

the ‘Occurrence data’ section below). If the occurrence points of at least one of the congeneric 

species overlapped with the buffer zone of a given problematic species, we assumed that this 

problematic species could not be considered, with confidence, as a unique species in our dataset. 

Conversely, if none of the occurrence points of congeneric species overlapped with the buffer zone 

of the problematic species, we treated this problematic species as a separate species (Fig. S5), 

provided that there were no other problematic species (without valid epithets) in the same genus 

from other studies in the dataset. 

Alternatively, if a genus contained more than one problematic species in the same study 

(e.g., Miconia sp.1, Miconia sp.2), we assumed that the authors distinguished the congeners within 

the study. For the cases in which a problematic species occurred in a single study and was the only 

species belonging to that genus in our dataset, the original name of the species was maintained in 

the local network. However, if there were problematic species from the same genus in different 

studies, we needed to ascertain whether they could potentially be the same species. Our approach 

for dealing with this issue was to determine all the possible species that a problematic species 

could be in each location, and then compare the lists of possible species in each location to identify 

any overlap. To do this, we first generated buffer zones (as in step 5) for each network location in 

which these problematic species occurred and obtained occurrence data from GBIF for all known 

species belonging to that genus (see the ‘Occurrence data’ section). We then checked whether 

there were congeneric species with occurrence points within the buffer zones of two (or more) 

problematic species belonging to the same genus (Fig. S4; step 6). If yes, we could not consider 

that these problematic species were different from each other. Rather, in this case there was a 

chance that the problematic species were the same species whose occurrence points overlapped 

the buffer zones of both network locations (Fig. S6). On the other hand, if there were no species 

whose distribution overlapped the buffer zones of both network locations, these problematic 

species could be considered as being distinct species in the dataset.  

All species that were removed during the data cleaning process (i.e., the problematic 

species without a valid genus name, such as Rubiaceae sp. or Undefined sp.) were also removed 
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from our local networks and further analyses (n = 166 species). Problematic species that could not 

be disentangled from resolved species or other problematic species in the dataset were named 

according to three distinct scenarios (for details, see the ‘Alternative scenarios’ section). Around 

89% percent of plant species remained per network after the data cleaning (including the further 

removal of plant species for which all interaction partners were lost during the data cleaning 

process). Figure S4 shows a summary of the steps of the plant data cleaning. 

 

Occurrence data 

 

We retrieved occurrence data from the Global Biodiversity Information Facility (GBIF) 

(48) using the function occ_search from the R package ‘rgbif’ (49). For each species, we only 

requested occurrence data for observations for which coordinate points were available and no 

geospatial issues were detected, as determined by GBIF’s record interpretation. We also followed 

a recent study (50) and removed occurrence points with: (i) a coordinate uncertainty larger than 

100 km (the size of our smallest buffer zone); (ii) those for which the collection date was before 

1945, as older occurrence points are usually not properly geo-referenced (51); (iii) those in which 

the number of counts associated with the occurrence point was zero; and (iv) those in which the 

‘basis of record’ was not an observation or a preserved specimen.  

In addition, we used the function clean_coordinates from the R package 

‘CoordinateCleaner’ (52) and land mass and country data (with a 1:10m scale) from Natural Earth 

(53) to remove occurrence points for which the coordinates: (v) fell within the ocean or outside 

the borders of the country where they were recorded, both of which indicate data-entry errors, (vi) 

were located around the country capital or the centroid of the country, indicating imprecise geo-

referencing based on inadequate sampling site descriptions, (vii) both latitude and longitude were 

zero or had equal values, indicating failed geo-referencing, and (viii) were located around a 

biodiversity institution, suggesting that records might represent specimens that were erroneously 

geo-referenced to museums, herbaria or universities instead of their sampling localities (52). After 

applying this series of filters, 913,1777 occurrence points were retrieved for 623 plant species in 

our dataset. These occurrence points were used for disentangling ‘problematic’ species during step 

5 of the plant species cleaning process (Fig. S5).  

Because the next step required us to retrieve occurrence data for all known species 

belonging to a given genus, we used the function name_lookup from the R package ‘rgbif’ (49) to 

search for all accepted species names associated with the genus name. We used the same set of 

filters previously described to obtain the occurrence points for each species during the step 6 of 

the plant species cleaning process (Fig. S6). In the end, 1,988,540 occurrence points were retrieved 

for 4,793 plant species. 

 

Alternative scenarios 

 

We used three distinct scenarios for attributing names for problematic plant species that 

could not be considered as unique species in our dataset. In the first scenario, we removed from 

the local network any problematic species whose buffer zone was overlapped by the distribution 

of ‘resolved’ congeneric species in the dataset (step 5 of the plant species cleaning process). For 

example, if the buffer zone of the problematic species ‘Miconia sp.’ was overlapped by other 

resolved Miconia species in the dataset, we removed the species Miconia sp. (and all of its 

interactions) from its local network. We adopted this strategy rather than considering that the 
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problematic species and the resolved species that overlap its buffer zone are the same because such 

problematic species could potentially be any of the resolved species that overlap its buffer zone. 

This, in turn, made it impractical to attribute the name of the resolved species to the problematic 

species in cases where the buffer zone of the problematic species was overlapped by several 

resolved species. In addition, our first scenario considers all problematic species that could not be 

disentangled from each other (step 6 of the plant species cleaning process) as being the same 

species. For example, if two problematic species labelled as ‘Coussapoa sp.’ in two separate local 

networks could not be disentangled because there are congeneric species simultaneously 

overlapping the buffer zones of both network locations (Fig. S6), we attributed the same name to 

these two problematic species. 

Alternatively, our second scenario treats problematic species as being unique. Therefore, a 

unique name was given for the problematic species whose buffer zone was overlapped by 

‘resolved’ congeneric species in the dataset. For instance, the problematic species ‘Miconia sp.’ 

from the example above would receive a unique name in the second scenario instead of being 

removed from its local network. In this scenario, we also attributed unique names for problematic 

species that could not be disentangled from each other. For example, each of the two 

problematic Coussapoa species mentioned above would receive a unique name instead of sharing 

the same name. 

Finally, the third scenario removes from the local networks all plant species that could not 

be considered as being unique species in the dataset, and is therefore our most conservative 

scenario (which was used for obtaining the results presented in the main text). Because these three 

different scenarios could affect our response variables, we repeated the analyses using the sets of 

networks from all scenarios. Note, however, that results remained qualitatively the same 

independently of the scenario used in the analyses (Tables S9 to S33).  

 

Generating the distance matrices 

 

We generated several distance matrices (N × N, where N is the number of local networks 

in our dataset) to be our predictor and response variables in the statistical models. Here, we detail 

each one of them: 

Ecoregion and biome distances: We used the most updated map of ecoregions and biomes 

(4), which divides the globe into 846 terrestrial ecoregions nested within 14 biomes, to generate 

our ecoregion and biome distance matrices. Of these, 67 ecoregions and 11 biomes are represented 

in our dataset (Figs. S1 and S2). We constructed alternative versions of both the ecoregion and 

biome distance matrices. In the binary version, if two ecological networks were from localities 

within the same ecoregion/biome, a dissimilarity of zero was given to this pair of networks, 

whereas a dissimilarity of one was given to a pair of networks from distinct ecoregions/biomes 

(this is the same as calculating the Euclidean distance on a presence-absence matrix with networks 

in rows and ecoregion/biomes in columns). 

In the quantitative version, we estimated the pairwise environmental dissimilarity between 

our ecoregions and biomes using six environmental variables recently demonstrated to be relevant 

in predicting ecoregion distinctness, namely mean annual temperature, temperature seasonality, 

mean annual rainfall, rainfall seasonality, slope and human footprint (32). We obtained climatic 

and elevation data from Worldclim (54) at a spatial resolution of 1-km2. We transformed the 

elevation raster into a slope raster using the function terrain from the ‘raster’ package (55) in R 

(44). Human footprint is a metric that combines eight variables associated to human disturbances 
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on the environment: the extent of built environments, crop land, pasture land, human population 

density, night-time lights, railways, roads and navigable waterways (24). The human footprint 

raster was downloaded at a resolution of 1-km2 (24). Because human footprint data were not 

available for one of our ecoregions (Galápagos Islands xeric scrub), we estimated human footprint 

for this ecoregion by converting visually interpreted scores into the human footprint index. We did 

this by analysing satellite images of the region and following a visual score criterion (24). Given 

the previously demonstrated strong agreement between visual score and human footprint values 

(24), we fitted a linear model using the visual score and human footprint data from 676 validation 

plots located within the Deserts and xeric shrublands biome (24) - the biome in which the 

Galápagos Islands xeric scrub ecoregion is located - and estimated the human footprint values for 

our own visual scores using the predict function in R (44).      

We used 1-km2 resolution rasters and the extract function from the ‘raster’ package (55) to 

calculate the mean value of each of our six environmental variables for each ecoregion in our 

dataset. Because biomes are considerably larger than ecoregions (which makes obtaining 

environmental data for biomes more computationally expensive) we used a coarser spatial 

resolution of 5-km2 for calculating the mean values of environmental variables for each biome. 

Since a 5-km2 resolution raster was not available for human footprint, we transformed the 1-km2 

resolution raster into a 5-km2 raster using the function resample from the same package.  

We ran a Principal Component Analysis (PCA) on our scaled multivariate data matrix 

(where rows are ecoregions or biomes and columns are environmental variables), selected the 

scores of the four and three principal components, which represented 89.6% and 88.7% of the 

variance for ecoregions and biomes, respectively, and converted it into a distance matrix by 

calculating the Euclidean distance between pairs of ecoregions/biomes using the vegdist function 

from the ‘vegan’ package (56). Finally, we transformed the ecoregion/biome distance matrix into 

a N × N matrix where N is the number of local networks. In this matrix, cell values represent the 

pairwise environmental dissimilarity between the ecoregions/biomes where the networks are 

located. The main advantage of using this quantitative approach is that, instead of simply 

evaluating whether frugivory networks located in distinct ecoregions or biomes are different from 

each other in terms of network composition and structure (as in our binary approach), we were 

also able to account for how different ecoregions and biomes are from one another. 

Human disturbance (footprint) distance: To generate our local human footprint distance 

matrix, we extracted human footprint data at a 1-km2 spatial resolution (24) and calculated the 

mean human footprint values within a 5-km buffer zone around each network site. For the networks 

located within the Galápagos Islands xeric scrub ecoregion (n = 4), we estimated the human 

footprint index using the same method described in the previous section for ecoregion- or biome-

scale human footprint. We then calculated the pairwise Euclidean distance between human 

footprint values from our network sites. Thus, low cell values in the local human footprint distance 

matrix indicate pairs of network sites with a similar level of human disturbance, while high values 

represent pairs of network sites with very different levels of human disturbance. 

Spatial distance: The spatial distance matrix was generated using the Haversine (i.e., great 

circle) distance between all pairwise combinations of network coordinates. In this matrix, cell 

values represent the geographical distance between networks. 

Elevational difference: We calculated the Euclidean distance between pairwise elevation 

values (estimated as meters above sea level) of network sites to generate our elevational difference 

matrix. Elevation values were obtained from the original sources when available or using Google 

Earth (57). In the elevational difference matrix, low cell values represent pairs of network sites 
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within similar elevations, whereas high values represent pairs of network sites within very different 

elevations. 

Network sampling dissimilarity: We used the metadata retrieved from each of our 196 

local networks to generate our ‘network sampling dissimilarity matrices’, which aim to control 

statistically for differences in network sampling. There are many ways in which sampling effort 

could be quantified, so we began by calculating a variety of metrics, then narrowed our options by 

assessing which of these was most related to network metrics. We divided the sampling metrics 

into two categories: time span-related metrics (i.e., sampling hours and months) and empirical 

metrics of sampling completeness (i.e., sampling completeness and sampling intensity), which aim 

to account for how complete network sampling was in terms of species interactions.   

 We selected the quantitative sampling metrics to be included in our models based on (i) 

the fit of generalized linear models evaluating the relationship between number of sampling hours 

and sampling months of the study and network-level metrics (i.e., bird richness, plant richness and 

number of links), and (ii) how well time span-related metrics, sampling completeness and sampling 

intensity predicted the proportion of known interactions that were sampled in each local network 

(hereafter, ratio of interactions) for a subset of the data. This latter metric, defined as the ratio 

between the number of interactions in the local network and the number of known possible 

interactions in the region involving the species in the local network, captures raw sampling 

completeness. Therefore, ‘ratio of interactions’ estimates the proportion of interactions involving 

a given set of species in the region’s meta-network that are found in the local network. To calculate 

this metric, we needed high-resolution information on the possible interactions, so we used a subset 

of 14 networks sampled in Aotearoa New Zealand, since there is an extensive compilation of 

frugivory events recorded for this country (58). After this process, we selected number of sampling 

hours, number of sampling months and sampling intensity to be included in our statistical models 

(Figs. S7, S8 and Table S2). We generated these distance matrices by calculating the Euclidean 

distance between metric values.  

Similarly, we generated a Euclidean distance matrix for differences in sampling year 

between networks, which aims to account for long-term changes in the environment, species 

composition and network sampling methods. We obtained the sampling year of our local networks 

from the original sources and calculated the mean sampling year value for those networks sampled 

across multiple years.  

Because sampling methods, such as sampling design, focus (i.e., focal taxa), interaction 

frequency type (i.e., how interaction frequency was measured) and coverage might also affect the 

observed plant-frugivore interactions (59), we combined these variables into a single distance 

matrix to estimate the overall differences in sampling methods between networks. Considering 

that most of these variables were categorical with multiple levels (Table S3), we generated our 

methods dissimilarity matrix by using a generalization of Gower’s distance method (60), which 

allows the treatment of different types of variables when calculating distances. For this, we used 

the dist.ktab function from the ‘ade4’ package (61). We ran a Principal Coordinates Analysis 

(PCoA) on this distance matrix, selected the first four axes, which explained 81.2% of the variation 

in methods dissimilarity, and calculated the Euclidean distance between pairs of networks using 

the vegdist function from the ‘vegan’ package (56) in R (44).  

Network dissimilarity: We generated three network dissimilarity matrices to be our 

response variables in the statistical models. In the first, cell values represent the pairwise 

dissimilarity in species composition between networks (beta-diversity of species; βS) (25). Second, 

we measured interaction dissimilarity (beta-diversity of interactions; βWN), which represents the 
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pairwise dissimilarity in the identity of interactions between networks (25). Importantly, we did 

not include interaction rewiring (βOS) in our main analyses because this metric can only be 

calculated for networks that share interaction partners (i.e., it estimates whether shared species 

interact differently) (25), which limited the number and the spatial distribution of networks 

available for analysis (but see the ‘Rewiring analysis’ section). Metrics were calculated using the 

network_betadiversity function from the ‘betalink’ package (62) in R (44). 

Finally, we calculated a third dissimilarity matrix to capture overall differences in network 

structure. We recognise that there are many potential metrics of network structure, and that many 

of these are strongly correlated with one another (63–65). We therefore chose a range of metrics 

that captured the number of links, their relative weightings (including across trophic levels), and 

their arrangement among species, then combined these into a single distance matrix. Specifically, 

we quantified network structural dissimilarity using the following metrics: weighted connectance, 

weighted nestedness, interaction evenness, PDI and modularity.  

Weighted connectance represents the number of links relative to the number of possible 

links, weighted by the frequency of each interaction (66), and is therefore a measure of network-

level specialization (higher values of weighted connectance indicate lower specialization). 

Importantly, it has been suggested that connectance affects persistence in mutualistic systems (64). 

We measured nestedness (i.e., the pattern in which specialist species interact with proper subsets 

of the species that generalist species interact with) using the weighted version of nestedness based 

on overlap and decreasing fill (wNODF) (67). Nested structures are common in plant-frugivore 

networks (29) and have been considered to increase the number of coexisting species by 

minimizing interspecific competition (68). Interaction evenness is the Shannon’s evenness index 

applied for species interactions and represents how evenly distributed the interactions are in the 

network (14, 69). This metric has been previously demonstrated to decline with habitat 

modification as a consequence of some interactions being favoured over others in high-disturbance 

environments (14). PDI (Paired Difference Index) is a measure of species-level specialization on 

resources and a reliable indicator not only of specialization, but also of absolute generalism (70). 

In order to obtain a network-level PDI, we calculated the weighted mean PDI for each local 

network. Finally, we calculated modularity (i.e., the level of compartmentalization within 

networks) using the DIRTPLAwb+ algorithm (71). Modularity estimates the extent to which 

species within modules interact more with each other than with species from other modules (72), 

and it has been demonstrated to affect the persistence and resilience of mutualistic networks (64). 

All the selected network metrics are based on weighted interaction data, as these have been 

suggested to be less biased to sampling incompleteness (73) and to better reflect environmental 

changes (14). All network metrics were calculated using the ‘bipartite’ package (74) in R (44).  

We ran a Principal Component Analysis (PCA) on our scaled multivariate data matrix (N 

× M where N is the number of local networks in our dataset and M is the number of network 

metrics), selected the scores of the three principal components, which represented 89.9% of the 

variance in network metrics, and converted it into a network structural dissimilarity matrix by 

calculating the Euclidean distance between networks. In this distance matrix, cell values represent 

differences in the overall architecture of networks (over all the network metrics calculated), and 

therefore provide a complementary approach for evaluating how species interaction patterns vary 

across large-scale environmental gradients. 
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Statistical analyses 

 

We employed a combination of Generalized Additive Models (GAM) and Multiple 

Regression on Distance Matrices (MRM) (26) to evaluate the effect of each of our predictor 

distance matrices on our response matrix. Essentially, this analysis is equivalent to a GAM, but 

where the predictor and response variables are distance matrices and the non-independence of 

distances from each given local network is accounted for in the hypothesis testing by permuting 

the response matrix. This analysis allowed us to obtain F-values for each of the smooth terms (i.e., 

smooth functions of the predictor variables in our model) and test statistical significance at the 

level of individual variables. The binary versions of ecoregion and biome distance matrices (with 

two levels, ‘same’ or ‘distinct’) were treated as categorical variables in the models, and t-values 

were used for obtaining statistical significance. We fitted GAMs with thin plate regression splines 

(75) using the gam function from the ‘mgcv’ package (76) in R (44). Smoothing parameters were 

estimated using restricted maximum likelihood (REML) (76). Our GAM-based MRM models 

were calculated using a modified version of the MRM function from the ‘ecodist’ package (77), 

which allowed us to combine GAMs with the permutation approach from the original function. 

All the models were performed with 1,000 permutations.  

We explored the unique and shared contributions of our predictor variables to network 

dissimilarity using deviance partitioning analyses. These were performed by fitting reduced 

models (i.e., GAMs where one or more predictor variables of interest were removed) using the 

same smoothing parameters as in the full model and comparing the explained deviance. We fixed 

smoothing parameters for comparisons in this way because these parameters tend to vary 

substantially (to compensate) if one of two correlated predictors is dropped from a GAM.  

 

Assessing the influence of individual studies on the reported patterns 

 

Because our dataset comprises 196 local frugivory networks obtained from 93 different 

studies, and some of these studies contained multiple networks, we needed to evaluate whether our 

results were strongly biased by individual studies. To do this, we followed a previous approach 

(78) and tested whether F-values of smooth terms and t-values of categorical variables (ecoregion 

and biome) changed significantly when jackknifing across studies. We did this by dropping one 

study from the dataset and re-fitting the models, and then repeating this same process for all the 

studies in our dataset.  

We found a number of consistent patterns within the data (Figs. S15 and S16); however, 

some of the patterns we observed appear to be driven by individual studies with multiple networks, 

and hence are less representative. For instance, the study with the greatest number of networks in 

our dataset (study ID = 76), which contains 35 plant-frugivore networks sampled across an 

elevation gradient in Mt. Kilimanjaro, Tanzania (79), had an overall high influence on the results 

when compared to the other studies. By re-running our GAM-based MRM models after removing 

this study from our dataset, we found that the effect of biome boundaries on interaction 

dissimilarity is no longer significant, whereas the effects of ecoregion boundaries, human footprint 

distance, spatial distance and elevational differences remained consistent (Table S34). 

Nevertheless, all the results were qualitatively similar to those obtained for the entire dataset when 

using network structural dissimilarity as the response variable (Table S35). 
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Rewiring analysis 

 

Interaction rewiring (βOS) estimates the extent to which shared species interact differently 

(25). Because this metric can only be calculated for networks that share species from both trophic 

levels, we selected a subset of network pairs that shared plants and frugivorous birds (n = 1,314) 

to test whether interaction rewiring increases across large-scale environmental gradients. 

Importantly, since not all possible combinations of network pairs contained values of interaction 

rewiring (i.e., not all pairs of networks shared species), a pairwise distance matrix could not be 

generated for this metric. Thus, we were not able to use the same statistical approach used in our 

main analyses, which is based on distance matrices (see ‘Statistical analyses’ section). Instead, we 

performed a Generalized Additive Mixed Model (GAMM) using ecoregion, biome, spatial, 

elevational, and sampling-related distance metrics as fixed effects and network IDs as random 

effects (to account for the non-independence of distances) (Table S36). We also performed a 

reduced model with only ecoregion and biome distance metrics as predictor variables (Table S37). 

The binary version of ecoregion and biome distance metrics (with two levels, ‘same’ or ‘distinct’) 

were used as categorical variables in both models. Interaction rewiring [βOS, following (25)] was 

calculated using the network_betadiversity function from the ‘betalink’ package (62) in R (44). 

Although it has been recently argued that this metric may overestimate the importance of rewiring 

for network dissimilarity (80), our main focus was not the partitioning of network dissimilarity 

into species turnover and rewiring components, but rather simply detecting whether the sub-web 

of shared species interacted differently. In this case, βOS [as developed by (25)] is an adequate and 

useful metric (80). We fitted our models using the gamm4 function from the ‘gamm4’ package 

(81) in R (44). Smoothing parameters were estimated using restricted maximum likelihood 

(REML) (76). 
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Fig. S1. Maps of ecoregions and biomes of the world. (A) Terrestrial ecoregions, with stronger 

colour tones indicating the 67 ecoregions represented in our dataset. (B) Global biomes, with 

stronger colour tones indicating the 11 biomes represented in our dataset. Boundaries were defined 

based on the most updated map of ecoregions and biomes (4). 
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Fig. S2. Geographic distribution of the 196 avian frugivory networks in our dataset. Local 

networks were distributed across 11 biomes, with most of these being located within a single 

biome: the Tropical & Subtropical Moist Broadleaf Forests. 
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Fig S3. An overview of the steps for cleaning and standardizing the frugivore species data. 

Red boxes represent species that were removed from the analyses (non-avian species and species 

without epithet or genus names). The dashed box comprises the steps performed for the species 

without good matches in any of the Global Names Resolver (GNR) sources and in the BirdLife 

International database, or that were not found in the Integrated Taxonomic Information System 

(ITIS). The final list comprises elements whose names represent scientific names accepted either 

by the BirdLife International or by the Handbook of the Birds of the World and BirdLife 

International, and strings within elements comprise their synonymous and original names (before 

the cleaning process). For example, Pipile jacutinga (Cracidae) is the current accepted name of 

the black-fronted piping-guan, while its synonymous names include Penelope jacutinga and 

Aburria jacutinga (green box). All names (strings of synonyms) within elements (accepted names) 

were replaced by the element name in the local networks, such that a given species had the same 

name for all its occurrences in the entire database. Numbers inside boxes correspond to the steps 

of the frugivore data cleaning process (described above). 
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Fig. S4. Overview of the steps for cleaning and standardizing the plant species data. The red 

box represents species that were removed from the analyses (species without valid genus names). 

The dashed box comprises the steps performed for the species without good matches in any of the 

Global Names Resolver (GNR) sources and in the International Plant Names Index (IPNI) database 

(i.e., ‘problematic species’). We performed two steps to determine if problematic species could be 

considered as being unique species in our dataset (see steps 5 and 6 of the plant species data 

cleaning process described in the text and visualized in Figs. S5 and S6). The final list comprises 

elements whose names represent scientific names cross-checked with the IPNI database and strings 

within elements comprise their synonymous and original names (before the cleaning process), or 

elements whose names represent new names given for problematic species that can be considered 

as unique species in our dataset, and the strings within elements comprise their original name. For 

example (yellow box), Ardisia sieboldii (Primulaceae) is a scientific name accepted by IPNI, while 

A. formosana, Bladhia sieboldii and Tinus sieboldii represent some of its synonymous names. 

Meanwhile, Ardisia_GBIFresolved_net_184 is the new name given for the problematic (but 

unique) species Ardisia sp., as revealed by the step 5 of the plant species data cleaning process. 

Note that, in the former case, all names (strings) within elements were replaced by the element 

name in the local networks, while in the latter case strings within elements were replaced by the 

element name only in the network where the problematic species was observed (in this example, 

network 184). Numbers inside boxes correspond to the steps of the plant data cleaning process. 

See the ‘Alternative scenarios’ section for details on how we attributed names for plant species 

that could not be considered as unique species in our dataset. 
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Fig. S5. Graphical example (for an unresolved Beilschmiedia species) of step 5 of the plant 

species cleaning process. Coloured points indicate the distribution of Beilschmiedia species 

already contained within our dataset, and these are compared with the occurrence location of a 

‘problematic species’ (a species with genus name only). The distributions of both Beilschmiedia 

tawa (green dots) and Beilschmiedia tovarensis (blue dots) do not overlap with the buffer zone of 

the problematic species Beilschmiedia sp., such that Beilschmiedia sp. can be considered as a 

separate species in our dataset. 
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Fig. S6. Graphical example of step 6 of the plant species cleaning process. In this example, 

there are two occurrences of species labelled ‘Coussapoa sp.’ in separate studies (locations 1 and 

2). The distribution of Coussapoa ovalifolia (red dots) simultaneously overlaps the buffer zones 

of two ‘problematic species’ (i.e., species with genus name only) belonging to the same genus, 

such that these problematic species could not confidently be considered as being separate species. 

A distribution map like this was created for all congeneric species with occurrence data in either 

buffer zone. Note that C. ovalifolia is present in the potential list of Coussapoa species in both 

network locations (other Coussapoa species were omitted in the species lists for clarity). 
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Fig. S7. Results from Pearson’s correlation tests between sampling and network metrics. For 

this analysis, we used the subset of networks sampled in Aotearoa New Zealand (n = 14). Asterisks 

represent significant correlations [*(P = 0.05 - 0.01), **(P = 0.01 - 0.001), ***(P < 0.001)]. Sizes 

of the circles are proportional to the correlation coefficient. 
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Fig. S8. Relationships between network metrics and sampling hours and months. We used 

generalized linear models (with Poisson errors, fitted with quasi-likelihood to deal with 

overdispersion) to obtain significance values. Points represent the 196 local frugivory networks in 

our dataset. Solid lines represent significant relationships. 
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Fig. S9. Scatterplots of the relationships between our predictor variables of interest (not 

those used for controlling sampling effects) and species turnover (βS). (A) The relationship 

between the quantitative version (environmental dissimilarity) of ecoregion distance and species 

turnover; point colors indicate whether the pair of local networks belong to the same (blue) or 

distinct (red) biomes. (B) The relationship between the quantitative version (environmental 

dissimilarity) of biome distance and species turnover. (C) The relationship between human 

footprint distance and species turnover. (D) The relationship between spatial distance and species 

turnover. Note that, contrary to species interactions (Figs. 1 and S14C), several networks still 

shared species beyond the threshold distance of 2,500 km (dotted red line). (E) The relationship 

between elevation difference and species turnover.  
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Fig. S10. Venn diagram showing the relative contributions (%) of our main predictor 

variables to explaining the variation in species turnover (βS) across networks, calculated 

using deviance partitioning. Spatial distance alone explained the greatest proportion (12.9%) of 

the variation in species turnover, followed by the shared effect of spatial distance and ecoregion 

boundaries. Note that, to aid visualization, we only included our predictor variables of interest (i.e., 

not those used for controlling sampling effects). Terms that reduce explanatory power are not 

shown. 
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Fig. S11. The effect of large-scale ecological boundaries on the proportion of pairs of local 

networks sharing interactions. Avian frugivory networks located within the same 

ecoregion/biome were more likely to share interactions than those located across distinct 

ecoregions/biomes. Note that over half of the pairs of networks located within the same ecoregion 

shared at least one interaction. 
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Fig. S12. Venn diagram showing the relative contributions (%) of our main predictor 

variables to explaining the variation in plant-frugivore interaction dissimilarity (βWN), 

calculated using deviance partitioning. The shared effect of ecoregions and spatial distance 

explained the greatest proportion (6.41%) of the variation in interaction dissimilarity, followed by 

the unique contributions of these two variables. Note that, to aid visualization, we only included 

our predictor variables of interest (i.e., not those used for controlling sampling effects). Terms that 

reduce explanatory power are not shown. 
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Fig. S13. Partial effects plot of the relationship between human footprint distance and 

interaction dissimilarity (βWN). The smoothed line was fitted using a generalized additive model 

(GAM) with interaction dissimilarity as response variable and all of our predictor variables 

included (see Table 1). The lighter green area represents the 95% confidence interval of the fitted 

GAM. 
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Fig. S14. Scatterplots of the relationships between our predictor variables of interest (except 

human footprint distance, which is presented in the main text) and interaction dissimilarity 

(βWN). (A) The relationship between the quantitative version (environmental dissimilarity) of 

ecoregion distance and interaction dissimilarity; point colors indicate whether the pair of networks 

belong to the same (blue) or distinct (red) biomes. (B) The relationship between the quantitative 

version (environmental dissimilarity) of biome distance and interaction dissimilarity. (C) The 

relationship between spatial distance and interaction dissimilarity. Note that interaction 

dissimilarity increases sharply until a threshold distance of 2,500 km (dotted red line), beyond 

which few networks shared interactions (a similar pattern can be seen in Fig. 5). (D) The 

relationship between elevation difference and interaction dissimilarity. 
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Fig. S15. Effect of individual studies on estimates of t (for ecoregion and biome) and F values 

(for the remaining predictor variables) of generalized additive models with interaction 

dissimilarity (βWN) as response variable. Points represent estimate values after removing one 

study from the data, while asterisks indicate the estimates when the study with the greatest number 

of networks (n = 35) in our dataset, study 76 (79), is removed from the data. The estimates of the 

full model (with all studies included) are represented by the vertical lines. Red lines indicate a 

significant effect (P < 0.05), while gray lines indicate a non-significant effect. P values were 

calculated using a combination of generalized additive models and multiple regression on distance 

matrices (see ‘Statistical analyses’ section). The range of the x-axis was defined as ± 3 times the 

standard deviation of the estimates. Arrows indicate outliers beyond this range (black: when study 

76 is removed; red: when other studies are removed). 
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Fig. S16. Effect of individual studies on estimates of t (for ecoregion and biome) and F values 

(for the remaining predictor variables) of generalized additive models with network 

structural dissimilarity as response variable. Points represent estimate values after removing 

one study from the data, while asterisks indicate the estimates when the study with the greatest 

number of networks (n = 35) in our dataset, study 76 (79), is removed from the data. The estimates 

of the full model (with all studies included) are represented by the vertical lines. Red lines indicate 

a significant effect (P < 0.05), while gray lines indicate a non-significant effect. P values were 

calculated using a combination of generalized additive models and multiple regression on distance 

matrices (see ‘Statistical analyses’ section). The range of the x-axis was defined as ± 3 times the 

standard deviation of the estimates. Arrows indicate outliers beyond this range (black: when study 

76 is removed; red: when other studies are removed). 
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Fig. S17. Percentage of long-distance network comparisons and connections (shared 

interactions) across (‘distinct’) and within (‘same’) biomes. Around 67% of the long-distance 

network comparisons involved networks from distinct biomes, while most long-distance 

connections (70%) involved networks from the same biome. 
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Fig. S18. Plant and bird species connecting local networks, ecoregions and biomes. World 

map with points representing the 196 local avian frugivory networks in our dataset. Colors of 

shaded areas represent the 67 ecoregions where networks were located, with similar colors 

indicating ecoregions that belong to the same biome. Lines represent the connections (shared 

species) plotted along the great circle distance between networks. Blue lines represent connections 

within biomes, while red lines represent connections across biomes. Stronger colour tones of lines 

indicate higher similarity of species (1-βS) between networks. (A) Lines represent connections 

between networks sharing frugivorous bird species. (B) Lines represent connections between 

networks sharing plant species. (C) Lines represent connections between networks sharing both 

plant and frugivorous bird species (see Fig. 1 for the world map of shared plant-frugivore 

interactions).  
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Table S1. Description of the 196 avian frugivory networks in our dataset. Geographic 

coordinates were rounded to two decimal places. The metadata of each network (e.g., original 

coordinates, sampling methods, ecoregion, biome) is available at Dryad (34). 

  

Network ID Latitude Longitude Location Reference 

 1* 40.33 -74.67 New Jersey, USA 82 

 2* 18.30 -66.78 Caguana, Puerto Rico 83 

 3* 18.26  -66.53 Cialitos, Puerto Rico 83 

 4* 18.17 -66.59 Cordillera, Puerto Rico 83 

 5* 18.31 -66.56 Fronton, Puerto Rico 83 

 6* -28.95 31.75 Mtunzini, South Africa 84 

 7* -22.82 -47.11 Mata Santa Genebra, São Paulo, Brazil 85 

 8* -22.82 -47.11 Mata Santa Genebra, São Paulo, Brazil 85 

 9* 18.51 -89.49 Campeche state, Mexico 86 

  10* 51.77 -1.33 Oxford, United Kingdom 87 

  11* -24.32 -48.39 Intervales, São Paulo, Brazil 88 

12 -24.13 -47.95 Carlos Botelho, São Paulo, Brazil 89 

13 -25.13 -47.96 Ilha do Cardoso, São Paulo, Brazil 90 

14 -22.55 -42.28 Poço das Antas, Rio de Janeiro, Brazil 91 

15 -23.55 -45.06 Ilha Anchieta, São Paulo, Brazil 92 

16 -20.80 -42.86 Viçosa, Minas Gerais, Brazil 93 

17 -28.22 -51.17 Estação Aracuri, Rio Grande do Sul, Brazil 94 

18 -22.94 -46.75 Itatiba, São Paulo, Brazil 95 

19 -22.48 -47.59 Rio Claro, São Paulo, Brazil 96 

20 -22.82 -47.43 Santa Barbara do Oeste, São Paulo, Brazil 97 

21 -22.67 -47.20 Cosmópolis, São Paulo, Brazil 97 

22 -22.57 -47.50 Iracemápolis, São Paulo, Brazil 97 

23 -23.55 -46.72 São Paulo, Brazil 98 

24 -22.71 -47.61 Piracicaba, São Paulo, Brazil 99 

25 -22.77 -43.69 Rio de Janeiro, Brazil 100 

26 37.79 -25.18 Azores, Portugal 101 

  27* 0.30 34.79 Kakamega Forest, Kenya 102 

28 -25.49 -49.26 Curitiba, Paraná, Brazil 103 

29 -25.44 -49.24 Curitiba, Paraná, Brazil 103 

30 -25.44 -49.22 Curitiba, Paraná, Brazil 103 

31 -25.42 -49.37 Curitiba, Paraná, Brazil 103 

32 -25.41 -49.27 Curitiba, Paraná, Brazil 103 

33 -25.36 -49.26 Curitiba, Paraná, Brazil 103 

34 -25.38 -49.32 Curitiba, Paraná, Brazil 103 

35 -25.17 -48.41 Paraná, Brazil 104 

36 28.03 -15.46 Bandama, Gran Canaria, Spain 105 

37 28.07 -15.46 El Palomar, Gran Canaria, Spain 105 

38 -12.99 -41.34 Chapada Diamantina, Bahia, Brazil 106 

39 37.18 -6.32 Hato Ratón, Sevilla, Spain 107 

40 -16.40 -67.50 Chulumani, Bolivia 108 

41 30.33 130.50 Yakushima Island, Japan 109 
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Network ID Latitude Longitude Location Reference 

42 -18.95 -48.20 Uberlândia, Minas Gerais, Brazil 110 

43 21.44 -158.08 Ēkahanui, Hawai’i, USA 28 

44 21.54 -158.19 Kahanahāiki, Hawai’i, USA 28 

45 21.38 -157.87 Moanalua, Hawai’i, USA 28 

46 21.51 -158.14 Mount Kaʻala, Hawai’i, USA 28 

47 21.54 -158.18 Pahole, Hawai’i, USA 28 

48 21.34 -157.81 Tantalus, Hawai’i, USA 28 

49 21.63 -158.04 Waimea Valley, Hawai’i, USA 28 

50 37.57 -0.91 Sierra de la Fausilla, Murcia, Spain 111 

51 26.99 92.94 Pakke Tiger Reserve, India 112 

52 7.77 -76.67 Tulenapa, Antioquia, Colombia 113 

53 43.28 -5.50 Cantabrian Range, Spain 114 

54 -29.06 -50.07 Rio Grande do Sul, Brazil 115 

55 -31.67 -53.25 Rio Grande do Sul, Brazil 115 

56 15.17 145.77 Saipan, Mariana Islands 116 

57 14.14 145.21 Rota, Mariana Islands 116 

58 -0.75 -90.32 Santa Cruz, Galapagos Islands 117 

59 52.74 23.78 Białowieża Forest, Poland 118 

60 -4.92 -73.75 Jenaro Herrera, Peru 119 

61 18.47 -67.11 Finca Montaña, Aguadilla, Puerto Rico 120 

62 19.59 -96.38 Veracruz, Mexico 121 

63 -8.97 -36.05 Coimbra Forest, Alagoas, Brazil 122 

64 -41.29 174.73 Wellington, Aotearoa New Zealand 30 

65 -41.29 174.75 Wellington, Aotearoa New Zealand 30 

66 -41.30 174.75 George Denton Park, Aotearoa New Zealand 30 

67 -41.29 174.80 Charles Plimmer Park, Aotearoa New Zealand 30 

68 -41.28 174.77 Wellington, Aotearoa New Zealand 30 

69 -42.35 173.57 Hinau Reserve, Aotearoa New Zealand 30 

70 -42.33 173.63 Mount Fyffe Reserve, Aotearoa New Zealand 30 

71 -42.28 173.74 Puhi-Puhi, Aotearoa New Zealand 30 

72 -42.24 173.78 Blue Duck Reserve, Aotearoa New Zealand 30 

73 40.22 -8.46 Choupal, Coimbra, Portugal 123 

74 -41.30 174.75 Wellington, Aotearoa New Zealand 124 

75 -12.93 -38.40 Salvador, Bahia, Brazil 125 

76 26.93 92.97 Pakke Tiger Reserve, India 126 

77 27.02 92.95 Papum Reserve Forest, India 126 

78 -43.75 169.40 Windbag Valley, Aotearoa New Zealand 127 

79 37.78 -25.15 Azores, Portugal 101 

80 37.80 -25.16 Azores, Portugal 101 

81 37.79 -25.16 Azores, Portugal 101 

82 40.31 -8.40 Coimbra, Portugal 128 

83 40.26 -8.48 Coimbra, Portugal Unpublished 

84 -0.66 -90.32 Santa Cruz, Galapagos Islands 117 

85 -0.91 -89.43 San Cristóbal, Galapagos Islands 117 

86 -0.89 -89.49 San Cristóbal, Galapagos Islands 117 
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Network ID Latitude Longitude Location Reference 

87 -19.95 34.37 Gorongosa National Park, Mozambique 129 

88 13.70 80.19 Sriharikota Island, India 130 

89 -5.05 -37.52 Furna Feia, Rio Grande do Norte, Brazil 131 

90 -7.22 146.81 Mount Missim, New Guinea 132 

91 -9.45 147.35 Varirata National Park, New Guinea 133 

92 -29.12 26.17 Bloemfontein, South Africa 134 

93 -37.62 144.42 Lerderderg Park, Australia 135 

94 -37.72 145.57 Mt Healesville and Donna Buang, Australia 136 

95 -41.33 173.05 Brightwater, Aotearoa New Zealand 137 

96 -41.32 173.26 Nelson, Aotearoa New Zealand 137 

97 -41.41 173.04 Faulkners, Wakefield, Aotearoa New Zealand 137 

98 -22.28 -41.68 Restinga de Jurubatiba, Rio de Janeiro, Brazil 138 

99 -15.95 -47.97 Brasília, Brazil 139 

100 -19.77 -40.04 Comboios, Espírito Santo, Brazil 140 

101 -23.37 -46.60 Cantareira, São Paulo, Brazil 141 

102 -19.57 -56.20 Pantanal, Brazil 142 

103 -22.39 -47.54 Rio Claro, São Paulo, Brazil Unpublished 

104 -21.73 -48.02 Araraquara, São Paulo, Brazil 143 

105 -24.73 -64.67 El Rey National Park, Argentina 144 

106 -27.25 -65.88 Campo de Los Alisos, Argentina 144 

107 -27.23 -65.62 La Florida Provincial Park, Argentina 144 

108 -26.80 -65.30 San Javier y Yerba Huasi, Argentina 145 

109 -24.76 -64.69 Pozo Verde, El Rey National Park, Argentina 146 

110 -27.03 -65.77 Quebrada del Portugues, Argentina 144 

111 -24.10 -64.45 EcoPortal de Piedra, Argentina 144 

112 -23.69 -64.88 Calilegua National Park, Argentina 144 

113 -23.69 -64.87 Calilegua National Park, Argentina 144 

114 -22.28 -64.71 El Nogalar de los Toldos, Argentina 144 

115 -26.75 -65.33 Parque Sierra de San Javier, Argentina 146 

116 -26.80 -65.33 Parque Sierra de San Javier, Argentina Unpublished 

117 -15.35 -39.20 Bahia, Brazil 147 

118 -15.21 -39.14 Bahia, Brazil 147 

119 -15.13 -39.12 Bahia, Brazil 147 

120 -15.25 -39.08 Bahia, Brazil 147 

121 -15.26 -39.09 Bahia, Brazil 147 

122 10.28 -84.05 Rara Avis Reserve, Costa Rica 148 

123 -17.85 146.08 Mission Beach, Queensland, Australia 149 

124 10.35 77.04 Valparai and Anamalai Reserve, India 150 

125 31.07 103.71 Dujiangyan, Sichuan Province, China 151 

126 31.05 103.74 Dujiangyan, Sichuan Province, China 151 

127 31.05 103.73 Dujiangyan, Sichuan Province, China 151 

128 31.06 103.72 Dujiangyan, Sichuan Province, China 151 

129 31.05 103.72 Dujiangyan, Sichuan Province, China 151 

130 31.08 103.70 Dujiangyan, Sichuan Province, China 151 

131 31.09 103.72 Dujiangyan, Sichuan Province, China 151 
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Network ID Latitude Longitude Location Reference 

132 31.09 103.73 Dujiangyan, Sichuan Province, China 151 

133 31.08 103.72 Dujiangyan, Sichuan Province, China 151 

134 31.06 103.73 Dujiangyan, Sichuan Province, China 151 

135 31.06 103.72 Dujiangyan, Sichuan Province, China 151 

136 31.05 103.73 Dujiangyan, Sichuan Province, China 151 

137 31.05 103.73 Dujiangyan, Sichuan Province, China 151 

138 37.98 -2.90 Serranía de Cazorla, Spain 152 

139 37.38 -5.71 El Viso del Alcor, Sevilla, Spain 152 

140 50.30 8.66 Friedberg, Hesse, Germany 153 

141 51.15 9.00 Kellerwald-Edersee, Germany 154 

142 -3.23 37.27 Mt Kilimanjaro, Tanzania 79 

143 -3.25 37.32 Mt Kilimanjaro, Tanzania 79 

144 -3.27 37.47 Mt Kilimanjaro, Tanzania 79 

145 -3.17 37.24 Mt Kilimanjaro, Tanzania 79 

146 -3.21 37.34 Mt Kilimanjaro, Tanzania 79 

147 -3.26 37.42 Mt Kilimanjaro, Tanzania 79 

148 -3.26 37.42 Mt Kilimanjaro, Tanzania 79 

149 -3.23 37.52 Mt Kilimanjaro, Tanzania 79 

150 -3.14 37.24 Mt Kilimanjaro, Tanzania 79 

151 -3.13 37.24 Mt Kilimanjaro, Tanzania 79 

152 -3.14 37.30 Mt Kilimanjaro, Tanzania 79 

153 -3.14 37.31 Mt Kilimanjaro, Tanzania 79 

154 -3.17 37.36 Mt Kilimanjaro, Tanzania 79 

155 -3.15 37.29 Mt Kilimanjaro, Tanzania 79 

156 -3.18 37.36 Mt Kilimanjaro, Tanzania 79 

157 -3.19 37.51 Mt Kilimanjaro, Tanzania 79 

158 -3.20 37.52 Mt Kilimanjaro, Tanzania 79 

159 -3.19 37.44 Mt Kilimanjaro, Tanzania 79 

160 -3.10 37.26 Mt Kilimanjaro, Tanzania 79 

161 -3.17 37.36 Mt Kilimanjaro, Tanzania 79 

162 -3.16 37.36 Mt Kilimanjaro, Tanzania 79 

163 -3.19 37.44 Mt Kilimanjaro, Tanzania 79 

164 -3.18 37.51 Mt Kilimanjaro, Tanzania 79 

165 -3.18 37.25 Mt Kilimanjaro, Tanzania 79 

166 -3.30 37.50 Mt Kilimanjaro, Tanzania 79 

167 -3.33 37.50 Mt Kilimanjaro, Tanzania 79 

168 -3.30 37.62 Mt Kilimanjaro, Tanzania 79 

169 -3.19 37.25 Mt Kilimanjaro, Tanzania 79 

170 -3.27 37.60 Mt Kilimanjaro, Tanzania 79 

171 -3.32 37.67 Mt Kilimanjaro, Tanzania 79 

172 -3.37 37.45 Mt Kilimanjaro, Tanzania 79 

173 -3.38 37.50 Mt Kilimanjaro, Tanzania 79 

174 -3.33 37.64 Mt Kilimanjaro, Tanzania 82 

175 -3.32 37.68 Mt Kilimanjaro, Tanzania 82 

176 -3.31 37.68 Mt Kilimanjaro, Tanzania 79 
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Network ID Latitude Longitude Location Reference 

177 -16.40 -67.50 Chulumani, Bolivia 108 

178 4.72 -75.57 Otún Quimbaya, Colombia 155 

179 4.70 -75.48 Ucumarí, Colombia 155 

180 -3.96 -79.06 Podocarpus National Park, Ecuador 19 

181 -4.10 -79.17 Podocarpus National Park, Ecuador 19 

182 -13.05 -71.54 San Pedro, Peru 156 

183 -13.17 -71.58 Wayqecha, Peru 156 

184 9.71 -69.58 Yacambú National Park, Venezuela 157 

185 10.39 -67.02 Altos de Pipe, Coastal Cordillera, Venezuela 157 

186 10.30 79.85 Point Calimere Wildlife Sanctuary, India 158 

187 20.60 -156.33 Kanaio Natural Area Reserve, Hawai’i 159 

188 -3.37 38.33 Taita Hills, Kenya 160 

189 40.13 -88.17 Champaign County, Illinois, USA 161 

190 -17.53 -149.83 Moorea, French Polynesia 162 

191 10.47 -83.51 Tortuguero, Costa Rica 163 

192 24.80 121.25 Fushan Experimental Forest, Taiwan 164 

193 22.46 91.77 Chittagong, Bangladesh 165 

194 10.42 -84.01 La Selva Biological Station, Costa Rica 166 

195 10.42 -84.02 La Selva Biological Station, Costa Rica 167 

196 39.14 2.94 Cabrera Island, Spain 168 

 

* Obtained through the Web of Life database (35). 
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Table S2. Quantitative metrics of network sampling. Sampling intensity and completeness aim 

to account for how complete network sampling was in terms of species interactions, while 

sampling hours and months account for the time-span of the study (see more details on the 

‘Generating the distance matrices’ section). 

 

Sampling metric Rationale 

Sampling intensity Sampling intensity was calculated as the square-root of the number 

of interaction events divided by the square-root of the product of the 

number of plant and animal species in the local network [following 

(169)]. Sampling intensity was included in our models because it 

presented a strong and positive relationship with the ratio between 

the number of interactions sampled in the local network and the 

number of known possible interactions (among that same set of 

species) in the region (for the subset of networks within the Aotearoa 

New Zealand meta-network) (Fig. S7).  

Sampling completeness Sampling completeness was calculated as the observed richness of 

links divided by the estimated richness of links in the local network 

[following (170)]. We used the Chao 1 richness estimator (171) to 

obtain the estimated number of links in our networks. Sampling 

completeness was not included in our models because it did not 

present a significant relationship with the ratio between the number 

of interactions in the local network and the number of known possible 

interactions (among that same set of species) in the region (Fig. S7). 

Thus, we considered that this metric did not provide a good 

representation of how complete network sampling was in terms of 

species interactions. 

Sampling hours Number of sampling hours was included in our statistical models 

because it presented strong and positive relationships with bird 

richness, plant richness and number of links in the local networks 

(Fig. S8).  

Sampling months Number of sampling months was included in our statistical models 

because it presented a strong and positive relationship with the ratio 

between the number of interactions in the local network and the 

number of known possible interactions (among that same set of 

species) in the region (Fig. S7), as well as with plant richness and 

number of links in the local networks (for the entire dataset) (Fig. 

S8).  
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Table S3. Description of variables used to generate the methods dissimilarity matrix.  

 
  

Variable Description 

Sampling design Whether the sampling design was ‘transect’, ‘plot’, 

‘mist-net’, ‘focal observation’, ‘camera-trap’, or any 

combination of these. 

Sampling focus Whether the focal organisms were frugivorous birds, 

plants, or both. 

Sampling coverage Whether there were focal species (‘partial coverage’) or 

not (‘total coverage’). 

Interaction frequency type Whether interaction frequency was estimated by 

counting the number of bird visits, number of fruits 

consumed by the bird, number of seeds in bird 

droppings, or number of bird droppings with seeds. 
 

  



 

 

38 

 

Table S4. Multiple drivers of species turnover (βS) on plant-frugivore networks. Here, we 

used the binary version of ecoregion and biome distance matrices. P values were calculated using 

a combination of generalized additive models and multiple regression on distance matrices. EDF 

represents the estimated degrees of freedom for each smooth term in the model. Bold values 

indicate statistically significant results (P < 0.05). N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.976 1734.300 0.001 

Ecoregion (same) -0.122 -38.093 0.001 

Biome (same) -0.008 -8.799 0.001 

Smooth Terms EDF F p 

s (local footprint distance) 8.312 28.504 0.001 

s (spatial distance) 8.866 725.571 0.001 

s (elevational difference) 5.589 99.954 0.001 

s (hours distance) 6.917 4.004 0.619 

s (months distance) 6.755 6.525 0.089 

s (years distance) 6.402 7.422 0.068 

s (sampling intensity distance) 1.007 26.580 0.005 

s (methods distance) 8.039 10.911 0.015 
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Table S5. Multiple drivers of species turnover (βS) on plant-frugivore networks. Here, we 

used the quantitative version (environmental dissimilarity) of ecoregion and biome distance 

matrices. P values were calculated using a combination of generalized additive models and 

multiple regression on distance matrices. EDF represents the estimated degrees of freedom for 

each smooth term in the model. Bold values indicate statistically significant results (P < 0.05). N 

pairs of networks = 19,110. 

 

Smooth Terms EDF F p 

s (ecoregion distance) 8.570 137.969 0.001 

s (biome distance) 8.202 37.937 0.001 

s (local footprint distance) 8.339 29.465 0.001 

s (spatial distance) 8.890 698.382 0.001 

s (elevational difference) 5.517 98.173 0.001 

s (hours distance) 7.330 4.876 0.448 

s (months distance) 5.371 5.811 0.109 

s (years distance) 6.152 7.741 0.063 

s (sampling intensity distance) 4.365 6.108 0.315 

s (methods distance) 7.996 11.474 0.017 
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Table S6. Multiple drivers of plant-frugivore interaction dissimilarity (βWN). Here, we used 

the quantitative version (environmental dissimilarity) of ecoregion and biome distance matrices. 

P values were calculated using a combination of generalized additive models and multiple 

regression on distance matrices. EDF represents the estimated degrees of freedom for each smooth 

term in the model. Bold values indicate statistically significant results (P < 0.05). N pairs of 

networks = 19,110. 

 

Smooth Terms EDF F p 

s (ecoregion distance) 8.595 110.122 0.001 

s (biome distance) 7.827 10.492 0.022 

s (local footprint distance) 8.570 32.573 0.001 

s (spatial distance) 8.855 81.843 0.001 

s (elevational difference) 6.024 48.426 0.001 

s (hours distance) 1.353 10.637 0.043 

s (months distance) 5.800 7.876 0.045 

s (years distance) 7.135 13.007 0.020 

s (sampling intensity distance) 1.010 5.437 0.267 

s (methods distance) 7.878 17.094 0.003 
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Table S7. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we used 

the binary version of ecoregion and biome distance matrices. P values were calculated using a 

combination of generalized additive models and multiple regression on distance matrices. EDF 

represents the estimated degrees of freedom for each smooth term in the model. Bold values 

indicate statistically significant results (P < 0.05). N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t p 

Intercept 2.689 222.572 0.002 

Ecoregion (same) 0.043 0.632 0.788 

Biome (same) -0.028 -1.345 0.770 

Smooth Terms EDF F p 

s (local footprint distance) 5.923 9.346 0.429 

s (spatial distance) 8.474 20.408 0.021 

s (elevational difference) 8.220 5.509 0.749 

s (hours distance) 8.006 7.944 0.969 

s (months distance) 5.961 7.077 0.693 

s (years distance) 6.868 14.999 0.461 

s (sampling intensity distance) 8.762 238.987 0.002 

s (methods distance) 8.586 17.372 0.231 

 

  



 

 

42 

 

Table S8. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we used 

the quantitative version (environmental dissimilarity) of ecoregion and biome distance matrices. 

P values were calculated using a combination of generalized additive models and multiple 

regression on distance matrices. EDF represents the estimated degrees of freedom for each smooth 

term in the model. Bold values indicate statistically significant results (P < 0.05). N pairs of 

networks = 19,110. 

 

Smooth Terms EDF F p 

s (ecoregion distance) 4.272 15.275 0.193 

s (biome distance) 7.697 12.115 0.568 

s (local footprint distance) 5.993 9.264 0.438 

s (spatial distance) 8.465 18.465 0.018 

s (elevational difference) 8.290 5.679 0.713 

s (hours distance) 7.857 8.913 0.955 

s (months distance) 6.173 8.239 0.606 

s (years distance) 6.751 12.872 0.545 

s (sampling intensity distance) 8.760 239.475 0.002 

s (methods distance) 8.501 15.584 0.257 
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Table S9. Multiple drivers of species turnover (βS) on plant-frugivore networks. Here, we 

used a buffer zone of 500 km and the alternative scenario 1 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.976 1735.325 0.001 

Ecoregion (same) -0.122 -38.147 0.001 

Biome (same) -0.008 -8.809 0.001 

Smooth Terms EDF F p 

s (local footprint distance) 8.312 28.538 0.001 

s (spatial distance) 8.867 725.453 0.001 

s (elevational difference) 5.600 99.711 0.001 

s (hours distance) 6.928 4.042 0.580 

s (months distance) 6.761 6.566 0.083 

s (years distance) 6.412 7.472 0.059 

s (sampling intensity distance) 1.001 26.885 0.005 

s (methods distance) 8.032 10.833 0.023 
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Table S10. Multiple drivers of species turnover (βS) on plant-frugivore networks. Here, we 

used a buffer zone of 500 km and the alternative scenario 2 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.976 1752.859 0.001 

Ecoregion (same) -0.123 -38.615 0.001 

Biome (same) -0.008 -8.084 0.001 

Smooth Terms EDF F p 

s (local footprint distance) 8.437 28.851 0.001 

s (spatial distance) 8.865 719.288 0.001 

s (elevational difference) 5.600 99.486 0.001 

s (hours distance) 7.126 4.330 0.559 

s (months distance) 4.001 6.532 0.091 

s (years distance) 6.548 8.206 0.069 

s (sampling intensity distance) 3.464 8.113 0.166 

s (methods distance) 8.114 11.641 0.013 
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Table S11. Multiple drivers of species turnover (βS) on plant-frugivore networks. Here, we 

used a buffer zone of 100 km and the alternative scenario 1 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.976 1736.530 0.001 

Ecoregion (same) -0.122 -38.181 0.001 

Biome (same) -0.009 -8.781 0.001 

Smooth Terms EDF F p 

s (local footprint distance) 8.317 28.664 0.002 

s (spatial distance) 8.866 725.286 0.001 

s (elevational difference) 5.606 99.783 0.001 

s (hours distance) 6.888 3.931 0.606 

s (months distance) 6.827 6.601 0.091 

s (years distance) 6.406 7.500 0.073 

s (sampling intensity distance) 1.002 26.760 0.008 

s (methods distance) 8.029 10.895 0.016 
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Table S12. Multiple drivers of species turnover (βS) on plant-frugivore networks. Here, we 

used a buffer zone of 100 km and the alternative scenario 2 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.976 1755.726 0.001 

Ecoregion (same) -0.122 -38.561 0.001 

Biome (same) -0.008 -8.354 0.001 

Smooth Terms EDF F p 

s (local footprint distance) 8.341 29.073 0.002 

s (spatial distance) 8.863 716.735 0.001 

s (elevational difference) 5.578 100.041 0.001 

s (hours distance) 6.987 3.990 0.592 

s (months distance) 6.819 6.693 0.107 

s (years distance) 6.484 7.966 0.063 

s (sampling intensity distance) 1.000 24.580 0.005 

s (methods distance) 8.013 11.066 0.018 
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Table S13. Multiple drivers of species turnover (βS) on plant-frugivore networks. Here, we 

used a buffer zone of 100 km and the alternative scenario 3 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.976 1735.345 0.001 

Ecoregion (same) -0.122 -38.157 0.001 

Biome (same) -0.009 -8.775 0.001 

Smooth Terms EDF F p 

s (local footprint distance) 8.317 28.665 0.002 

s (spatial distance) 8.866 723.914 0.001 

s (elevational difference) 5.587 99.935 0.001 

s (hours distance) 6.918 4.014 0.605 

s (months distance) 6.783 6.589 0.100 

s (years distance) 6.406 7.492 0.078 

s (sampling intensity distance) 1.000 26.866 0.004 

s (methods distance) 8.033 10.910 0.011 
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Table S14. Multiple drivers of species turnover (βS) on plant-frugivore networks. Here, we 

used a buffer zone of 1000 km and the alternative scenario 1 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.976 1734.871 0.001 

Ecoregion (same) -0.122 -38.147 0.001 

Biome (same) -0.009 -8.789 0.001 

Smooth Terms EDF F p 

s (local footprint distance) 8.309 28.531 0.001 

s (spatial distance) 8.866 725.141 0.001 

s (elevational difference) 5.605 99.321 0.001 

s (hours distance) 6.911 4.049 0.602 

s (months distance) 6.761 6.579 0.099 

s (years distance) 6.414 7.440 0.067 

s (sampling intensity distance) 1.002 26.590 0.005 

s (methods distance) 8.030 10.869 0.019 
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Table S15. Multiple drivers of species turnover (βS) on plant-frugivore networks. Here, we 

used a buffer zone of 1000 km and the alternative scenario 2 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.976 1755.726 0.001 

Ecoregion (same) -0.122 -38.561 0.001 

Biome (same) -0.008 -8.354 0.001 

Smooth Terms EDF F p 

s (local footprint distance) 8.341 29.073 0.001 

s (spatial distance) 8.863 716.735 0.001 

s (elevational difference) 5.578 100.041 0.001 

s (hours distance) 6.987 3.990 0.608 

s (months distance) 6.819 6.693 0.087 

s (years distance) 6.484 7.966 0.061 

s (sampling intensity distance) 1.000 24.580 0.008 

s (methods distance) 8.013 11.066 0.016 
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Table S16. Multiple drivers of species turnover (βS) on plant-frugivore networks. Here, we 

used a buffer zone of 1000 km and the alternative scenario 3 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.976 1733.860 0.001 

Ecoregion (same) -0.122 -38.095 0.001 

Biome (same) -0.009 -8.778 0.001 

Smooth Terms EDF F p 

s (local footprint distance) 8.308 28.497 0.001 

s (spatial distance) 8.866 725.333 0.001 

s (elevational difference) 5.594 99.561 0.001 

s (hours distance) 6.899 4.011 0.608 

s (months distance) 6.744 6.537 0.109 

s (years distance) 6.404 7.389 0.063 

s (sampling intensity distance) 1.004 26.506 0.006 

s (methods distance) 8.037 10.951 0.021 
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Table S17. Multiple drivers of plant-frugivore interaction dissimilarity (βWN). Here, we used 

a buffer zone of 500 km and the alternative scenario 1 (see ‘Alternative scenarios’ section) during 

the data cleaning process. The binary versions of ecoregion and biome distance matrices were used 

for estimating the effects of ecoregion and biome borders on the response variable. P values were 

calculated using a combination of generalized additive models and multiple regression on distance 

matrices. EDF represents the estimated degrees of freedom for each smooth term in the model. 

Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.997 2966.347 0.001 

Ecoregion (same) -0.070 -36.417 0.001 

Biome (same) -0.002 -3.317 0.039 

Smooth Terms EDF F p 

s (local footprint distance) 8.536 30.035 0.001 

s (spatial distance) 8.785 65.220 0.001 

s (elevational difference) 6.185 47.606 0.001 

s (hours distance) 1.545 5.545 0.294 

s (months distance) 5.502 6.966 0.074 

s (years distance) 7.216 11.880 0.013 

s (sampling intensity distance) 1.062 4.686 0.331 

s (methods distance) 7.848 15.987 0.004 
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Table S18. Multiple drivers of plant-frugivore interaction dissimilarity (βWN). Here, we used 

a buffer zone of 500 km and the alternative scenario 2 (see ‘Alternative scenarios’ section) during 

the data cleaning process. The binary versions of ecoregion and biome distance matrices were used 

for estimating the effects of ecoregion and biome borders on the response variable. P values were 

calculated using a combination of generalized additive models and multiple regression on distance 

matrices. EDF represents the estimated degrees of freedom for each smooth term in the model. 

Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.997 3002.392 0.001 

Ecoregion (same) -0.069 -36.473 0.001 

Biome (same) -0.002 -3.313 0.034 

Smooth Terms EDF F p 

s (local footprint distance) 8.551 30.504 0.001 

s (spatial distance) 8.783 64.233 0.001 

s (elevational difference) 6.107 47.553 0.001 

s (hours distance) 1.590 5.325 0.307 

s (months distance) 5.475 7.030 0.092 

s (years distance) 7.216 11.941 0.022 

s (sampling intensity distance) 1.003 5.041 0.319 

s (methods distance) 7.867 16.082 0.003 
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Table S19. Multiple drivers of plant-frugivore interaction dissimilarity (βWN). Here, we used 

a buffer zone of 100 km and the alternative scenario 1 (see ‘Alternative scenarios’ section) during 

the data cleaning process. The binary versions of ecoregion and biome distance matrices were used 

for estimating the effects of ecoregion and biome borders on the response variable. P values were 

calculated using a combination of generalized additive models and multiple regression on distance 

matrices. EDF represents the estimated degrees of freedom for each smooth term in the model. 

Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.997 2966.503 0.001 

Ecoregion (same) -0.070 -36.418 0.001 

Biome (same) -0.002 -3.321 0.047 

Smooth Terms EDF F p 

s (local footprint distance) 8.536 30.011 0.001 

s (spatial distance) 8.785 65.161 0.001 

s (elevational difference) 6.190 47.625 0.001 

s (hours distance) 1.546 5.546 0.272 

s (months distance) 5.504 6.965 0.074 

s (years distance) 7.215 11.883 0.021 

s (sampling intensity distance) 1.056 4.744 0.330 

s (methods distance) 7.851 16.023 0.005 
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Table S20. Multiple drivers of plant-frugivore interaction dissimilarity (βWN). Here, we used 

a buffer zone of 100 km and the alternative scenario 2 (see ‘Alternative scenarios’ section) during 

the data cleaning process. The binary versions of ecoregion and biome distance matrices were used 

for estimating the effects of ecoregion and biome borders on the response variable. P values were 

calculated using a combination of generalized additive models and multiple regression on distance 

matrices. EDF represents the estimated degrees of freedom for each smooth term in the model. 

Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.997 3002.382 0.001 

Ecoregion (same) -0.069 -36.474 0.001 

Biome (same) -0.002 -3.312 0.049 

Smooth Terms EDF F p 

s (local footprint distance) 8.551 30.506 0.002 

s (spatial distance) 8.782 64.153 0.001 

s (elevational difference) 6.109 47.538 0.001 

s (hours distance) 1.579 5.376 0.298 

s (months distance) 5.483 7.037 0.075 

s (years distance) 7.217 11.954 0.019 

s (sampling intensity distance) 1.003 5.036 0.311 

s (methods distance) 7.867 16.089 0.004 
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Table S21. Multiple drivers of plant-frugivore interaction dissimilarity (βWN). Here, we used 

a buffer zone of 100 km and the alternative scenario 3 (see ‘Alternative scenarios’ section) during 

the data cleaning process. The binary versions of ecoregion and biome distance matrices were used 

for estimating the effects of ecoregion and biome borders on the response variable. P values were 

calculated using a combination of generalized additive models and multiple regression on distance 

matrices. EDF represents the estimated degrees of freedom for each smooth term in the model. 

Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.997 2964.236 0.001 

Ecoregion (same) -0.070 -36.405 0.001 

Biome (same) -0.002 -3.324 0.046 

Smooth Terms EDF F p 

s (local footprint distance) 8.534 29.980 0.001 

s (spatial distance) 8.785 65.228 0.001 

s (elevational difference) 6.171 47.691 0.001 

s (hours distance) 1.559 5.453 0.301 

s (months distance) 5.490 6.908 0.076 

s (years distance) 7.210 11.881 0.020 

s (sampling intensity distance) 1.022 5.148 0.281 

s (methods distance) 7.850 16.024 0.004 
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Table S22. Multiple drivers of plant-frugivore interaction dissimilarity (βWN). Here, we used 

a buffer zone of 1000 km and the alternative scenario 1 (see ‘Alternative scenarios’ section) during 

the data cleaning process. The binary versions of ecoregion and biome distance matrices were used 

for estimating the effects of ecoregion and biome borders on the response variable. P values were 

calculated using a combination of generalized additive models and multiple regression on distance 

matrices. EDF represents the estimated degrees of freedom for each smooth term in the model. 

Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.997 2966.167 0.001 

Ecoregion (same) -0.070 -36.419 0.001 

Biome (same) -0.002 -3.311 0.032 

Smooth Terms EDF F p 

s (local footprint distance) 8.536 30.036 0.001 

s (spatial distance) 8.785 65.100 0.001 

s (elevational difference) 6.187 47.586 0.001 

s (hours distance) 1.532 5.585 0.299 

s (months distance) 5.511 6.974 0.076 

s (years distance) 7.217 11.890 0.019 

s (sampling intensity distance) 1.085 4.382 0.377 

s (methods distance) 7.849 15.996 0.004 
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Table S23. Multiple drivers of plant-frugivore interaction dissimilarity (βWN). Here, we used 

a buffer zone of 1000 km and the alternative scenario 2 (see ‘Alternative scenarios’ section) during 

the data cleaning process. The binary versions of ecoregion and biome distance matrices were used 

for estimating the effects of ecoregion and biome borders on the response variable. P values were 

calculated using a combination of generalized additive models and multiple regression on distance 

matrices. EDF represents the estimated degrees of freedom for each smooth term in the model. 

Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.997 3002.382 0.001 

Ecoregion (same) -0.069 -36.474 0.001 

Biome (same) -0.002 -3.312 0.048 

Smooth Terms EDF F p 

s (local footprint distance) 8.551 30.506 0.002 

s (spatial distance) 8.782 64.153 0.001 

s (elevational difference) 6.109 47.538 0.001 

s (hours distance) 1.579 5.376 0.311 

s (months distance) 5.483 7.037 0.054 

s (years distance) 7.217 11.954 0.017 

s (sampling intensity distance) 1.003 5.036 0.320 

s (methods distance) 7.867 16.089 0.004 
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Table S24. Multiple drivers of plant-frugivore interaction dissimilarity (βWN). Here, we used 

a buffer zone of 1000 km and the alternative scenario 3 (see ‘Alternative scenarios’ section) during 

the data cleaning process. The binary versions of ecoregion and biome distance matrices were used 

for estimating the effects of ecoregion and biome borders on the response variable. P values were 

calculated using a combination of generalized additive models and multiple regression on distance 

matrices. EDF represents the estimated degrees of freedom for each smooth term in the model. 

Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t p 

Intercept 0.997 2964.095 0.001 

Ecoregion (same) -0.070 -36.404 0.001 

Biome (same) -0.002 -3.318 0.042 

Smooth Terms EDF F p 

s (local footprint distance) 8.534 29.989 0.002 

s (spatial distance) 8.785 65.276 0.001 

s (elevational difference) 6.170 47.687 0.001 

s (hours distance) 1.547 5.482 0.300 

s (months distance) 5.491 6.909 0.073 

s (years distance) 7.210 11.857 0.020 

s (sampling intensity distance) 1.026 4.983 0.287 

s (methods distance) 7.849 16.010 0.003 
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Table S25. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we 

used a buffer zone of 500 km and the alternative scenario 1 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 2.686 221.962 0.004 

Ecoregion (same) 0.044 0.646 0.775 

Biome (same) -0.024 -1.115 0.826 

Smooth Terms EDF F p 

s (local footprint distance) 5.948 9.481 0.439 

s (spatial distance) 8.473 20.322 0.015 

s (elevational difference) 8.233 5.501 0.724 

s (hours distance) 8.051 7.960 0.968 

s (months distance) 6.239 7.217 0.667 

s (years distance) 6.830 13.941 0.497 

s (sampling intensity distance) 8.759 240.837 0.001 

s (methods distance) 8.595 17.496 0.233 
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Table S26. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we 

used a buffer zone of 500 km and the alternative scenario 2 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 2.685 222.539 0.002 

Ecoregion (same) 0.084 1.229 0.561 

Biome (same) -0.024 -1.157 0.801 

Smooth Terms EDF F p 

s (local footprint distance) 5.417 9.472 0.460 

s (spatial distance) 8.587 28.061 0.002 

s (elevational difference) 7.800 3.418 0.904 

s (hours distance) 8.088 7.568 0.973 

s (months distance) 7.129 7.330 0.682 

s (years distance) 6.823 12.437 0.555 

s (sampling intensity distance) 8.758 275.291 0.001 

s (methods distance) 8.550 18.139 0.191 
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Table S27. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we 

used a buffer zone of 100 km and the alternative scenario 1 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 2.691 222.709 0.007 

Ecoregion (same) 0.052 0.757 0.743 

Biome (same) -0.028 -1.364 0.762 

Smooth Terms EDF F p 

s (local footprint distance) 5.834 9.562 0.428 

s (spatial distance) 8.470 20.654 0.018 

s (elevational difference) 8.080 4.412 0.817 

s (hours distance) 8.130 8.456 0.965 

s (months distance) 6.321 7.283 0.647 

s (years distance) 6.827 13.789 0.501 

s (sampling intensity distance) 8.745 241.194 0.003 

s (methods distance) 8.590 17.524 0.209 
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Table S28. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we 

used a buffer zone of 100 km and the alternative scenario 2 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 2.684 222.432 0.004 

Ecoregion (same) 0.089 1.311 0.549 

Biome (same) -0.023 -1.085 0.812 

Smooth Terms EDF F p 

s (local footprint distance) 5.330 9.475 0.436 

s (spatial distance) 8.590 28.764 0.003 

s (elevational difference) 1.026 4.544 0.803 

s (hours distance) 8.122 7.758 0.981 

s (months distance) 7.189 7.442 0.677 

s (years distance) 6.821 12.365 0.583 

s (sampling intensity distance) 8.761 275.772 0.001 

s (methods distance) 8.540 17.893 0.205 
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Table S29. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we 

used a buffer zone of 100 km and the alternative scenario 3 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 2.689 222.557 0.008 

Ecoregion (same) 0.044 0.639 0.754 

Biome (same) -0.031 -1.443 0.741 

Smooth Terms EDF F p 

s (local footprint distance) 5.869 9.131 0.446 

s (spatial distance) 8.479 20.589 0.021 

s (elevational difference) 8.217 5.476 0.755 

s (hours distance) 8.052 7.939 0.966 

s (months distance) 6.005 7.020 0.675 

s (years distance) 6.834 14.956 0.411 

s (sampling intensity distance) 8.746 238.220 0.003 

s (methods distance) 8.583 17.496 0.206 
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Table S30. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we 

used a buffer zone of 1000 km and the alternative scenario 1 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 2.687 222.335 0.001 

Ecoregion (same) 0.047 0.681 0.776 

Biome (same) -0.026 -1.251 0.802 

Smooth Terms EDF F p 

s (local footprint distance) 5.954 9.761 0.432 

s (spatial distance) 8.483 20.514 0.010 

s (elevational difference) 8.243 5.492 0.736 

s (hours distance) 8.009 7.896 0.970 

s (months distance) 6.128 6.943 0.699 

s (years distance) 6.852 13.832 0.496 

s (sampling intensity distance) 8.789 245.694 0.002 

s (methods distance) 8.593 17.437 0.229 
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Table S31. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we 

used a buffer zone of 1000 km and the alternative scenario 2 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 2.685 222.527 0.004 

Ecoregion (same) 0.084 1.225 0.562 

Biome (same) -0.022 -1.058 0.844 

Smooth Terms EDF F p 

s (local footprint distance) 5.417 9.454 0.427 

s (spatial distance) 8.588 28.139 0.008 

s (elevational difference) 7.796 3.409 0.893 

s (hours distance) 8.098 7.547 0.977 

s (months distance) 7.123 7.341 0.669 

s (years distance) 6.851 12.533 0.570 

s (sampling intensity distance) 8.757 275.296 0.001 

s (methods distance) 8.551 18.041 0.182 
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Table S33. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we 

used a buffer zone of 1000 km and the alternative scenario 3 (see ‘Alternative scenarios’ section) 

during the data cleaning process. The binary versions of ecoregion and biome distance matrices 

were used for estimating the effects of ecoregion and biome borders on the response variable. P 

values were calculated using a combination of generalized additive models and multiple regression 

on distance matrices. EDF represents the estimated degrees of freedom for each smooth term in 

the model. Bold values indicate statistically significant results (P < 0.05). N pairs of networks = 

19,110. 

 

Parametric coefficients Estimate t p 

Intercept 2.692 223.088 0.008 

Ecoregion (same) 0.045 0.663 0.766 

Biome (same) -0.033 -1.581 0.748 

Smooth Terms EDF F p 

s (local footprint distance) 5.943 9.649 0.423 

s (spatial distance) 8.491 20.649 0.013 

s (elevational difference) 8.230 5.556 0.727 

s (hours distance) 8.063 8.161 0.956 

s (months distance) 5.980 6.955 0.711 

s (years distance) 6.778 14.670 0.479 

s (sampling intensity distance) 8.792 243.787 0.001 

s (methods distance) 8.578 17.155 0.237 

 

  



 

 

67 

 

Table S34. Multiple drivers of plant-frugivore interaction dissimilarity (βWN). Here, we used 

the binary version of ecoregion and biome distance matrices and removed the study with the 

greatest number of networks in our dataset [study 76 (79)] from the data. P values were calculated 

using a combination of generalized additive models and multiple regression on distance matrices. 

EDF represents the estimated degrees of freedom for each smooth term in the model. Bold values 

indicate statistically significant results (P < 0.05). N pairs of networks = 12,880. 

 

Parametric coefficients Estimate t p 

Intercept 0.995 2816.925 0.001 

Ecoregion (same) -0.077 -33.132 0.001 

Biome (same) -0.0008 -1.254 0.380 

Smooth Terms EDF F p 

s (local footprint distance) 6.871 11.919 0.005 

s (spatial distance) 8.917 139.693 0.001 

s (elevational difference) 5.502 9.025 0.035 

s (hours distance) 2.007 7.295 0.106 

s (months distance) 7.806 23.758 0.001 

s (years distance) 8.500 33.731 0.001 

s (sampling intensity distance) 1.002 0.015 0.992 

s (methods distance) 8.571 61.413 0.001 
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Table S35. Multiple drivers of plant-frugivore network structural dissimilarity. Here, we 

used the binary version of ecoregion and biome distance matrices and removed the study with the 

greatest number of networks in our dataset [study 76 (79)] from the data. P values were calculated 

using a combination of generalized additive models and multiple regression on distance matrices. 

EDF represents the estimated degrees of freedom for each smooth term in the model. Bold values 

indicate statistically significant results (P < 0.05). N pairs of networks = 12,880. 

 

Parametric coefficients Estimate t p 

Intercept 2.568 184.419 0.022 

Ecoregion (same) -0.075 -0.826 0.544 

Biome (same) 0.041 1.595 0.679 

Smooth Terms EDF F p 

s (local footprint distance) 4.419 13.240 0.121 

s (spatial distance) 8.540 27.067 0.005 

s (elevational difference) 7.486 11.064 0.364 

s (hours distance) 7.717 8.123 0.923 

s (months distance) 6.900 5.378 0.714 

s (years distance) 5.505 10.312 0.424 

s (sampling intensity distance) 8.534 126.502 0.008 

s (methods distance) 8.489 14.492 0.190 
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Table S36. Multiple drivers of interaction rewiring (βOS) on plant-frugivore networks. Here, 

we show the results from a generalized additive mixed-effects model (GAMM) using network IDs 

as random effects (one random factor for each of the pairs across which distance is compared) to 

account for the non-independence of distances (see ‘Rewiring analysis’ section). EDF represents 

the estimated degrees of freedom for each smooth term in the model. Bold values indicate 

statistically significant results (P < 0.05). N pairs of networks = 1,314. 

 

Parametric coefficients Estimate t p 

Intercept 0.576 25.267 <2e-16 

Ecoregion (same) -0.017 -0.640 0.522 

Biome (same) -0.033 -1.355 0.176 

Smooth Terms EDF F p 

s (local footprint distance) 1.875 5.046 0.005 

s (spatial distance) 2.869 17.933 1.62e-10 

s (elevational difference) 3.108 13.441 7.64e-09 

s (hours distance) 1.001 5.624 0.018 

s (months distance) 3.431 1.439 0.140 

s (years distance) 1.000 0.907 0.341 

s (sampling intensity distance) 2.029 3.765 0.023 

s (methods distance) 1.000 5.126 0.024 
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Table S37. The effect of large-scale ecological boundaries on interaction rewiring (βOS). Here, 

we show the results from a generalized additive mixed-effects model (GAMM) using ecoregion 

and biome distance metrics as predictors and network IDs as random effects (one random factor 

for each of the pairs across which distance is compared) to account for the non-independence of 

distances (see ‘Rewiring analysis’ section). Bold values indicate statistically significant results (P 

< 0.05). Note that, contrary to the full model (Table S36), the effect of ecoregion boundaries is 

significant, likely because of their collinearity with our other predictor variables. N pairs of 

networks = 1,314. 

 

Parametric coefficients Estimate t p 

Intercept 0.579 22.975 <2e-16 

Ecoregion (same) -0.155 -6.756 2.13e-11 

Biome (same) 0.005 0.202 0.84 

 


