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Abstract

Despite variations in appearance we robustly recognize objects. Neuronal populations
responding to objects presented under varying conditions form object manifolds and hier-
archically organized visual areas untangle pixel intensities into linearly decodable object
representations. However, the associated changes in the geometry of object manifolds along
the cortex remain unknown. Using home cage training we showed that mice are capable
of invariant object recognition. We simultaneously recorded the responses of thousands
of neurons to measure the information about object identity across the visual cortex and
found that lateral areas LM, LI and AL carry more linearly decodable object information
compared to other visual areas. We applied the theory of linear separability of manifolds,
and found that the increase in classification capacity is associated with a decrease in the
dimension and radius of the object manifold, identifying the key features in the geometry
of the population neural code that enable invariant object coding.
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1 Introduction
Object recognition is an ethologically-relevant task for many animals. This is a challenging
problem because an individual object can elicit myriads of images on the retina due to so-
called nuisance transformations such as changes in viewing distance, projection, occlusion and
illumination. The collection of neural responses associated with a single object is known as the
object manifold. A prevailing hypothesis is that along the visual hierarchy, object manifolds are
gradually untangled to produce increasingly invariant object representations, which are linearly
decodable [1]. This hypothesis is primarily based on work in non-human primates, which is a
powerful model to study object recognition especially given the similarities in visual perception
among primates. These studies have revealed that the selectivity for object identity increases
as visual signals are conveyed from primary visual cortex (V1) to inferotemporal cortex [2] [3].
Despite this significant progress, the underlying changes in the geometry of the object manifolds
along the visual cortical hierarchy that leads to object recognition and a circuit-level mechanistic
understanding of how they are generated remain largely unknown. The mouse animal model
is ideally suited to dissect circuit mechanisms due to its genetic tractability and the numerous
methods available to perform large scale recordings, manipulations and anatomical tracing
with cell-type precision [4] [5]. Therefore developing visually guided behaviors in rodents is
important [6] and identifying the relevant network of visual areas involved in object recognition
analogous to the ventral stream of primates is critical. In this direction, we developed a novel
automatic high-throughput training paradigm and demonstrated that mice can be trained to
perform a two-alternative forced choice (2AFC) object classification task, which is typically
used in primates to test object identification. While visually-guided operant behavioral tasks
have been used previously in mice [7] [8] [9], here we show that mice can also learn to correctly
discriminate objects under a 2AFC paradigm. Critically, this capability persisted even when
they were presented with previously-unseen transformation of objects demonstrating that mice
are capable of invariant object recognition.
To systematically study how objects are encoded in the mouse visual system, we simultaneously
recorded the activity of thousands of neurons across all cortical visual areas of the mouse: pri-
mary (V1), anterolateral (AL), rostrolateral (RL), lateromedial (LM), lateral intermediate (LI),
posteromedial (PM), anteromedial (AM), posterior (P), postrhinal (POR) and laterolateral an-
terior (LLA) visual areas, while presenting images of moving objects undergoing numerous
identity-preserving transformations such as rotation, scale and translation across different illu-
mination conditions. By decoding the identity of the objects from the recorded neural activity
using a linear classifier, we found that the lateral extrastriate visual areas (LM, AL, LI) car-
ried more linearly decodable information about object identity compared to V1 and all other
higher order areas we studied. The large scale recordings provide the opportunity to study the
changes in the geometry of object manifolds along the cortex associated with invariant object
coding. We applied the recently developed theory of linear separability of manifolds to our
neural recordings and found that in areas LM and AL the increase in classification capacity is
associated with improved manifold geometry, where both the manifold radii and dimensions are
reduced compared to other visual areas. Additionally, by recording simultaneously from many
visual areas, we found that the population dynamics differed across the visual hierarchy, with
information about object identity accumulating faster in areas that were more object selective
compared to V1.
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2 Results

2.1 Mice are capable of invariant object recognition

We generated movies of 3D objects by varying their location, scale, 3D pose and illumination
in a continuous manner across time (Fig. 1a, Supp. Movie 1). We developed a 2AFC
automatic home cage training system in which water restricted mice had to lick a left or a
right port depending on the object that was shown on a small monitor in front of their cage
(Fig. 1b). Upon a correct choice, animals immediately received a small amount of water
reward. Naive animals initially licked the left and right probes at random, but within two
weeks of training, animals learned to preferentially lick the correct port matched to object
identity (Fig. 1c); trained animals maintained consistent performance on the task across days
(Fig. 1d). An important property of object recognition is the ability to generalize across views
of objects that have never been seen before. After the animals learned to discriminate objects
from the movie clips - which contained a specific set of object transformations, new movie clips
with unique parameters across translation, scale, pose and illumination were presented to the
animals. We could not detect any differences in performance between the previously seen object
transformations (Fig. 1e, familiar transformations) and novel object transformations (Fig.1e,
novel transformations). This ability to generalize across identity-preserving transformations
indicated that mice learned an internal object-based model and did not rely simply on low-level
features of the rendered movies they observed during training. Importantly, a linear classifier
trained on the pixel intensities of the rendered movies performed at chance level (Fig. 1e),
indicating that the discrimination of these objects cannot be simply solved using low-level
strategies based on pixel intensity differences between the images.
If mice are capable of discriminating between objects, there should exist a set of areas along
their visual processing hierarchy that can extract this information. It has been suggested that
one way of extracting the object information irrespective of its transformations is to have neural
representations for each object that are untangled, i.e. can be read-out using a linear decoder
[1]. To test this idea, we used transgenic mice expressing GCamp6s in pyramidal neurons
and recorded the activity from hundreds of neurons in each visual areas separately or from
thousands of neurons across the whole visual cortical hierarchy of the mouse using a large field
of view microscope ([5], Fig. 1f, g), while the animals passively viewed the moving objects
(Fig. 1a). We identified the borders between visual areas using wide-field retinotopic mapping
as previously described [10] [11] [12] (Fig. 1f, Materials and Methods). Neurons in all
of the identified visual areas showed significantly more reliable responses when compared to
neurons that were not assigned to any visual area (Supp. Fig. 1a).

2.2 Lateral visual areas carry more linearly decodable object identity
information

To measure how linearly discriminable the responses to the different objects were, we used cross-
validated logistic regression to classify the object identity from the responses of neurons in each
visual area. As expected, discriminability increased as a function of the number of neurons
sampled (Fig. 2a), but only the higher visual areas, LM, LI and AL, showed consistently
higher discriminability levels compared to V1 responses (Fig. 2a, b, c). In contrast, areas RL,
AM, P, POR and LLA had significantly lower discriminability levels when compared to V1 and
this effect was independent of the number of objects (Fig. 2b). The differences in decoding
between these areas persisted at the single neuron as well (Fig. 2d, Supp. Fig. 2a).
We performed several control analyses: first, our results might be due to differences in the
retinotopic coverage across areas. As has been reported before [11], the coverage of the visual
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Figure 1: Experimental procedure for behavioral training and two-photon imag-
ing. (a) Single frames from movies with the objects that were presented to the animals. (b)
Behavioral training sequence. (c) Probability of licking either probe during the early training
period (upper bar plot) and later training period (lower bar plot) for 1 animal. Error bars
represent S.E.M. Student t-test * p < 0.05 (d) Performance as a function of training time, N =
8 animals. (e) Performance across repetitions of previously seen (gray) and previously unseen
(red) object trajectories during one session. N = 6 animals. Gray dashed line represents chance
level. Green line represents performance of a pixel based linear classifier. For both (d) and
(e) shaded areas represent S.E.M. (f) Example large field of view recording (green) with area
boundaries overlaid. Scale bar represents 1mm. A small inset depicts the two-photon average
image for a small segment of the large field of view captured with the mesoscope. (g) Example
responses of all neurons to moving objects (shown on top) from the recording shown in (f).
Each clip is presented for 3-5 seconds before a short pause switches to a new clip that might
be the same or a different object identity.
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Figure 2: Object identity decoding across the visual hierarchy. (a) Discriminability
of object identity as a function of the number of neurons sampled. Each line represents the
average across all recorded sites. (b) Scatter plot of the discriminability of different areas with a
population of 128 neurons compared to V1 for all the recording sites. Insert histogram represents
the difference between the discriminability of each area and V1. Red line and number indicate
the mean difference. Diamonds represent the results with 2 objects whereas circles represent the
results with 4 objects. Outliers have been omitted for better visualization. Wilcoxon signed
rank test *** p < 0.001, ** p <0.01, * p < 0.05. (c) Average discriminability of all visual
areas with a population of 128 neurons. The number below each area represents the recording
sites sampled. (d) Same as in (c) but when using a single neuron at a time to decode the
object identity. The number below each area represents the cells sampled. (e) Low-dimensional
representation of the 128-dimensional neural activity space, illustrating the separation of the
responses to four different objects for three example areas. Each dot represents the average
of the activity in one 500msec bin. The side histograms represent the distances of the data
projected onto each of the four object category axes for the same-class (colored) and different-
class (gray). Each insert represents the confusion matrix after decoding.

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2020.08.20.258798doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.258798
http://creativecommons.org/licenses/by-nc-nd/4.0/


field is different between visual areas. To control for this, in some experiments we also mapped
the receptive fields (RF) of all recorded neurons using a dot stimulus (see Materials and
Methods) and repeated our decoding analysis using only neurons from each area with RF
centers within the same ∼20 degree area of visual space. When we restricted our analysis in
this way, areas LM, LI and AL still showed significantly higher discriminability (Supp. Fig.
2b). Another potential confound might be differences in receptive field sizes across areas [13]
[12]. An area with larger receptive fields might be better at representing objects simply because
more neurons are responding to the object at any moment. Indeed, when we examined decoding
performance conditioned on the object size, we observed an increase in discriminability for all
visual areas as a function of object size (Supp. Fig. 3a), in agreement with the increased
performance we found when sampling from more neurons (Fig. 2a). However, if changes
in receptive field size alone are responsible for increased object discriminability, we would
expect that area PM, which has very large receptive fields [13], would also have high object
discriminability. This was not the case in our data (Fig. 2). To further investigate the influence
of receptive field size on discriminability, we modeled the effect of changing receptive field (RF)
size in a simulated population of neurons using either pixel intensities or the output of filters
learned by a sparse coding model of natural images [14]. Increasing the size of the receptive fields
by either scaling or pairwise linearly combining them (Supp. Fig. 4a, see Materials and
Methods) led to either a decrease in discriminability or had no significant effect, respectively
(Supp. Fig. 4b). Using pixels as an input to the model also resulted in low discriminability
irrespective of the number of pixels used (Supp. Fig. 4b,c). These results argue that
our in vivo results cannot be trivially explained by a simple pixel model or differences in the
receptive field sizes across visual areas. Additionally, higher visual areas have been reported
to have different temporal frequency selectivities [15] [8] [16]. To determine whether the range
of speeds that objects were moving in the movies that we showed influenced our results, we
computed the decoding performance for each area as a function of the object speed, but did
not find any significant differences (Supp. Fig. 3b). Therefore, we interpret the increase in
discriminability in AL, LI, and LM indicating that these visual areas are particularly involved
in the processing of visual object information with neural representations that are easier to
decode (Fig. 2e).

2.3 Lateral visual areas show responses that are more invariant to
nuisance transformations

An important property of visual areas that extract information about object identity is general-
ization to out-of-distribution data, such as adding background clutter to the stimuli. To assess
the effect of background clutter, we first trained a logistic regression decoder on responses to
objects with only a gray background as previously used. We then evaluated the performance of
the decoder on the responses to movies in which we embedded the objects on top of background
clutter (Fig. 3a, Supp. Movie 2). While the discriminability decreased for all visual areas
when compared to noise-free stimuli (Fig. 3b), areas LM and AL maintained significantly
higher discriminability compared to V1 and all other visual areas (Fig. 3a,b,c), indicating
that in addition to being highly invariant to changes in the appearance of the object, the object
representation in these areas is also more robust than in V1 and other visual areas to clutter.
We also studied the relationship between discriminability and reliability of the neural responses.
Although the decoding performance of the objects without the background correlated well with
the reliability of the responses for both V1 and the lateral visual areas, when background noise
was introduced this relationship broke down for V1 but not for the lateral visual areas (Supp.
Fig. 1b).
An additional test of invariant object recognition is the ability of the neural representation to
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Figure 3: Generalization performance across background noise and identity-
preserving transformations. (a) Generalization test across background noise. The decoder
was trained on the responses to objects without background and tested on the responses to
objects that contained background noise. Low-dimensional representation of the responses to
the object w/ background are shown on the right similar to Figure 2e. Each insert represents
the confusion matrix after decoding. (b) Average discriminability of all visual areas for objects
w/o and w/ background, on the same recorded sites. (c) Bar plot indicating the difference in
discriminability between all visual areas and V1 on the responses to objects w/ background.
Kruskal-Wallis with multiple comparisons test ∗p < 0.001. (d) Top: Example parameter space
of the four nuisance classes: Translation (x/y), Scale, Pose (tilt/rotation) and Light (four light
sources). The decoder was tested on a parameter space of each of the four nuisance variables
that had not been part of the training set. Bottom: Bar plot indicating the performance when
testing on untrained parameter space, compared to the performance of the random sampling
across all classes. Lines indicate p < 0.05 Kruskal-Wallis with multiple comparisons test.
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generalize across new image transformations — not used during training — that preserve object
identity such as changes in position, scale, pose and illumination [1] [17] [3] [18]. Specifically
an object decoder built on a subset of the nuisance parameter space, i.e. a limited range of
translations, sizes, and rotations, should generalize across new nuisance parameters. To test
this we split the data into four non-overlapping bins for each of the nine continuously-varying
parameters that defined the object stimulus (for example for the size object parameter into very
small, small, medium, and large objects; Fig. 3d top), while the remaining parameters were
randomly sampled. For each parameter, we then used data from three of the bins to train the
decoder, and tested the prediction performance on the held-out data bin. We compared this
performance to a baseline discriminability using a 4-fold cross validation, when the values for
each parameter were randomized before binning so that the training and test set both spanned
the same parameter range. Comparing the out-of-distribution test set performance to this
baseline allowed us to assess the ability of the decoder to generalize, and thus the invariance
of the representation in each area (Fig. 3d bottom; negative values). Areas AL, LM and
LI consistently showed the best generalization performance (smallest reduction in performance
for out-of-distribution test set vs baseline), when changing scale, pose and light (Fig. 3d
bottom). Interestingly, that was not true for translation. The larger receptive field sizes of
areas PM and AM [13] [12] might contribute to the improved translation invariance that we
observed relative to the other parameters.

2.4 Changes in the geometry of object manifolds along the cortical
hierarchy

Chung and colleagues [19] recently developed the theory of linear separability of manifolds and
defined a measure called the classification capacity which quantifies how well a neural popula-
tion supports object classification. The classification capacity measures the ratio between the
number of objects and the size of the neuronal population that is required for reliable binary
classification of the objects, and is tightly related to the geometry of a neuronal population
responding to an object presented under varying nuisance transformations with respect to the
identity of the object (object manifold). In deep neural networks trained on object classifi-
cation tasks, it has been shown that the classification capacity improves along the network’s
processing stages [20]. Our data, consisting of responses of large neuronal populations in dif-
ferent visual areas to objects under various transformations, are well suited for applying this
method to characterize the object manifolds in different visual areas. We used the neuronal
responses of 128 simultaneously recorded neurons from each visual area to four objects under
the identity-preserving transformations introduced earlier (object position, scale, pose and il-
lumination conditions, with and without background noise). In agreement with our decoding
results, we found that the classification capacity increased in higher visual areas AL and LM
compared to V1, but decreased in the rest of the areas (Fig. 4a, b). The theory of linear
separability of manifolds [19] also enabled us to characterize the associated changes in the ge-
ometry of the object manifolds to understand how object invariant representations arise along
the processing hierarchy [20] (i.e. relate the manifolds’ classification ability to the geometry
of object manifolds). In particular, classification capacity depends on the overall extent of
variability across the encoding dimensions, the radius of the manifold, but also the number of
directions in which this variability is spread, the dimension of the manifold. These geometric
measures influence the ability to linearly separate the manifolds (Fig. 4c). In our results,
we find that the increase in classification capacity can be traced to changes in the manifolds’
geometry, both as a decrease of the dimension and radius of object manifolds (Fig. 4d).
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Figure 4: Classification capacity and geometry of manifolds across the visual hier-
archy. (a) Scatter plot of the classification capacity of different areas compared to V1 for 4
objects. Insert histogram represents the difference between the classification capacity of each
area and V1. Red line and number indicate the mean difference. Wilcoxon signed rank test
*** p < 0.001, ** p < 0.01, * p < 0.05. (b) Average classification capacity of all visual areas
with a population of 128 neurons. The number below each area represents the recording sites
sampled. (c) Illustration of low dimensional representations of object manifolds for two visual
areas. Left: each point in an object manifold corresponds to neural responses to an object under
certain identity-preserving transformations. Right: demonstration of two possible changes in
the manifold geometry in a higher order area, reduction of the radius of one manifold through
reduction of its extent in all directions (top) and reduction of the dimension of one manifold by
concentrating variability at certain elongated axis, reducing the spread along other axes. Such
changes have predictable effects on the ability to perform linear classification of those objects.
(d) Box plots of the manifold radius (left), and manifold dimension (right) of all areas, sorted
in ascending order of the median value.
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2.5 Temporal dynamics and cross-area dependencies

One question that arises is how these visual areas are able to form invariant representations
that can generalize across background noise or nuisance parameters. One way for these areas
to optimize the representations is by taking advantage of the temporal continuity that exists
for natural objects by integrating information over time [21] [22]. We analyzed the temporal
dynamics of the decoding performance of random samples of 50 simultaneously recorded neurons
for objects overlaid on background noise. From one trial to the next the nuisance parameters
varied continuously but the object identity was preserved (cis trials) or switched (trans trials)
(Fig. 1g). When we compared the discriminability as a function of time for cis/trans trials,
we found that indeed in the trials in which the identity of the object was switched (trans
trials), discriminability was overall lower across all visual areas in the early phase of the trials
compared to the late phase of the trials, providing evidence for temporal integration during a
trial (Supp. Fig. 5). In the late period discriminability in area AL was significantly closer to
the discriminability levels of the cis trials than all other visual areas, suggesting that activity in
AL more quickly evolved to more disentangled representations (Supp. Fig. 5b, Early/Late).
We also studied the correlations between the representations of objects across multiple visual
areas. If information about object identity propagates across areas, then we expect to find
significant temporal correlations in the evolution of object discriminability across these areas.
We estimated each area’s confidence about the identity of the object at each time point, as the
distance of the population activity from the decision boundary (Fig. 5a), and we examined
the evolution of this metric across time in each area. Specifically, we estimated the distance to
the decision boundary at different moments within the trial for the class that was presented.
This decision boundary was a linear hyperplane in the 128 dimensional neural activity space
(Fig. 5a). We then computed the correlation between the resulting temporal vectors of the
score values across all simultaneously recorded visual areas (Fig. 5b, Score Correlation). The
highest correlations in this moment-to-moment discriminability score were between AL, LM,
RL and V1 (Fig. 5c).
Given that activities of neurons across areas can co-fluctuate because of global brain states,
these score correlations could just be the result of raw activity correlations across areas. To
test this we computed the activity correlations between the responses of pairs of neurons across
visual areas. We observed a different correlation pattern that was distinct from the structure of
the score correlation (Fig. 5b). Moreover, we measured the strength of the linear relationship
between each pair of areas after adjusting for relationships with the rest of the areas. To this end,
we computed the partial score correlations. The correlation pattern remained largely unchanged
with strong dependencies between V1-LM, V1-RL and LM-AL suggesting that these areas work
together as a network of areas specialized for object recognition (Fig. 5c). Interestingly, we
did not find a strong relationship between V1-AL (Fig. 5c).

3 Discussion
The ability to recognize, discriminate, and track objects across time is a key adaptive trait
that is fundamental to identifying food items or conspecifics [23]. The ability to recognize
objects has been observed not only in higher mammals such as humans and monkeys, but
also rodents, birds, fish and insects [24] [25] [26] [27] [28] [6]. While the implementation of how
object information is extracted from the visual scene may vary across species, the computational
problem remains the same: construct an invariant representation of objects under a wide range
of identity-preserving transformations. While there is plenty of evidence that mice can detect
novel objects [9], and that mice rely on their vision to hunt crickets [29], until our study there
was no direct evidence that mice are capable of invariant object recognition.
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Figure 5: Temporal dynamics and cross-area dependencies. (a) Schematic represen-
tation of the classification scores as the distances of the response trajectories to the decision
boundary (left) and their resulting temporal dependencies across different areas (right). (b)
Score correlations across all recorded areas (left) and raw pairwise correlations of the single
neuron activity between areas (right). Significance was estimated by bootstrapping across all
correlations, * p < 0.025/45. (c) Schematic representation of the score partial correlation
coefficients between areas.

In this work, we showed that mice can be trained to recognize unfamiliar objects in a 2AFC
paradigm (Fig. 1). Similar tasks have been developed for rats [6], but mice have not been
reported to perform such a task. That might be related to the fact that even though mice
and rats can achieve similar performance levels, mice are slower to train [30]. Our unique
training approach involves minimal interactions with the animals since the training system is
part of their housing. Within a few weeks animals learn to discriminate objects and can show
generalization across unseen objects poses and clutter establishing that mice are capable of
invariant object recognition (Fig. 1d).
To identify how animals are able to extract object identity, we analyzed the activity of thou-
sands of neurons of all known visual cortical areas of the mouse. We found that the decoding
performance varied across the visual hierarchy where a set of lateral visual areas carried more
linearly decodable information about the object identity. Importantly, these areas retained the
information about object identity even in difficult visual conditions such as clutter and across
new identity-preserving transformations despite that the linear classifiers were not trained un-
der those conditions. Our results agree with the hypothesis that object representations become
untangled and more linearly separable as information progresses through the visual hierarchy.
This process might be beneficial as a simple readout mechanism can be employed to drive
behavior. It is important to note that a biologically plausible readout mechanism could in-
volve only from a small set of projection neurons in order to extract object identity. We found
that information carried by single neurons also increased progressively across the hierarchy of
V1-LM-LI in lateral visual cortex in agreement with electrophysiology studies in the rat [18]
(Supp. Fig. 2a). Importantly, our richly varied object stimuli cannot be easily discriminated
by a simple pixel model (Fig. 1b, Supp. Fig. 4b, c) and the ability of mice to separate such
objects likely depends on more complex computations in cortical circuits. Therefore, analogous
to primates, hierarchically organized visual areas in mice untangle pixel intensities into more
linearly decodable object representations.
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However, the associated changes in the geometry of the object manifolds along the visual cortex
remained unknown. To this end, we characterized how the geometry of the object manifolds
changed across the visual hierarchy, using the newly developed theory of linear separability of
manifolds [19] [20]. We found that the two lateral visual areas LM and AL showed increased
classification capacity with object manifolds becoming smaller and having lower dimensional-
ity (Fig. 4). While the classification capacity and radius of object manifolds has not been
previously quantified along the visual processing hierarchy, our results on the dimensionality of
the neural population agree with previous work. Different methods have been used to quantify
the dimensionality of the population responses which also showed that it decreases along the
visual hierarchy of monkeys [31] [32]. However, critically the theory of the linear separability of
manifolds differs from these previous methods as it quantifies the geometrical properties of the
object response manifolds which contribute to the ability to perform linear decoding. This en-
abled us to determine that the dimension of the object manifold decreases from primary visual
cortex to higher visual areas in a way which allows for linear decoding of objects using smaller
number of neurons. The higher visual areas of the mouse [33] [12], have distinct spatio-temporal
selectivities [15] [16] and project to different targets [34]. Based on these differences in their
selectivities, projection and chemoarchitectonic patterns, efforts have been made to separate ar-
eas into ventral and dorsal pathways analogous to those described in primates [35] [34] [36] [37].
Specifically, areas such as LM, LI, P and POR areas are hypothesized to comprise the ventral
stream whereas areas AL, RL, AM and PM comprise the dorsal stream. In rats, lateral visual
areas LM, LI and LL have been shown to carry progressively more information about objects
[18] [38] [39]. However, the areas of the mouse that might be involved in extraction of object
information are not known. We found that higher visual areas AL, LM and LI had significantly
more information about object identity than V1, with area AL consistently outperforming all
other areas which is inconsistent with the current assumption that AL is part of a distinct
dorsal pathway. Strong interactions between anatomically defined dorsal and ventral pathways
in rodents might be particularly important for object detection and discrimination given the
importance of navigation in rodents [40]. To that effect, both areas AL and LM show faster
accumulation of information about object identity in noisy conditions (Supp. Fig. 5) that
could result in the increased temporal stability that has reported recently in higher visual areas
of the rat [41]. Moreover, the correlations we report in decoding confidence between areas AL
and LM (Fig. 5c), could be the result of recurrent processes that have been suggested to play
a significant role during object recognition [42] [43] [44]. These object-selective dependencies,
particularly with area AL showing strong correlations with areas LM and LI, do not share the
same structure as have been reported with more parametric stimuli [35], which could be due
to objects having a statistical structure closer to the preferences of these lateral visual areas.
Interestingly, area LI which is believed to be a high visual area did not consistently outperform
areas LM and AL and had great variability in the discrimination levels (Fig. 2b, 3c, 4a). We
also found that for larger populations, area LI carries less information than LM (Fig. 2a, b).
This variability could be due to the fact that these experiments were done in awake passive
viewing animals without a relevant behavioral task that would necessitate the engagement of
LI.
Future experiments are required to determine how these different areas work together to ex-
tract information about objects that might be used to guide behavior. First, utilizing an
ethologically-relevant task while mapping the activities across visual areas might provide even
stronger evidence of hierarchy [29]. Second, in order to establish a more causal relationship be-
tween visual areas and behavior, it will be important to combine behavioral performance with
causal manipulations of neural activity. Finally, neural networks models and the inception loop
methodology will enable the characterization of the specific features that drive populations of
neurons in these different visual areas [45] [46] [47].
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In summary, we offer evidence that mice share similarities with other mammals in their ability
to recognize objects. By recording the activity from ∼300000 neurons across the whole visual
system of the mouse, in this paper we have deciphered for the first time for any species how
object manifold geometry is transformed to become more separable thus identifying key features
of the population code that enable invariant object coding. Given the panoply of tools available,
the mouse has the potential to become a powerful model to dissect the circuit mechanisms of
object recognition.
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6 Materials and Methods
Animal preparation and two photon imaging All procedures were approved by the
Institutional Animal Care and Use Committee (IACUC) of Baylor College of Medicine. We used
25 adult mice expressing GCaMP6s in excitatory neurons via either SLC17a7-Cre, Dlx5-Cre,
Ai75, Ai148, Ai162 or CamKII-tTA transgenic lines. Animals were initially anesthetized with
Isoflurane (2%) and a ∼4mm craniotomy was made over the right visual cortex as previously
described [48]. The animals were head-mounted above a cylindrical treadmill and calcium
imaging was performed using Chameleon Ti-Sapphire laser (Coherent, Santa Clara, CA) tuned
to 920 nm. We recorded calcium traces by using either a large field of view mesoscope [5]
equipped with a custom objective (0.6 NA, 21mm focal length) with a typical field of view of
∼2500x2000µm, or a two-photon resonant microscope (Thorlabs, Newton, NJ) equipped with
a Nikon objective (1.1 NA, 25X) with a typical field of view or ∼500x500µm. Laser power after
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the objective was kept below ∼60mW. We recorded data from depths of 100–380 µm below the
cortical surface. Imaging was performed at approximately ∼5-12Hz for all scans. Imaging data
were motion corrected, automatically segmented and deconvolved using the CNMF algorithm
[49]; cells were further selected by a classifier trained to detect somata based on the segmented
cell masks.

Behavioral training The mice are trained in a 2 alternative forced choice task in response
to moving objects that are presented on a small 7" monitor that is located in front of their
home cage. In total, 4 objects are used in the experiments, however it should be noted that 2
objects are presented to each mouse. The training procedure is illustrated in Figure 1. Briefly,
naive water restricted mice are placed in a modified cage that has three ports and a monitor
on one side of the box. The center port has a proximity sensor, and the two other ports on
either side of the central port are used to detect licks and are coupled to a computerized valve-
controlled liquid delivery that can deliver liquid volumes with 1uL resolution. The task is as
follows: Mice initiate a trial by placing their snout in close proximity to the central port for
∼200-500msec. A stimulus that can be one of two objects is presented on the monitor that is
∼1.5" in front of the animal. The animal has to report the identity of the object by licking
one of the side ports. Each port is allocated to the identity of the same object throughout the
training. If the animal licks the correct port, then a small water reward ∼5-12µl is delivered
almost immediately which the animals consume. A new trial can be started thereafter. If the
animal licks the wrong port, a short delay 4-10 seconds is added and the screen turns black.
A new trial can start after the delay. Animals have free access to food, and the most of the
water that they receive comes from their training. The training periods in which animals can
initiate tasks are restricted to 4-8 hours a day. At the start of the training animals are shown
the same clip for each object that contains the same set of transformations. Once animals
reach performance levels, new clips with unique transformations are added. At the end of their
training they have seen between 10-20 unique 10s clips of unique object transformations. For
the generalization test, at the start of a new session a whole new set of 10 clips are used for
each object and the performance was compared to the session that preceded.

Receptive field mapping We mapped the location and size of the receptive fields of the
neurons using black and white squares that each covered ∼8-10o of the visual field. The squares
were presented across the entire range of the monitor in random order for 150-200 ms each. To
map the receptive fields of individual neurons we averaged the first 500 ms of the activity of a
cell across all repetitions of the stimulus for each location. We fit the resulting 2D map using
an elliptic 2D Gaussian. For each neuron we computed the SNR as the ratio of the variance of
this image within three SD of the receptive field center to the variance of the image outside of
the three SD of the receptive field center.

Visual area identification We generated retinotopic maps of all the visual areas using wide-
field imaging. The signals from GCamp6s were captured using either a custom epifluorescence
setup or two-photon imaging. For the epifluorescence, brain was illuminated with a high power
LED (Thorlabs) and the emitted signal was bandpass filtered at nm and captured at a rate
of 10 Hz with a CMOS camera (MV1-D1312-160-CL, PhotonFocus, Lachen, Switzerland). For
the two-photon retinotopic mapping we sampled the activity from a 2.4x2.4mm area with large
field of view two photon microscope [5] at a rate of ∼5Hz. We stimulated with upward and
rightward drifting white bars (speed: 9-18deg/sec, width: 10-20deg) on black background that
had their size and speed constant relative to the mouse perspective as previously described.
Additionally, within the bar we had drifting gratings with a direction opposite to the movement
of the bar. Images from either the epifluorescent or the two-photon setups were analyzed by a
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custom-written code in MATLAB to construct the 2D phase maps for the two directions. We
used the resulting retinotopic maps to identify the borders and delineate the visual areas as
previously described [11] [12].

Stimulus generation and visual stimulation In this study we used four synthesized three-
dimensional objects that were rendered in Blender (www.blender.org). Two of the objects were
built to match the objects used in [6] and the other two were already existing models within
Blender. We varied the following parameters of the objects: X and Y location (Translation),
magnification (Scale), tilt and axial rotation (Pose) and variation of either the location or energy
of 4 light sources (Light). The different object parameters were varied continuously over time in
order to generate a cohesive object motion. Objects were rendered either on a gray background,
or on a gaussian noise pattern with a fixed seed between objects. The long rendered movie
was split into smaller 10 second clips. A short 3-5 second segment from 150-380 clips for each
object were presented in a random sequence to the left eye with a 25” LCD monitor positioned
∼15cm away from the animal. A small number of clips were repeated multiple times in order
to estimate the reliability of the neural responses.

Model For the V1 model, we used the filter responses to a set of 256 localized and oriented
filters obtained with Independent Component Analysis (ICA) on 12x12 patches randomly sam-
pled from natural images from the van Hateren database as previously described [48] Supp.
Fig. 4a. In order to control for the increase in size of the receptive fields in higher visual areas,
we also created an enlarged version of these receptive fields (Supp. Fig. 4a, ICA 150%) by
scaling the initial ICA filters. That method has the disadvantage of changing the spatial tuning
properties and thus to create more realistic receptive fields, we linearly combined pairs of the
ICA group depending on their response similarity to natural movies. This procedure created
larger receptive fields that were more elongated and often had corner-like structure (Supp.
Fig. 4b, ICA multi). As an additional control, we also used a 144x144 grid of pixels as filters
when comparing with the behavioral data (Fig. 1e) and 32x32 when comparing to the neural
data (Supp. Fig. 4b, c). The filter responses were half-wave rectified and squared and were
used as a scale to sample from the Weibull distribution with a shape parameter optimized
in order to create similar reliability levels to the in-vivo data. Finally, we used the resulting
responses to train the same decoder as the in vivo data.

Decoding and discriminability We used a one-versus-all logistic regression classifier to
estimate the decoding error between the neural representations of 2-4 objects of 200-500 ms
scenes. Each scene was represented as an N-dimensional vector of neural activity for each
response scene. In almost all of the cases we used a 10 fold cross-validation in which the
performance of the decoder was tested on 10% of the data that were held out during training.
When generalizing across the background noise in Figure 3, the decoder was trained on 90% of
the data with the no-background objects and tested on 10% of the data with the background
objects. For the generalization across object parameters in Figure 3 we used a 4 fold cross-
validation in which the decoder was trained on 75% of the data, and tested on 25% with a
unique parameter range. In order to compare the decoding accuracy of a one vs all decoder
between experiments that had different number of objects (2 and 4), we converted the decoding
error to discriminability, the mutual information (measured in bits) between the true class label
c and its estimate, by computing

MI(c, ĉ) =
∑
i

∑
j

pijlog2
pij
pi.p.j
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where pij is the probability of observing true class i and predicted class j and pi. and p.j
denote the respective marginal probabilities. Using the mutual information also doesn’t have
the nonlinear

Classification capacity and geometry of manifolds An object manifold is defined by the
neuronal population responses to an object under different conditions (i.e. identity-preserving
transformations). The ability of a downstream neuron to perform linear classification of object
manifolds depends on the number of objects, denoted P, and the number of neurons participat-
ing in the representation, denoted N. Classification capacity denotes the critical ratio αc = P/Nc

where Nc is the population size required for a binary classification of P manifolds to succeed
with high probability [19]. This capacity can be interpreted as the amount of information about
object identity coded per neuron in the given population. Capacity αc depends on the radius
of each of the manifolds, denoted RM , representing the overall extent of variability (relative to
the distance between manifolds), and their dimension, denoted DM , representing the number
of directions in which this variability is spread. These geometric measures are defined through
the alignment of the hyperplane (in the representation N -dimensional space) that separates
positively labelled from negatively labelled manifolds. This hyperplane is uniquely determined
by a set of anchor points, one from each manifold, that lie exactly on the separating plane. As
the classification labels are randomly changed, the identity of the anchor points change; these
changes, along with the dependence of the hyperplane orientation on the particular position and
orientation of the manifolds, give rise to a statistical distribution of anchor points. Averaging
the extent and directional spread of the anchor points with this distribution determines the
manifolds radii and dimensions, respectively. Knowledge of manifold radius and dimension is
sufficient to predict classification capacity using the relation αc = αBalls(RM , DM) where αBalls

is a closed-form expression describing capacity of D-dimensional balls of radius R [19].
The separability of manifolds depends not only on their geometries but also on their corre-
lations. For manifold classification with random binary labeling, clustering of the manifolds
in the representational space, as expected for real-world object representations, hinders their
separability, and the theory of manifold classification has been extended [20] to take these
correlations into account in evaluating αc.
Here we used the methods and code from [20] to analyze the geometry of the object manifolds
(i.e. manifold radius and dimension) as well as estimate classification capacity of neuronal
populations in the different cortical areas. As those methods depend on the correlation structure
of the objects, we analyzed neural representations for data-sets of 4 objects (i.e. omitted data-
sets where only 2 objects are available). At each session of simultaneously recorded neurons
we have sub-sampled from the available population 128 neurons; the subsequent analysis was
repeated 10 times with different choices of neurons, and we report the average results across
this procedure. Each object manifold is defined by neural responses to an object at non-
overlapping 500ms time windows, using the entire range of nuisance parameter space, as well as
responses with and without background noise. This analysis was performed at each visual area
for sessions where more than 128 neurons are available. The baseline to which classification
capacity is compared is the value expected by structure-less manifold which is 2/M , where M
is the number of samples (i.e. time windows where the object was presented).
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7 Supplementary Figures

Supplementary Figure 1: Reliability across all visual areas. (a) Comparison of the
average reliability of the responses to the object stimuli across neurons of all visual areas
(y-axis) and neurons in non-visual areas (x-axis). Insert histogram represents the difference
between the average reliability between each visual area and non-visual areas. Red line and
number indicate the mean difference across all recording sites. Wilcoxon signed rank test ***
p < 0.001, ** p <0.01, * p < 0.05. (b) Discriminability vs average reliability for all the cells
with each recording. Plotted separately for objects w/ (red) and w/o background (gray). The
regression line is indicated for each and the explained variance of the regression is noted on the
top left of each plot. At the sides of each axis are the boxplots for each of the datasets.
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Supplementary Figure 2: Discriminability with single neurons or with RF restric-
tion. (a) Bar graph of the average discriminability when using single neurons to decode the
object identity. Horizontal lines indicate p < 0.01 Kruskal-Wallis with multiple comparisons
test. N is reported in figure 2c. (b) Average discriminability for all visual areas when selecting
a population of 20 cells that have their receptive fields centered within the same 20 degrees of
visual space. The number below each area represents the recording sites sampled. * p < 0.05
Wilcoxon signed rank test when compared to V1.

Supplementary Figure 3: Object size and object speed effect on decoding. (a)
Discriminability as a function of the object size for all visual areas. (b) Discriminability as a
function of object speed for all visual areas. Shaded areas represent S.E.M.
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Supplementary Figure 4: Models of RF and decoding performance. (a) The 256
receptive fields (ICA 100%), their enlarged version (ICA 150%) and their combination (ICA
multi) that were used for the computational model. (b) Discriminability of the simulated
responses of 128 units to objects and the generalization test on objects with background and
translation, from the filters in (a) and also the pixels of the stimuli as input. Horizontal lines
indicate p < 0.05, Kruskal-wallis multiple comparison test. (c) Discriminability of the simulated
responses from the 1024 pixel model as a function of the number of pixels used from the decoder.
Shaded areas represent S.E.M.
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Supplementary Figure 5: Temporal dynamics when object identity is switching.
(a) Discriminability across time for trials where the preserved object identity is preserved (cis-
trials) or switched (trans-trials). Discriminability is normalized to the average discriminability
of the cis trials. Shaded areas represent S.E.M. (b) Bar plot of the normalized discriminability
of the trans trials during the 0.2-0.4 and 2.2-2.4 seconds of the trial. Kruskal-wallis multiple
comparison test * p < 0.05.
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