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Abstract 
 
The complex cellular milieu can spontaneously de-mix in a process controlled in part by proteins 
that are intrinsically disordered (ID). A protein’s propensity to de-mix is thought to be driven by 
the preference for protein-protein rather than protein-solvent interactions. The hydrodynamic size 
of monomeric proteins, as quantified by the polymer scaling exponent (v), is driven by a similar 
balance. We hypothesize that mean v, as predicted by the protein sequence, will be smaller for 
proteins with a strong propensity to de-mix. To test this hypothesis, we analyzed protein databases 
containing subsets that are either folded, disordered, or disordered and known to spontaneously 
phase separate. We find that the phase separating disordered proteins, on average, have lower 
calculated values of v compared to their non-phase separating counterparts. Moreover, these 
proteins have a higher sequence-predicted propensity for β-turns. Using a simple, surface area-
based model, we propose a physical mechanism for this difference: transient β-turn structures 
reduce the desolvation penalty of forming a protein-rich phase and increase exposure of atoms 
involved in π/sp2 electronic interactions. By this mechanism, β-turns act as energetically favored 
nucleation points, which may explain the increased propensity for turns in ID regions (IDRs) that 
are utilized biologically for phase separation. Phase separating IDRs, non-phase separating IDRs, 
and folded regions could be distinguished by combining v and β-turn propensity, and we propose 
a new algorithm, ParSe (partition sequence), for predicting phase separating protein regions. ParSe 
is able to accurately identify folded, disordered, and phase-separating protein regions from the 
primary sequence. 
 
 
 
Keywords: intrinsically disordered protein; protein self-assembly; protein-protein interaction; 
protein sequence; subcellular organelle 
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Introduction 
 
Protein liquid-liquid phase separation (LLPS) is increasingly recognized as an important 
organizing phenomenon in cells. LLPS is a reversible process whereby complex protein mixtures 
spontaneously de-mix into liquid droplets that are enriched in a particular protein; concomitantly, 
surrounding regions are depleted of that protein (1). This de-mixing transition is thought to provide 
temporal and spatial control over intracellular interactions by assembling collections of proteins 
into structures called membraneless organelles (2), a key step in the regulatory function of P 
bodies, the nucleolus, and germ granules (3–5). The physical mechanisms responsible for LLPS 
are not fully understood, but it is known to be facilitated primarily, though not exclusively (6, 7), 
by proteins that are intrinsically disordered (ID) or contain large ID regions (IDRs) (8, 9, 2) –
proteins termed intrinsically disordered proteins (IDPs). The propensity for a particular protein to 
phase separate is, in general, determined by the balance of intra-molecular and solvent interactions. 
In part, based on mechanistic insights into the nature of these interactions, several groups have 
developed sequence-based predictors to identify LLPS regions (10–12).  
 
The same interactions that drive LLPS have also been hypothesized to affect hydrodynamic size 
of monomeric IDRs. The hydrodynamic size of IDRs has been found to vary substantially with the 
primary sequence (13, 14) and appears important for the function of IDRs. For example, some 
IDPs regulate the remodeling of cellular membranes, and their size controls curvature at membrane 
surfaces (15, 16). Conceptually, favorable interactions with the solvent give rise to mean ensemble 
dimensions for the polymer that are elongated and swollen when compared to the compacted 
dimensions observed when self-interactions dominate. One framework to quantify this relationship 
is derived from polymer theories developed for long homopolymers (17, 18). Despite some 
limitations (19), homopolymer theories have been successful in describing the properties of short, 
heteropolymeric IDRs (20–25). In particular, the polymer scaling exponent, v, has been used to 
extract information on the balance of protein-self and protein-solvent interactions (26, 27, 13). 
This exponent is obtained experimentally from the dependence of size (e.g., hydrodynamic radius, 
Rh, or radius of gyration, Rg) on polymer length, N, in the power law relationship, 𝑅! ∝ 	𝑁".  
 
Because biomolecular LLPS includes the exchange of macromolecule-solvent interactions for 
macromolecule-macromolecule interactions (28–30), v could be a predictor of LLPS potential 
among heteropolymeric IDRs (19, 24, 25, 31). Numerous studies have already found that the 
hydrodynamic dimensions of some IDRs are correlated to the temperature dependence of the de-
mixing transition (24, 32, 33). Moreover, Dignon and coworkers found in molecular simulations 
that the critical temperature of phase separation and the internal scaling exponent, vint, which is a 
variation on v calculated as the average intrachain pairwise distance in a single chain, 〈𝑅#$%〉 ∝
|𝑖 − 𝑗|&!"#  (34), are correlated properties (19). However, whether the scaling exponent of a 
monomeric IDR can predict its potential for LLPS remains unclear.   
 
We (14, 22, 35) and others (13, 36) have developed sequence-based methods to predict the 
hydrodynamic dimensions of IDPs, allowing us to test whether an IDP’s potential to phase separate 
can be predicted from its monomeric scaling exponent, v. We hypothesize that the same self-
interactions that facilitate LLPS will reduce the mean Rh (and thus v) for IDRs competent to phase 
separate into protein-rich droplets when compared to IDRs that are not (19, 24, 25, 31). Indeed, 
this trend is evident and shown schematically in Figure 1. Moreover, we find that β-turn propensity 
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(37–39) is higher for phase separating IDRs, and we develop a simple surface area-based approach 
to show how β-turns can reduce the desolvation penalty in LLPS. Using these observations, we 
developed the computer algorithm ParSe (partition sequence) for predicting folded, phase-
separating ID, and non-phase-separating ID regions given only the primary sequence. A basic 
version of the algorithm has been made web-accessible at: folding.chemistry.msstate.edu/utils/ 
parse.html. We find that the predictions from ParSe had strong correlations to other predictors of 
protein phase separation (10–12, 40), indicating that β-turns and v may provide physically 
meaningful insight into the diverse molecular mechanisms driving LLPS.  
 
 
Results  
 
Sequence calculated polymer scaling exponent, vmodel, is reduced in IDRs from proteins that 
exhibit LLPS when compared to IDRs in general. Proteins have modular structures, which can 
consist of folded regions and IDRs. Among the IDRs, some potentially drive phase separation, and 
some do not. For example, the 685-residue Sup35 protein from yeast has three domains (41); the 
ID N-terminal prion domain (residues 1-124), the ID middle domain (residues 125-254), and the 
folded (42) C-terminal catalytic domain (residues 255-685). Of these domains, only the N-terminal 
prion domain mediates phase separation (41). Here, the word domain is used to identify a protein 
region that has distinctive features or properties, and not necessarily to indicate a globular structure 
(41, 43). For the present work, we use domain and region interchangeably in this manner, though 
with a preference for using region. The goal of this work is to determine if IDRs that drive phase 
separation show differences in predicted hydrodynamic dimensions of their equilibrium 
conformational ensembles as compared to IDRs that do not (19, 24, 25, 31). Specifically, we 
hypothesize that when excised from the parent protein, compacted ensemble dimensions would 
indicate high LLPS potential for the disordered polypeptide, while elongated sizes would indicate 
low LLPS potential (Figure 1). 
 
To test this idea against large numbers of proteins, we used a sequence-based calculation of the 
radius of hydration (Rh) that has been found to be accurate for monomeric IDPs (14, 35, 44). Figure 
S1A shows predicted and experimental mean Rh for a set of 23 IDPs (35, 44–61), demonstrating 
overall good agreement. This IDP set is identified in Table S1. The sequence calculated Rh uses 
the net charge and intrinsic chain propensity for the polyproline II backbone conformation (see 
Experimental Procedures), both known to promote elongated hydrodynamic dimensions in 
disordered ensembles (13, 14). To normalize Rh to the chain length, and distinguish compacted 
versus elongated predicted dimensions, we converted the sequence calculated value to a polymer 
scaling exponent by, 
 
vmodel = log (Rh/Ro)/log(N),   [1] 
 
where N is the number of residues, and Ro is 2.16 Å obtained from simulated IDP ensembles (62). 
Experimental Ro for the set of 23 IDPs is ~2.1 Å (Fig. S1B), showing good agreement. For these 
23 IDPs, which are not known to phase separate and thus referred to as the null set, the mean ± s 
(standard deviation) in vmodel was 0.558 ± 0.019 (Table 1). 
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Next, we compiled a list of IDRs from proteins annotated to phase separate. We began with the 
IDRs from 43 proteins verified to exhibit phase separation behavior in vitro, previously collated 
by Vernon et al (10). To this set, we added IDRs from 59 human proteins listed in the PhaSePro 
database as showing LLPS behavior (63), and 18 IDRs annotated “liquid-liquid phase separation” 
(IDPO:00041) in the DisProt database (64). Duplicate entries from merging the three sources were 
removed, as were IDRs with N<20. To identify IDRs in the Vernon et al protein set, we used the 
GeneSilico MetaDisorder service that predicts the presence of ID in a sequence (65). The PhaSePro 
database already annotates each entry with its predicted IDRs from using IUPred2 (66), which we 
kept for this analysis. Because DisProt is manually curated for verified cases of ID, we assumed 
LLPS annotated IDRs in DisProt lacked folded regions (i.e., each was fully ID). In total, this 
resulted in 224 IDRs from proteins with known phase separation behavior. The IDRs are identified 
in Table S2. This set was designated as the testing set. Trends identified in the testing set were 
used to analyze the entire human proteome, the full DisProt database, and the full PhaSePro 
database (see below). 
 
On average, vmodel was reduced in the IDRs from known LLPS proteins, compared to the null set 
(i.e., the 23 IDPs not known to phase separate). The mean vmodel was 0.542 ± 0.020 for the testing 
set IDRs (Table 1). The vmodel distribution overlapped between the two sets (Fig. S2C), testing and 
null. Possibly contributing to the statistical overlap in vmodel between the two sets, most IDRs in 
the testing set have not been verified to drive phase separation, suggesting the set may contain 
some that do not. Like Sup35 and its two IDRs, only one of which directly mediates a de-mixing 
transition (41), proteins in the testing set could have IDRs not necessary for LLPS. Indeed, most 
testing set proteins have >1 predicted IDR (Table S2). Or, simply, the overlap could be a 
consequence of the small difference in means. Despite this unknown, a two-sample z-test using 
the variances gave a one-tail p-value of 8.2e-05 (Table 1), indicating the two sets are statistically 
different in mean vmodel. Though the distribution of vmodel values in both sets were similar to normal 
(Figs. S2A and S2B), the non-parametric Mann-Whitney U test that does not assume normal 
distributions was also used and likewise shows the null and testing sets as statistically different in 
mean vmodel (Table S3). 
 
We sought to determine if we could distinguish IDRs known to drive LLPS from folded regions.  
In order to compile a list of folded regions, we took folded regions from the same proteins as we 
had previously taken the IDR regions to form the testing set. We used the Protein Data Bank (67) 
to identify those regions (N≥20) in the testing set proteins that are verified to adopt stable, globular 
structures, finding 82 such regions (Table S2). Compared to the ID-based testing and null sets, the 
mean vmodel was slightly lower in this set of folded sequences and found to be 0.536 ± 0.008 (Table 
1). It is important to note that the equation used to predict Rh from sequence, and thus calculate 
vmodel, was developed for IDPs and not designed for use with folded proteins. For a folded protein, 
experimental v is often ~0.3 (26) rather than the calculated values for vmodel here that are >0.5. 
Sequence calculated vmodel determined by eq. [1] represents the mean hydrodynamic dimensions 
when the polypeptide is disordered and omits effects that are associated with hydrophobic collapse 
and folding. In concept, vmodel approximates the dimensions of the unfolded chain prior to collapse 
or the formation of cooperative units of structure. 
 
Sequence calculated β-turn propensity is elevated in IDRs from proteins that exhibit LLPS. 
Because vmodel was calculated from the primary sequence, we determined the differences in 
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composition between the testing, null, and folded sets. Particularly, we were interested in 
identifying those amino acid types that are either depleted or enriched in the testing set when 
compared to the null and folded sets. For example, the branched amino acids, I, L, and V, are each 
depleted in the testing set, whereas P, G, and S are enriched, relative to both the other sets (Fig. 
2A). While additional amino acid types show depletion in the testing set compared to the folded 
and null sets (e.g., C and E) or enrichment, (e.g., N and Q), specific mention of I, L, V, P, G, and 
S is made for two reasons. First, I, L, and V have infrequent occurrence in the β-turn in surveys of 
stable, protein structures (37), while P, G, and S are preferred in this secondary structure type (38). 
As such, this result predicts the intrinsic propensity for β-turn is higher, on average, in the testing 
set when compared to the null and folded sets. Second, studies involving elastin-like polypeptide 
(ELP), a protein sequence known to undergo LLPS (68–70), have implicated transient β-turn 
structures in the protein-protein interactions that mediate condensate formation (71–73). The 
results shown in Figure 2A predict a role for the β-turn in protein-based LLPS that could be wide-
spread in use and not limited to ELP-based systems. 
 
To determine if β-turn propensities are elevated in IDRs from LLPS proteins, we calculated the 
mean intrinsic β-turn propensity from sequence in the null, testing, and folded sets (Table 2). By 
using the amino acid scale of turn propensity developed by Levitt (37), which is reproduced in 
Table S4, we find the mean for the testing set was 1.152 ± 0.087. In comparison, the mean intrinsic 
turn propensity was lower in both the null and folded sets. A two-sample z-test using the variances 
indicated the mean values for intrinsic β-turn propensity were statistically different when 
compared between the three sets (Table 2); identical conclusions were obtained from the Mann-
Whitney U test (Table S3).  
 
The three sets of protein regions, folded, null (IDRs) and testing (LLPS IDRs), form separate 
protein classes according to their mean values of vmodel and β-turn propensity. Figure 2B 
compares the mean vmodel of each set (i.e., testing, null, and folded) to the mean intrinsic β-turn 
propensity, showing that they typically occupy different regions in this plot. These results are 
robust to choice of scale that was employed for the sequence-based calculation of β-turn; the 
average intrinsic β-turn propensity was lowest in the folded set. For example, Figures 2C and 2D 
show identical results are obtained, whereby the mean intrinsic β-turn propensity is highest in the 
testing set, when the amino acid scale from Chou and Fasman is used instead (38), or when 
specificity for amino acid type in the four different turn positions (i, i+1, i+2, i+3) is used (39). 
The increased propensity for β-turn in the testing set is a curious result considering reverse turns 
are prevalent in globular structures (74) and often found at the protein surface (75) because it 
allows the polypeptide chain to fold back onto itself. 
 
β-turn structures reduce chain associated solvent waters, potentially driving intra-molecular 
contacts. To understand why β-turn structures might be associated with sequences that undergo 
LLPS, we investigated the balance of self and solvent interactions for this conformation. In lieu of 
large-scale molecular dynamics simulations, we considered the distribution of surface water 
molecules as captured by the conditional hydrophobic accessible surface area (CHASA). In the 
CHASA calculations, sterically-allowed solvent waters are placed near protein hydrophilic groups 
under the assumption that these waters will form hydrogen bonds with the peptide; then, 
hydrophobic surface area calculations are performed with these solvent waters present (76). We 
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hypothesized that turn structures would facilitate protein-protein contacts because they had larger 
accessible hydrophobic patches even in the presence of bound solvent water molecules.   
 
We randomly generated 1,000 structures containing β-turns and 1,000 non-turn structures of the 
ELP-derived peptide sequence GVPGVG (68–70), a sequence where transient β-turns have been 
implicated in self-association (71–73). Total accessible surface area (ASA), hydrophobic ASA, 
and CHASA are all lower in β-turn versus non-turn ensembles (Table S5), consistent with prior 
studies (72). Fewer hydration waters are associated with turn structures (37.1 ± 0.1 vs 44.4 ± 0.1 
waters), meaning that the penalty for desolvation in LLPS will likely be lower for IDPs that 
preferentially sample the β-turn conformation. In addition, fixed conformations of β-turns also 
expose large contiguous regions of hydrophobic surface area relative to the random conformations 
(Fig. 3). The CHASA-placed solvation waters in GVPGVG are clustered when the peptide is in a 
β-turn conformation (Fig. 3A, top), exposing contiguous segments of hydrophobic accessible 
surface area for residues V2 and P3. Representative structures of non-turn conformations (Fig. 3A, 
bottom) do not exhibit these clusters. The contiguous hydrophobic segments present in β-turns 
may facilitate protein-protein association; two fixed β-turns can associate and bury a large relative 
fraction of hydrophobic accessible surface area (~110 Å2 per turn; based on docking with the 
GOLD software package). Finally, the π electrons sp2 hybridized atoms of the peptide bond (π/sp2 
interactions) are thought to facilitate LLPS (10, 77), and CHASA also suggests a role for peptide 
bond exposure in β-turns. The combined surface areas of the C, O and N atoms differ significantly 
for the central residues in the β-turn ensemble vis a vis the random coil ensemble (Fig. 3B), and 
this may reflect differences in a potential for peptide π/sp2 interactions. Other non-turn, multi-turn, 
multi-valent interactions are equally important to LLPS, but the solvent water considerations, 
elucidated by CHASA, suggest a plausible reason for why β-turn propensity is elevated in our 
testing set of LLPS-competent IDRs.  
 
Sequence calculated internal scaling exponent, vint, does not identify IDRs from LLPS 
proteins. When combined with vmodel, several amino acid scales of intrinsic β-turn propensity 
showed the ability to separate protein classes (Fig. 2B-D). Based on this result, we sought to 
determine if a different sequence-based calculation of v likewise could be used to identify IDRs 
that drive LLPS. We began with previous work using computationally determined vint values to 
predict phase separating properties (36). Similar to our work predicting mean Rh from the primary 
sequence, SAXS data was used to develop a predictor of vint. The calculation uses sequence 
hydropathy decoration, SHD, and sequence charge decoration, SCD, 
 
vint = a∙SHD + b∙SCD + c,  [2] 
 
where a, b, and c are simulation-derived fitting parameters found to be -0.0423, 0.0074, and 0.701, 
respectively (36). SHD is calculated from sequence by N-1∑i∑j,j>i(λi + λj)|j-i|-1, where λ is the 
amino acid specific hydropathy (78) normalized to have values from 0 to 1 (36). SCD is calculated 
from sequence by N-1∑i∑j,j>i(qiqj)|j-i|1/2, where q is the amino acid specific charge (79). For the 
null set, the mean vint was 0.494 ± 0.083. For the testing set, it was 0.508 ± 0.085. A two-sample 
z-test comparing vint in the null and testing sets gave a one-tail p-value of 0.23, providing no 
evidence for a statistical difference in the means of the two sets. Moreover, sequence calculated 
vint and vmodel were not correlated when compared (R2 = 0.002, Fig. S3). Consistent with the lack 
of correlation between vint and vmodel, vint finds the testing and null sets as statistically similar. As 
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such, these two representations of scaling exponents may exhibit different prediction capabilities 
for identifying LLPS proteins and protein regions. Sequence patterning is important, and especially 
hydropathy and charge decoration, but it may not exclusively capture LLPS potential. 
 
Sequence calculated turn propensity and vmodel predict protein regions driving LLPS. Next, 
we sought to determine if the observed differences in mean vmodel and mean β-turn propensity 
between the null, testing, and folded sets (Fig. 2B) could be used to identify regions within the 
protein that match the LLPS class, and thus predict the specific protein regions that support a de-
mixing transition. For the initial test, vmodel and β-turn propensity were calculated for each Sup35 
domain. The sequence of the N-terminal prion domain that mediates phase separation (41) gave 
0.531 and 1.183 for vmodel and β-turn propensity, respectively, which matched the testing set 
averages (Fig. 4A). In contrast, sequences representing the ID middle and folded C-terminal 
domains gave values for vmodel and β-turn propensity that were most like the null and folded sets, 
respectively (Fig. 4A).  
 
To analyze proteins without using pre-defined boundaries for different regions, we apply a 25-
residue window and then slide this window across the whole sequence in 1-residue steps, as shown 
schematically in Figure 4B. The choice of 25 residues for the window size was arbitrary. For each 
25-residue window, vmodel and β-turn propensity were calculated from the amino acid sequence of 
the window. We mapped these values onto a β-turn propensity vs. vmodel plot, which was divided 
into sectors labeled PS, ID, and Folded. Sector boundaries were defined by the mean and standard 
deviations in vmodel and β-turn propensity in the null set (Fig. 4A). To demonstrate this scheme, 
Figure 4C shows the results from using this algorithm on the full Sup35 sequence, where each 
small dot in the figure represents a different 25-residue window. The Sup35 primary sequence was 
then assigned a new three-letter code: P, D, or F based on window localization into the PS, ID, or 
Folded sectors. We then identified regions in the sequence of length ≥20 residues that were at least 
90% of only one of these labels, and color coded those identified regions (Fig. 4D).  
 
We sought to determine if our algorithm would similarly identify regions of proteins with diverse 
reported mechanisms driving LLPS. Figures 4E-P show the results from applying this algorithm, 
ParSe, to the whole sequences of six additional proteins that have been characterized in vitro and 
verified to exhibit LLPS. The phase separation of FUS (Fig. 4E, F) under physiological-like protein 
concentration is known to require the full-length sequence (80). FUS also has a short, folded 
domain, the RNA recognition motif (RRM) spanning residues 285-371 (81). The silk-wrapping 
protein, spidroin-1 (Fig. 4G, H), consists of a repeat folded region (82) with intervening, short 
IDRs that mediate phase separation via hydrophobic amino acids (83). The N terminus (residues 
1-236) of DDX4 (Fig. 4I, J) uses a network of charge, hydrophobic, cation-π, and aromatic 
interactions to drive phase separation, mostly from F and R residues (3, 84). The R- and G-rich N 
terminus (residues 1-168) of LAF-1 (Fig. 4K, L) is used for both phase separation and binding 
ssRNA (4), while its core domain (residues 231-628) represents a RecA-like DEAD box helicase 
containing ATP and RNA binding sites (85). The ID C terminus (residues 648-708) of LAF-1 is 
not required for phase separation in vitro (4) and so may have been incorrectly predicted by the 
algorithm. LLPS of SSB proteins (Fig. 4M, N) is thought to be driven by the low sequence 
complexity ID linker region (86) that connects a highly conserved N terminus OB fold (87) to a 
C-terminal peptide motif. In elF4G2 (Fig. 4O, P), a small N- and Q-rich region (residues 13-97) 
has been shown to be sufficient for LLPS (88). Also, modelling based on sequence similarity (89) 
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has been used to predict two structured domains in elF4G2, one that was identified by ParSe. For 
the proteins GRB2 (6) and SPOP (7) that drive phase separation and are mostly folded (90, 91), 
ParSe did not find any regions with high LLPS potential (Fig. S4). In summary, our algorithm 
predicted regions driving LLPS in proteins with a variety of reported mechanisms, indicating that 
v and β-turn propensity may represent a unifying property driving LLPS.  
 
We noticed that within eIF4G2, LAF-1 and DDX4 that regions previously annotated as folded 
contained some sections we predicted to be PS or ID. As our analysis is designed for disordered 
and not ordered regions, we sought to determine an error rate for misclassifying ordered domains. 
We took as a larger database of folded domains the set of >14,000 proteins listed by SCOPe 
(Structural Classification of Proteins extended, version 2.07) that represent the globular fold 
classes across families and superfamilies (92, 93). Using β-turn propensity and vmodel calculated 
for the full domain of each protein found in SCOPe, we found that 95.4% resided in the folded 
sector of the β-turn propensity vs. vmodel plot. This is comparable to other established ID predictors. 
For example, using metapredict (94), selected because it can quickly process large numbers of 
sequences, we found 99.5% of sequences to have average disorder scores less than 0.5 (indicating 
folded). Of the proteins in the SCOPe database with average disorder score greater than 0.5 by 
metapredict, only half were also identified as not folded by ParSe, indicating that combining an 
established ID predictor with our classification scheme could improve its fidelity. 
 
Long regions with both high β-turn propensity and low vmodel are rare in the human 
proteome. We noticed that most proteins found in the testing set had not just IDRs with a high 
average β-turn propensity and low average predicted vmodel, but that they tended to contain long 
(≥50 residues) stretches labeled by ParSe to be “P”. To determine whether this feature is unique to 
proteins driving LLPS, we measured the prevalence of regions predicted from sequence to have 
high LLPS potential in the human proteome (Fig. 5). These were identified as regions with at least 
90% of residue positions labeled as “P” by ParSe (Fig. 4B). We found that ~70% of the human 
proteome had a region at least 1 residue in length with predicted high LLPS potential (i.e., a single 
P-labeled position), while only ~4% have such a region that is at least 50 residues in length. This 
result shows that few human proteins possess a region of substantial length (≥50 residues) that 
combines high β-turn propensity with low vmodel. 
 
Next, we repeated this calculation for the set of 43 proteins assembled by Vernon et al (10) that 
have been verified in vitro to exhibit phase separation behavior. Figure 5 shows that almost 90% 
of these “in vitro sufficient” LLPS proteins have a region predicted by our algorithm to have high 
LLPS potential that is 50 residues in length or longer. Vernon et al (10) also prepared a set of 18 
additional proteins observed in cellulo to exhibit phase separation behavior that were found 
through in vitro characterization not to phase separate as purified proteins (Table S6). Labeled as 
“in vitro insufficient”, less than a third of these proteins (28%) contain a 50-residue or longer 
region with high LLPS potential, however, ~60% have a 20-residue or longer region with high β-
turn propensity and low vmodel. The DisProt database, minus the LLPS annotated IDPs, mirrored 
the human proteome result, demonstrating that ID alone is not sufficient to trigger LLPS prediction 
by ParSe. The LLPS-annotated IDPs in the DisProt database were enriched in P-labeled regions, 
giving results in between the in vitro sufficient and in vitro insufficient Vernon et al protein sets, 
while the PhaSePro database (all proteins) gave results that were most like the in vitro insufficient 
LLPS proteins. The set of proteins in SCOPe were mostly devoid of regions predicted to have high 
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LLPS potential by ParSe (Fig. 5). Thus, while proteins containing long, contiguous P-labeled 
regions are highly represented in proteins known to undergo LLPS, these regions appear relatively 
unique to this class of proteins. Supporting this observation, using the Mann-Whitney U test 
indicates that the distributions of predicted PS region lengths shown in Figure 5 are each 
significantly different from the others, especially when comparing sets known to be enriched for 
LLPS to the sets that are not (Table S7). 
 
β-turn propensity to vmodel ratio is correlated with other predictors of phase separation.  
Having demonstrated that ParSe was able to identify regions driving phase separation, we next 
sought to determine whether this algorithm was recognizing similar sequence features as other 
predictors of phase separation (95, 96). Existing predictors are based on molecular mechanisms 
thought to drive phase separation (10–12), experimental databases of non-specific protein 
interactions (97), or machine learning outputs based on sequence databases (40). Phase separation 
may be promoted by many different mechanisms, including β-sheet interactions that also drive 
prion formation (12), interactions with nucleic acids (11), arginine and tyrosine content (80), and 
multivalent protein-protein interactions (98). As a result, different predictors will be able to 
identify different proteins, and any correlation between predictors may indicate an evolutionary 
relationship between different mechanisms (95, 96).  
 
To facilitate a direct comparison to other predictors, we sought to collapse our predictions to a 
single value. We noticed that sequences with higher β-turn propensity and lower vmodel, and thus 
larger values of this ratio, were found primarily in the testing set. We hypothesized that rmodel, the 
ratio of β-turn propensity to vmodel, would be maximized in IDRs that drive LLPS. Consistent with 
this idea, mean rmodel (± s) was 2.1 ± 0.2, 1.9 ± 0.1, and 1.8 ± 0.1 in the testing, null and folded 
sets, respectively. We then compared rmodel for the sequences in each set to PScore (10), granule 
propensity from catGRANULE (11), PSPredict score (40), and LLR from PLAAC (12). We 
limited our analysis to sequences at least 140 amino acids in length, a PScore requirement, so the 
same sequences could be compared across all predictors. In addition, we compared rmodel calculated 
from sliding windows to residue-level values provided by PScore and CatGRANULE. The 
strength of the correlation between all predictors on our testing, null, and folded sets, and their 
combination, was measured by calculating the coefficient of determination (R2, Fig. S5A-F).  
 
Consistent with ParSe’s ability to recognize sequences driving LLPS that utilize a variety of 
mechanisms (Fig. 4) we found strong correlation between rmodel and all four of the predictors, with 
generally higher R2 values than the other pairwise comparisons; granule propensity and PScore are 
also generally well correlated (Fig. 6). For example, 4 of the 6 pairwise comparisons with R2 above 
0.5 are with rmodel. The pairwise correlation between predictors was, very generally, higher for the 
testing set than either the null or folded sets. Similarly, the residue-level correlation between rmodel 
and PScore was higher for the testing than the folded and null sets (Fig. S5E). On the other hand, 
because the testing set typically had high values, whereas the folded set low values, the correlations 
in the combined set containing all of the training, folded, and null sets, were most often stronger 
than within each individual set. We speculate that the relatively higher correlation within the 
testing set than null or folded sets is the result of evolutionary pressure for phase separating IDRs 
to utilize multiple mechanisms to drive phase separation, e.g., containing both cation-π interactions 
and a high β-turn propensity within the same sequences. As a first step towards testing this 
hypothesis, we created a set of 100 random sequences with the same average amino composition 
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as the testing set. The residue level correlation between rmodel and PScore was significantly reduced 
with scrambled sequences, indicating the individual sequences efficiently combine LLPS 
mechanisms in a way that is not reflected in the amino acid composition averaged across many 
sequences (Fig. S5E). This is consistent with previous proposals that patterns of self and solvent 
interactions in a sequence may feature prominently in mechanisms promoting LLPS and for 
determining condensate specificity (99, 10, 100, 98).   
 
 
Discussion 
  
The hydrodynamic dimensions of proteins have long been studied to investigate folding 
mechanisms (101), properties of the denatured state ensemble (102), and the physical 
characteristics of IDPs (3, 13, 19–21, 23). By normalizing hydrodynamic size to the chain length, 
the predicted polymer scaling exponent, v, provides a simple metric that reports on the net balance 
of self and solvent interactions. This is similar, though not identical to the original intended use of 
v to describe the flexible homopolymer whereby subunit-subunit interactions are all equivalent, as 
are, separately, subunit-solvent interactions (18). Because IDPs are heteropolymers and contain 
varying, spatially organized, local interactions, v reflects a phenomenological parameterization 
rather than an exact description of molecular forces present. While there are real limitations to the 
applicability of applying concepts developed for long homopolymers to heteropolymeric proteins, 
numerous studies, including this work, support the view that properties, like v, derived for 
homopolymers, can be successfully applied to biological IDPs to help understand their observed 
solution behavior (19, 24, 25, 31–33). 
 
Here, we have used sequence-based calculations of mean Rh, which has been found to match the 
measured values from many IDPs (14, 35, 44), to test the wide-spread notion that lower v is 
associated with the potential for LLPS of IDRs (19, 24, 25, 31). Using vmodel, obtained from 
sequence calculated Rh, we find that IDRs from proteins that exhibit LLPS have, on average, 
reduced vmodel when compared to non-phase separating IDRs, but with significant statistical 
overlap between the two sets (Fig. S2). Thus, it is unlikely that vmodel, by itself, has significant 
predictive power for LLPS. However, β-turn propensity also is different in the different protein 
classes (Table 2), consistent with the enhancement of the accessibility of π/sp2 electronic 
interactions in β-turns relative to random conformations (Fig. 3). β-turn propensity, when 
combined with vmodel, shows the ability to predict protein regions: for folded, phase separating, and 
non-phase separating IDRs (Fig. 4). Protein regions having low vmodel combined with high β-turn 
propensity are rare in the human proteome, and especially rare in folded proteins, while enriched 
in known LLPS proteins (Fig. 5). Because many proteins and peptides can be induced to form 
phase separated states under different solution conditions (103, 104), we hypothesize that protein 
regions having low vmodel combined with high β-turn propensity identify IDRs that drive phase 
separation under mostly mild, physiological-like conditions. Other sequence-based predictors of 
protein LLPS, for example PSCORE (10) and catGRANULE (11), similarly identify only a small 
subset of the human proteome as exhibiting high LLPS potential. Our work also builds on the 
recent finding that phase separating IDRs are less hydrophobic by traditional scales than non-phase 
separating IDRs, yet more compact (105, 106). The compaction appears to occur through other 
mechanisms than hydrophobicity, including cation-π and charged interactions (10, 80, 106), as 
well as a high propensity for β-turns (Fig. 4).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2021. ; https://doi.org/10.1101/2020.07.06.189613doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189613
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 
To predict protein regions in a given primary sequence, based on calculations of vmodel and β-turn 
propensity, we have written the ParSe algorithm and have made it available online (see Data 
Availability). In addition to predicting the locations of protein regions, ParSe outputs rmodel, the 
ratio of β-turn propensity to vmodel, both for the whole sequence and at the residue level. Using 
ParSe, we found that proteins that phase separate as purified components have long predicted PS 
regions, while in cellulo observed LLPS proteins that do not phase separate as purified components 
seem to, in general, have shorter predicted PS regions. When compared, rmodel showed strong 
correlations to other phase separating predictors, and notably those predictors that are based on 
mechanisms thought to promote LLPS (Fig. 6). As the ParSe model does not directly evaluate for 
the sequence features proposed by other mechanisms, namely the patterning of either cation-π, π-
π or charged amino acids; or nucleic acid binding; the correlation between these metrics points to 
an evolutionary constraint to include multiple sequence features in regions that promote LLPS (10, 
11, 95). More generally, the correlation between predictors that are based on disparate molecular 
mechanisms will be useful for determining which molecular features are typically combined in 
LLPS proteins, and which LLPS proteins instead rely on unique molecular grammars (80, 95, 96, 
98, 100, 105, 106). 
 
 
Experimental procedures 
 
Protein databases. Lists of proteins that exhibit LLPS behavior were obtained from Vernon et al 
(10), the PhaSePro database (63), and the DisProt database (107), chosen because each contains 
protein lists that have been curated manually for experimentally verified cases of LLPS. From the 
Vernon set, we segregated proteins that phase separate in vitro as purified components (Table S2) 
from those that do not (Table S5). From DisProt, protein sequences that phase separate were found 
by search using the disorder function ontology identifier for liquid-liquid phase separation, 
IDPO:00041 (64). A set of IDPs not known to phase separate but with monomeric experimental 
mean Rh, rather than sequence-predicted mean Rh, was assembled from literature reports (35, 44–
62). The human proteome reference set UP000005640 (108), the Structural Classification of 
Proteins – extended (SCOPe) database version 2.07 (92, 93), and the consensus disordered regions 
from the DisProt database (2021_06) excluding those regions with the ontology identifier for 
liquid-liquid phase separation, were used as additional negative controls, i.e., sequence lists not 
enriched for LLPS behavior. 
 
Mean Rh sequence calculation. The hydrodynamic dimensions of disordered protein ensembles 
depend strongly on sequence composition. For IDPs, the mean Rh has been shown to be accurately 
predicted from the intrinsic bias for the polyproline II (PPII) conformation (14, 44) and sequence 
estimates of the protein net charge (35, 22). The equation to calculate mean Rh for a disordered 
sequence is 
 
𝑅! = 2.16Å ∙ 𝑁'(.*(+$(.,,∙./(,$1$$%%)3 + 0.26 ∙ |𝑄/45| − 0.29 ∙ 𝑁(.*,  [3] 
 
where N is the number of residues, fPPII is the fractional number of residues in the PPII 
conformation, and Qnet is the net charge (22). fPPII is estimated from ∑ PPPII,i/N, where PPPII,i is the 
experimental PPII propensity determined for amino acid type i in unfolded peptides (109) and the 
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summation is over the protein sequence. Qnet is determined from the number of lysine and arginine 
residues minus the number of glutamic acid and aspartic acid.  
 
Disorder prediction. The presence of intrinsic disorder in proteins and protein regions can be 
predicted from sequence with good confidence (110). The GeneSilico MetaDisorder service (65) 
was used to calculate the disorder tendency at each position in a sequence from the consensus 
prediction of 13 primary methods. Residues with a disorder tendency >0.5 are predicted to be 
disordered, while those with disorder tendency <0.5 are predicted to be ordered. To minimize 
misidentification, we selected ID regions as those with at least 20 contiguous residue positions 
having disorder tendency ≥0.7. When the GeneSilico MetaDisorder service was offline or 
otherwise unavailable, the IUPred2 long predictor (66) was used instead.  
 
Calculation of β-turn propensity. The propensity to form β-turn structures was calculated by ∑ 
scalei/N, where scalei is the value for amino acid type i in the normalized frequencies for β-turn 
from Levitt (37). The summation is over the protein sequence containing N number of amino acids. 
Calculations using the Chou-Fasman normalized β-turn frequencies (38) followed an identical 
method. Calculations that account for specificity in the four different turn positions (i, i+1, i+2, 
i+3) used the turn potentials from Hutchinson and Thorton (Table 2 in (39)), where a 4-residue 
window with each residue position in the window a turn position, was slid across the protein 
sequence in 1-residue increments. For a sequence, the summation of turn potentials in a window 
was divided by 4, and the overall sum of windows was divided by the number of windows. 
 
Calculating vmodel and β-turn propensity in 25-residue windows for identifying LLPS regions. 
Our goal was to calculate vmodel in a manner that was sensitive to the composition of the window, 
while also maintaining some independence from the window length that was arbitrarily selected. 
For example, vmodel calculated for all 25-residue windows in the Sup35 primary sequence gives the 
average value of 0.531. If the window size is doubled by doubling the number of each amino acid 
type in the window sequence, the average vmodel changes to 0.540 despite the same fractional 
compositions of amino acids in the windows and the same number of windows. Owing to the 
second and third terms in equation [3], identical fractional compositions of amino acids can yield 
different vmodel depending on window length. To avoid this, we calculated the average vmodel for all 
25-residue windows in Sup35 at multiples of 1x, 2x, 3x, etc., where “1x” means the amino acid 
distributions are identical to the native sequence, “2x” doubles the occurrence of each amino acid 
type in a window, “3x” triples the occurrence, and so forth. By this scheme, the fractional ratio of 
each amino acid type in a window is constant. We found that the average calculated vmodel for 25-
residue windows stabilized for multiples ≥4x. Specifically, for fractional compositions obtained 
from a biological sequence, vmodel became length-independent for N≥100 while also remaining 
highly sensitive to changes in the fractional composition. Based on this finding, vmodel for a 25-
residue window was calculated from sequence by first multiplying the number of each amino acid 
type in the window sequence by 4 and then by calculating vmodel for the resulting 100-residue 
length. The β-turn propensity for a 25-residue window was calculated without modification to the 
method as described above and used the normalized turn frequencies from Levitt (37). 
 
ParSe calculation. For an input primary sequence, whereby the amino acids are restricted to the 
20 common types, ParSe first reads the sequence to determine its length, N, and the number of 
each amino acid type. Using these sequence-defined values, Qnet and fPPII are calculated (described 
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above) and used with N to determine Rh by equation [3], which in turn is used to determine vmodel 
by equation [1]. β-turn propensity is calculated as the sequence sum divided by N (described 
above) from the normalized frequencies by Levitt (37). rmodel is determined by the ratio of β-turn 
propensity to vmodel. Next, ParSe uses a sliding window scheme (Fig. 4B) to calculate vmodel and β-
turn propensity for every 25-residue segment of the primary sequence (described above). This 
window scheme can be applied to proteins with N >25. The values of vmodel and β-turn propensity 
calculated for a window determine the window’s localization to a PS, ID, or Folded sector in a β-
turn propensity vs. vmodel plot (Fig. 4C). The sector boundaries are shown in Figure 4A, and these 
boundaries are defined by the mean and standard deviation in β-turn propensity and vmodel 
calculated in the null set (Tables 1 and 2). If a window, based on its β-turn propensity and vmodel 
values, is localized to the PS sector, the central residue in that window is labeled “P”, whereas 
localization to the ID sector labels the central residue position “D”, and localization to the Folded 
sector labels the residue “F”. N- and C-terminal residues not belonging to a central window 
position are assigned the label of the central residue in the first and last window, respectively, of 
the whole sequence. Protein regions predicted by ParSe to be PS, ID, or Folded are determined by 
finding contiguous residue positions of length ≥20 that are ≥90% of only one label P, D, or F, 
respectively. When overlap occurs between adjacent predicted regions, owing to the up to 10% 
label mixing allowed, this overlap is split evenly between the two adjacent regions. 
 
PSCORE calculation. PSCORE, which is a phase separation propensity predictor (10), was 
calculated by computer algorithm using the Python script and associated database files available 
at https://doi.org/10.7554/eLife.31486.022. 
 
Granule propensity calculation. Granule propensity was calculated by using the catGRANULE 
(11) webtool available at http://www.tartaglialab.com. 
 
PLAAC LLR calculation. LLR score, which identifies prion-containing sequences (12), was 
calculated by using the webtool available at http://plaac.wi.mit.edu. 
 
PSPredictor calculation. PSPredictor score, which predicts phase separation potential (40), was 
calculated by using the webtool available at http://www.pkumdl.cn:8000/PSPredictor. 
 
Metapredict calculation. Metapredict score (94), which predicts the presence of ID in a sequence, 
was calculated by computer algorithm using the Python script available at http://metapredict.net. 
 
Computer generation of disordered ensembles. Structures of GVPGVG were generated by a 
random search of conformational space using a hard sphere collision model (111). This model uses 
van der Waals atomic radii (112, 113) as the only scoring function to eliminate grossly improbable 
conformations. The procedure to generate a random conformer starts with a unit peptide and all 
other atoms for a chain are determined by the rotational matrix (114). Backbone atoms are 
generated from the dihedral angles φ, ψ, and ω and the standard bond angles and bond lengths 
(115). Backbone dihedral angles are assigned randomly, using a random number generator based 
on Knuth’s subtractive method (116). (φ, ψ) is restricted to the allowed Ramachandran regions 
(117) to sample conformational space efficiently. For peptide bonds, ω had a Gaussian fluctuation 
of ± 5% about the trans form (180°) for nonproline residues. Proline sampled the cis form (0°) at 
a rate of 10% (118). Of the two possible positions of the Cβ atom in nonglycine residues, the one 
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corresponding to L-amino acids was used. The positions of all other side chain atoms were 
determined from random sampling of rotamer libraries (119). Structures adopting the type II β-
turn were identified as those with (φ, ψ) angles of (-60°±15°, 120°±15°) and (80°±15°, 0°±15°) 
for P3 and G4, respectively, while also containing a hydrogen bond connecting the carbonyl 
oxygen of V2 to the amide proton of V5. Structures were generated until we had 1,000 turn and 
1,000 non-turn structures of the peptide GVPGVG. A variety of structural measurements were 
taken on each ensemble, and statistical convergence was confirmed by comparing the average 
values of the first 500 structures to the average over the entire ensemble. Specifically, the average 
total accessible surface area, end to end distance, and radius of gyration for the first 500 structures 
was found to be within one standard deviation of the average over the entire ensemble, suggesting 
that additional conformations did not alter the measurements beyond the first 500 structures. 
 
CHASA analysis and molecular docking. Computer generated structures, described above, were 
processed using the CHASA module (76) of the LINUS software package (120, 121). Two 
structures containing turns were docked using the GOLD/HERMES molecular docking software 
version 2020.1 (122). After hydrogen atoms were added, docking used the ChemPLP scoring 
function. The beta carbon on the third proline residue defined the binding site. Valine side chains 
were sampled using the built-in rotamer library, and all backbone torsions were held fixed in their 
original conformation. HERMES was used to calculate the buried hydrophobic accessible surface 
area upon formation of the complex. 
 
 
Data availability  
 
Source code. The ParSe algorithm written in Fortran, Parse.f, can be downloaded at 
https://github.com/stevewhitten/Parse, DOI: 10.5281/zenodo.5138428. A webtool version can be 
used at http://folding.chemistry.msstate.edu/utils/parse.html. 
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Tables 
 
 
Table 1. Summary of mean vmodel in the protein sequence sets. 
 
 # sequences  vmodel a   z-test w/ null b  z-test w/ folded b 
 
null set  23  0.558 ± 0.019  0.5   8.8e-08 
testing set 224  0.542 ± 0.020  8.2e-05  2.7e-04 
folded set 82  0.536 ± 0.008  8.8e-08  0.5 
 
a mean ± standard deviation 
b one-tail p-value calculated using the set variances 
 
 
Table 2. Summary of mean β-turn propensity in the protein sequence sets. 
 
 # sequences         β-turn propensity a z-test w/ null b  z-test w/ folded b 
 
null set  23  1.062 ± 0.082  0.5   6.4e-08 
testing set 224  1.152 ± 0.087  2.6e-07  8.9e-142 
folded set 82  0.969 ± 0.039  6.4e-08  0.5 
 
a mean ± standard deviation, calculated using the scale from Levitt (37) 
b one-tail p-value calculated using the set variances 
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. IDR propensity for LLPS predicted from hydrodynamic size. A) The mean Rh 
determined experimentally for monomeric IDPs (or excised IDRs) can be predicted from sequence. 
The inset compares predicted to observed for a set of 23 IDPs (listed in Table S1). Rh is in Å. A 
full-scale version of this inset is in Supporting Information, Fig. S1. B) Converting sequence 
calculated Rh to v normalizes the hydrodynamic size to the protein chain length. C) IDRs that 
strongly prefer interactions with the solvent (cartoon shows waters) over self are likely to exhibit 
swollen structures and remain monomeric rather than drive transitions to protein-rich phase 
separated states. The inset in this panel is based on v distributions calculated in two different 
sequence sets; a full-scale version of the inset is in Supporting Information, Fig. S2. 
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Figure 2. Composition differences among the sequence sets reveals that protein classes can 
be separated using vmodel and β-turn propensity. A) Composition ratio is the percent composition 
of each amino acid type, identified by its 1-letter code, in the training set divided by the percent 
composition in the null (black columns) and folded sets (gray columns). The two columns labeled 
ILV and PGS represent combining I+L+V and P+G+S content, respectively. Comparing sequence 
calculated vmodel in each set, testing (blue), null (red), and folded (black), to sequence calculated β-
turn propensity using single position scales from B) Levitt (37) and C) Chou and Fasman (38), and 
D) four position scales from Hutchinson and Thorton (39). Data points and error bars show the 
mean and standard deviations in each set. 
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Figure 3. β-turn effects on protein-protein interactions. A) Conformations are shown for the 
ELP repeat GVPGVG, including sterically allowed, CHASA-generated solvation waters (see text). 
The upper panel shows a representative turn conformation, where hydrophobic accessible surface 
area is clustered. The lower panels show two representative random coil conformations, and no 
such clustering is observed. B) Surface area for C, O, N atoms in the peptide bond when CHASA 
waters have been placed for the central turn residues in turn (left) and random coil (right) 
ensembles. Error bars represent the 95% confidence interval calculated over 1,000 conformations. 
The significance is calculated using the Welch and Brown-Forsythe one-way ANOVA test for 
non-equivalent variances with Games-Howell post hoc analysis (**** is p < 0.0001; ns is not 
significant). The inset demonstrates which peptide bonds are plotted: orange (between V2 and P3), 
yellow (between P3 and G4), or green (between G4 and V5). 
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Figure 4. Predicting protein regions that drive LLPS. A) Sequence calculated vmodel and β-turn 
propensity for the Sup35 domains – the ID N-terminal domain (blue square), the ID middle domain 
(red square), and the folded C-terminal domain (black square) – is compared to the set averages 
(see Fig. 2B). B) A sliding window algorithm was used to identify regions within a protein that 
match the LLPS class. β-turn propensity and vmodel are calculated for each contiguous stretch of 
25-residues, or “window”, in the primary sequence. C) Each window is assigned a label of P, D, 
or F depending on if vmodel and β-turn propensity for the window placed it in the PS, ID, or Folded 
sector, respectively, of a β-turn propensity vs. vmodel plot. This label was given to the central residue 
of the window. N- and C-terminal residues not belonging to a central window position were 
assigned the label of the first window and last window, respectively. In this plot, the calculated 
values of vmodel and β-turn for the whole protein sequence is shown by the larger, white dot. D) 
Contiguous regions (N≥20) that were 90% of only one label P, D, or F were colored blue, red, or 
black, respectively, to represent predicted PS, ID, or folded regions. E-P) The sliding window 
calculation was applied to the whole sequences of six additional proteins, identified in the figure 
by name and UniProt accession number. Striped represents ≥50% identity to a known LLPS IDR 
(blue) or folded protein (black). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2021. ; https://doi.org/10.1101/2020.07.06.189613doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189613
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Long regions matching the LLPS IDR class are rarely found in the human 
proteome, the DisProt database, and folded proteins. The sliding window calculation was used 
to identify regions in proteins that were ≥90% labeled P (see Fig. 4), which are referred to in this 
figure as phase separating, PS, regions. Shown by the y-axis is the percent of proteins in a set with 
a PS region at least as long as the length indicated by the x-axis. The human proteome (UniProt 
reference proteome UP000005640) is given by the solid, black line; the DisProt database (minus 
“liquid-liquid phase separation” annotated entries) is given by the dashed red line; and the SCOPe 
database (version 2.07), representing a wide selection of folded proteins, is given by the black, 
stippled line. In comparison, long PS regions predicted by ParSe are enriched in the set of in vitro 
sufficient LLPS proteins (solid, blue line), the DisProt “liquid-liquid phase separation” annotated 
IDPs (open, blue circles), the PhaSePro database (stippled, blue line), and the set of in vitro 
insufficient LLPS proteins (open, blue squares). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2021. ; https://doi.org/10.1101/2020.07.06.189613doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189613
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Comparing phase separation predictors. A) Pair-wise correlations, R2, for rmodel, 
PScore, catGRANULE granule propensity, PLAAC LLR score, and PSPredictor score calculated 
for the sequences when combining the testing, null, and folded sets. Grayscale indicates the 
magnitude of R2; the mean and standard deviation for all pair-wise combinations in the combined 
set is shown. B) The mean pairwise R2 of each predictor, with error bars showing standard 
deviation, for the combined set correlations (panel A). C) Pair-wise correlations, R2, calculated for 
the individual sets: testing (top), null (middle), and folded (bottom). The mean and standard 
deviation for all pair-wise combinations within a set is shown. Plots of pair-wise correlations 
involving rmodel are in Figure S5. 
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