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Abstract 

A proteolysis targeting chimera (PROTAC) is a new technology that 

marks proteins for degradation in a highly specific manner. During 

screening, PROTAC compounds are tested in concentration-response 

(CR) assays to determine their potency, and parameters such as the half-

maximal degradation concentration (DC50) are estimated from the fitted 

CR curves. These parameters are used to rank compounds, with lower 

DC50 values indicating greater potency. However, PROTAC data often 

exhibit bi-phasic and poly-phasic relationships, making standard sig-

moidal CR models inappropriate. A common solution includes manual 

omitting of points (the so called “masking” step) allowing  standard 

models to be used on the reduced datasets. Due to its manual and subjec-

tive nature, masking becomes a costly and non-reproducible procedure.   

We, therefore, used a Bayesian changepoint Gaussian Processes model 

that can flexibly fit both non-sigmoidal and sigmoidal CR curves with-

out user input. Parameters, such as the DC50, the maximum effect Dmax, 

and the point of departure (PoD) are estimated from the fitted curves. 

We then rank compounds based on one or more parameters, and propa-

gate the parameter uncertainty into the rankings, enabling us to confi-

dently state if one compound is better than another. Hence, we used a 

flexible and automated procedure for PROTAC screening experiments. 

By minimizing subjective decisions, our approach reduces time, cost, 

and ensures reproducibility of the compound ranking procedure. The 

code and data are provided on GitHub (https://github.com/elizavetase-

menova/gp_concentration_response).  
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Introduction 

A proteolysis targeting chimera (PROTAC) is a new drug modality that induces 

degradation of disease-causing proteins. It is a molecule composed of two active 

domains and a linker and forms complex consisting of the target, an E3 ligase, and 

the PROTAC molecule. PROTAC molecules ubiquitinate their target proteins, 

thereby tagging them for degradation by the proteasome. Factors to consider when 

designing PROTACs include which E3 ligase to target, the required binding affini-

ties between the target protein and E3 ligase, the target protein basal turnover rate, 

and the E3 ligase expression level in the relevant tissue. Small molecules typically 

inhibit protein activity, but PROTACs completely remove the protein from cells. 

As the PROTAC molecule itself is not consumed during proteasomal degradation, 

it can be recycled and used many times. Catalytic knockdown of proteins in vivo 

has been shown in some studies1. Precisely estimating parameters of CR curves, 

such as potency and efficacy is essential for robust drug development. 

Traditional small molecule screening for inhibitors typically yields sigmoidal 

monotonic concentration-response curves, characterized by a plateau at high drug 

concentrations. In contrast, PROTAC CR curves can have a distinct profile, 

marked by a loss of efficacy at higher doses. Accounting for such a “hook effect” 

in data analysis is essential to understand the underlying mechanism. A mathemati-

cal framework has been developed to understand the ternary complex equilibria2: it 

explains that the concentration-response behavior of such a complex should form a 

hook. The theoretical model predicts a symmetric curve with respect to the point of 

the maximal effect. However, experimental data frequently displays non-symmet-

ric patterns. A common solution includes manually omitting points (the so called 

“masking” step) allowing standard models to be used on the reduced datasets. This 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2020.11.13.379883doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.379883
http://creativecommons.org/licenses/by/4.0/


 

approach has several drawbacks. Due to its manual and subjective nature, it is time 

consuming and may vary from scientist to scientist. Furthermore, even the same 

scientist at different time points might judge differently (due to their increasing ex-

pertise or more random factors). As a result, manual masking becomes a costly and 

non-reproducible procedure.  There is therefore an unmet need for an automated 

method to fit models to experimental data allowing for non-sigmoidal shapes. Such 

a method should minimize subjectivity, increase reproducibility, as well as provide 

uncertainty quantification to the ranking of compounds. 

 The challenge of non-sigmoidal fits can be addressed in several ways - ei-

ther by adjusting parametric models, or by non-parametric modelling. Parametric 

models are widely used in drug discovery as a tool to fit CR curves. They have a 

pre-defined functional form, such as a linear, exponential decay3, or Hill model4. 

The parameters governing these models often have a straightforward interpreta-

tion, such as the slope and intercept for a linear model, or the concentration that 

gives the half-maximal degradation (DC50) and the maximal effect (Dmax) for a sig-

moidal model. Parametric models reduce an unknown and potentially complicated 

true function, to a simple form with few parameters. Such models can produce 

consistent results when observations follow a pre-defined class of shapes but may 

not fit the data well when a pattern exhibited by data does not fall into that class. 

Then the simplicity of a parametric model might lead to erroneous estimates. An-

other price to pay for the simplicity of parametric models is their global behavior, 

i.e. a change in one parameter can change the shape of the whole curve. 

Non-parametric models such as LOESS (LOcally Estimated Scatterplot 

Smoothing), splines, and Gaussian processes (GPs) are more flexible and learn the 

shape of a curve from data. GPs have certain advantages over its non-parametric 
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counterparts: the LOESS method is known to require fairly large amounts of data, 

while GPs can deal with small data sets, and splines can be viewed as a special 

case of GP regression5.  Additionally, the parameters of most non-parametric mod-

els are not directly interpretable, while such models are usually more computation-

ally intensive and harder to implement. GPs are able to carry more interpretable 

information than its non-parametric counterparts. For instance, its changepoint ker-

nel can incorporate interpretable parameters, such as point of departure (PoD). 

PoD has been proposed as an alternative to DC50 for measuring potency of com-

pounds. A few definitions of POD have been proposed in the literature6. Here we 

define it as the changepoint in the changepoint GP model,   i.e. the concentration at 

which the curve changes shape from flat to flexible. DC50 measures half-degrada-

tion, and POD measures the concentration where degradation starts.  In addition, 

some parts of a curve can be fixed while other modelled more flexibility. A para-

metric framework offers two approaches to fitting when the shape of a curve is not 

known in advance: model averaging7 and model selection. Both approaches start 

with a set of parametric models and then undergo two stages. At the first stage, 

models are fit to the data. At the second stage, models are either averaged, or one 

model is selected as the best. Both methods would not work well if the initial set 

does not contain a realistic model for the given data. Non-parametric approaches 

can avoid the two-stage process, while the necessary decision-influencing parame-

ters can still be derived from the fitted curves. 

Established methods for estimating parameters of a sigmoidal concentration-response 

curve are based on minimization of least squares or maximization of the likelihood via such 

optimization algorithms as gradient descent, Gauss-Newton and Marquardt–Levenberg8. 

These methods produce results in the form of point estimates of parameters. Classical 
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statistical models can communicate uncertainty in the form of confidence intervals (CIs). 

However, they do not inform which values within the CIs are more or less probable as they 

only show the range of values. On the contrary, in Bayesian inference, parameters are 

described by probability distributions. Bayesian credible intervals (BCIs) can also be 

extracted, but each value within BCI is also supplied with information about how probable it 

is. Additionally, the Bayesian inference method allows to incorporate prior beliefs and take 

several sources of uncertainty into account. These features make the method a powerful and 

attractive tool to capture, model and communicate uncertainty. Uncertainty in model 

parameters can be incorporated and propagated into the estimates of derived quantities. 

Bayesian approach to dose-response curve fitting has started gaining recognition in the 

analysis of in vivo data. 

The aim of this work is threefold:  1) to provide an automatic method for fitting 

curves of non-standard shapes to reduce subjectivity and improve reproducibility, 

2) to supply parameter estimates and final ranking with uncertainty quantification, 

3) to demonstrate the usefulness of a Bayesian changepoint GP model for fitting 

PROTAC CR curves. The changepoint GP kernel can infer a PoD. It captures the 

biology such as a flat (negligible) effect at concentrations up to the PoD, and more 

flexibility at higher concentrations to capture the behavior of interest. An ad-

vantage of a Bayesian framework is that the model can account for several sources 

of uncertainty and represents the parameter uncertainty in the form of a distribu-

tion, which is propagated to the uncertainty of the compound ranks. By minimizing 

the number of subjective decisions, our approach reduces time, cost, and ensures 

reproducibility of the compound ranking procedure. The process of compound 

ranking is summarized on Supplement Figure 1. 
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Materials and Methods 

Data 

The data was collected in a set of 2 experiments for 9 compounds as follows: 384 

well plates (PE cell carrier ultra, PerkinElmer, 6057308) containing 12,000 cells 

per well in RPMI1640 medium (Sigma, R7638) supplemented with glutamine 

(Gibco, 25030) and 10% FCS were dosed with an Echo 555 (labcyte) at the indi-

cated doses. Maximum effect and neutral controls DMSO were also used. After 

one day of incubation, cells were fixed with PFA (4% final concentration) for ap-

prox. 20 minutes, washed (3X PBS by using a BioTek plate washer) and subse-

quently stained with primary followed by secondary antibody for target detection 

and DRAQ5 (Abcam, Ab108410). Each staining step was followed by a washing 

protocol described above. The signal for the target antibody stain per well was 

measured by automated microscopy (Cellinsight, Thermo). Data were normalized 

by Genedata Screener software (Genedata Screener®) using controls distributed at 

several positions across the plate to 0% (DMSO, neutral control) and -100% (max-

imal effect compound).  The core formula for normalization is the expression (x-

<cr>)/(<sr>-<cr>) where x is the measured raw signal value of a well, <cr> is 

the median of the neutral controls, and <sr> is the median of the measured maxi-

mal effect control compound.  

Model 

Bayesian inference 

The Bayesian model formulation consists of two parts: preliminary information, 

expressed as prior distributions, and a likelihood. Inference is made by updating 

the prior distributions of the parameters according to the data via the likelihood. 
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The likelihood reflects the assumptions about the data generating process and al-

lows a model to be evaluated against the observed data. In the process of inference, 

samples of parameters are drawn from posterior distributions. These samples can 

be consequently used to quantify uncertainty of parameter estimates in the form of 

distributions, as well as to derive statistics. 

The logic of the subsequent sections is as follows. First, we explain the 

likelihood of the model and how to account for different sources of variation in the 

section “Measurement model and likelihood”. After that, we give a brief introduc-

tion to the Gaussian Process class of models and build on the kernel proposed in 

the literature9 by generalizing it to a wider family of changepoint kernels in the 

section “changepoint Gaussian Processes”. We round up the model formulation by 

explaining our prior choices in the section “priors for model parameters”. 

Measurement model and likelihood 

We assume that both data for treatments and controls is available. Data for controls 

consists of Ncontrol measurements of the response, corresponding to the same (zero) 

concentration. These measurements therefore can be denoted as pairs (x0, ycontrolc ), 

c = 1,..,Ncontrol. Treatment data is available for each concentration xi (i=1,…,N) in 

several measurements. We denote such data as yrep, ir (r = 1,...,Nrep), where index i 

corresponds to one of N concentrations, and index r corresponds to the replicate 

number. The aim of modelling is to build a curve y which captures data trend in 

the best way. At this point, we do not need to make any assumption about the exact 

functional form of y, i.e. it can be either parametric or non-parametric. Subse-

quently, we call y “the mean predicted curve”. The observed points, however, will 

not lie on the curve y exactly. This observation can be attributed to the present 

sources of uncertainty. The model takes two sources of variation into account: 
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curve uncertainty σ and replicate-to-replicate variation σrep. Curve uncertainty ex-

plains why all observations do not lie exactly on the mean predicted curve, and 

replicate uncertainty explains why measurements at the same concentration do not 

coincide with each other. These sources of variation are presented graphically on 

Figure 1. When only one replicate is available, the treatment observations could be 

described as yi = yi + ei, ei ~ N(0, s2). Hence, it holds for y itself that it is distrib-

uted normally, is centered at y and has standard deviation σ. Using vector notation 

(y is a vector with components yi, i = 1,…N) we get    

y ~N(y, s2I). 

  Variability in replicates for the same concentration yrep, ir , r = 1,...,Nrep  is mod-

elled with a Student’s t-distribution with degrees of freedom v, centered on the 

mean response and replicate-to-replicate scale σrep: yrep, ir ∼ tv	(yi, σrep), r = 1,...,Nrep. 

In vector notation this becomes 

yrep ∼ tv	(y, σrep), 

 

Here v is a parameter which gets inferred from data. Student’s t-distribution has 

heavier tails than the normal distribution and, hence, allows for more extreme ob-

servations. This choice makes the model less sensitive to outliers. The higher is the 

estimate of v, the closer is the distribution to normal. Hence, the estimates of this 

parameter can diagnose the presence or absence of outliers in the data. To summa-

rize, treatment data is distributed as  

yrep ~ tv (N(y, s2I), σrep). 

It would be hard to derive the analytical form of this distribution. However, to fit a 

Bayesian model the analytical form of the distribution is also not needed. What we 
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can notice is that the total variation of the replicates approximately equals σ2 + 

σrep2.  Data for controls ycontrolc , c = 1,..,.Ncontrol has mean µ and the same two 

sources of variation: curve uncertainty and replicate-to-replicate uncertainty. That 

is why, to match the amount of modelled uncertainty in the treatments, heuristi-

cally, the likelihood for controls is derived as  

ycontrolc ∼ tv(µ, sqrt(σ2 + σrep2 )), c = 1,..,.Ncontrol. 

Distributions for yrep and ycontrol define the likelihood of the model. The computa-

tional graph, summarizing this logic, is presented in the Supplement Figure 2.  

  

 

Changepoint Gaussian Processes 

The trend y as the dependence of the outcome variable (protein degradation) on the 

concentration is modelled using a GP with a changepoint kernel. A composite GP 

kernel has been proposed in the context of dose-response curve fitting in9. The pro-

posed covariance structure is a special case of a changepoint GP. Here we present 

a more general framework of the changepoint kernel modelling and explain how9 

fits into it. 

 A GP defines a probability distribution over functions, i.e., each sample from a 

GP is an entire function, indexed by a set of coordinates (concentrations). Evalu-

ated at a set of given concentrations, a GP f is uniquely specified by its mean vec-

tor µ and covariance matrix K and follows a multivariate normal distribution: f ~ 

N(µ, K). Each element of the covariance matrix Ki,j is obtained as an evaluation of 

the covariance kernel – a function of two arguments k( . , .) at a pair of points xi 

and xj. The kernel controls variance-covariance structure: its value at a set of two 

points k(xi, xj) quantifies the covariance of two random variables f(xi) and f(xj). 
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Kernel design is crucial for GP modelling since it describes the class of possible 

functions which can be captured: both the global shape, as well as local properties, 

such as smoothness10. Most commonly used kernels, such as exponential h2exp(-

d/r), squared exponential h2exp(-d2/r2), or Matern Cv,ρ(d), depend on the distance 

d = || xi – xj|| between two points and, hence, are stationary. They are inappropriate 

for modelling concentration-response curves and surfaces (e.g., drug-drug interac-

tion) which might display different behavior across the observed concentrations. 

Kernels derived from exponential and squared exponential kernels would have 

smooth shapes, while Matern kernels under certain values of ν result in curves 

with more local fluctuations and less smoothness. The length-scale ρ, common for 

many kernels, governs the flexibility of the curves: smaller length-scales induce 

correlations between points at smaller distances and hence more oscillatory behav-

ior - such behavior, when exaggerated, can lead to overfitting; too large length-

scales, on the other hand, make curve fits too inflexible and may lead to underfit-

ting the data. The amplitude η, frequently applied to kernels as a constant multi-

plier, controls the expected variation in the output. The amplitude controls how 

strong the functions fluctuate and the length-scale controls how rapidly they fluc-

tuate. Dependence of the standard kernels on their parameters can be visually in-

spected in11. Choice of priors of the GP parameters plays a big role in their identi-

fiability. 

Covariance functions can be scaled, multiplied, summed with each other and 

further modified to achieve a desired effect. For instance, if it is known that a 

curve behaves differently before and after concentration θ, changepoint kernel can 

be used to provide a reasonable model. If the curve before θ can be described by 

f1(x) ∼ GP(0 ,k1), 
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and the curve after θ can be described by 

f2(x) ∼ GP(0, k2), 

 

then the desired global GP can be constructed as a weighted average of the two lo-

cal models 

f(x) := (1 − w(x)) f1(x) + w(x) f2(x) ∼ GP(0, k) 

and its kernel function can be composed as 

k(x, x’) = (1 − wθ(x)) k1(x, x’)(1-wθ(x’)) + wθ(x)k2(x, x’)wθ(x’), 

where wθ(x) is a function with values between 0 and 1. The further away is x from 

θ to the left, the closer is wθ(x) to 0 (hence, k1 will dominate in that region). The 

further away is x from θ to the right, the closer is  wθ(x) to 1, and hence, k2 will 

dominate there. Standard choice of the weighting function is the sigmoidal w0(x) = 

σ(x), providing a smooth transition from f1 to f2, centered around zero. However, 

the weighting function can be modified to shift the transition point from 0 to θ: 

w0(x) = σ(x) → wθ(x) = σ(x − θ), or make the transition more rapid wθ(x)  → wθ,g(x) 

= σ(g *(x − θ)), g > 1 or slower g <1. If parameter g is a very large number, the 

transition function can be substituted with a step function sθ(x) = 0, if x< θ and 

sθ(x)=1 otherwise. In practice, if one opts to use the step function as a weight 

wθ(x), it is easier to formulate the changepoint kernel via an if-else statement. In 

our model formulation, g is a parameter and is estimated from data. Dependence of 

GPs with standard kernels (exponential, squared exponential, Matern, linear) on 

the values of their parameters are well understood. The novelty of the proposed 

kernel is in the parameter g. Qualitative change of behaviour of a curve, depending 

on the value of g, is presented on Supplement Figure 3. The figure shows how the 

values of g affect the shape of possible curves under such kernel. 
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In the context of concentration-response curve fitting, the data can be repre-

sented as a set of pairs (xi, yi), i = 1,...,N. Here x = xi  is the value of the unique in-

put coordinate (concentration), y = yi  is the corresponding mean response, and N is 

the number of unique concentrations (see Figure 2). For PROTACs it is assumed 

that the expected response is constant at low concentrations up to a threshold con-

centration θ (the concentration threshold at which a chemical induces an effect, i.e. 

PoD). Linear kernel with no slope is appropriate to model such behavior (k1 = 0) of 

the model to the left from θ. For concentrations above θ, the expected response is 

assumed to vary smoothly as a function of concentration, and it can both grow or 

decline. Hence, exponential or squared exponential kernels would make a reasona-

ble choice for concentrations above θ. The kernel k2=h2(xi − θ)2(xj − θ)2exp(-(xi – 

xj)2/r2), defining the function to the right side of the threshold, is a product of the 

Gaussian and squared linear kernels. The Gaussian kernel h 2exp(-(xi – xj)2/r2), 

provides smoothness, and squared linear kernel (xi − θ)2(xj − θ)2 allows the range 

of plausible values to increase together with the distance from the point of depar-

ture θ.  

As the weighting function we use wθ,g(x) = σ( g *(x − θ)), where parameter g is 

inferred from data. Note that the kernel used in9 is the special case of the above de-

scribed kernel, as the weighting function chosen there equals  sθ(x). By allowing g 

to be a parameter of the model, we allow more flexibility in the curve shapes.  

 

GP predictions 

Only evaluations of the GP at measured concentrations xi = xobs,i  are used for infer-

ence, but we are interested in finding continuous curves. To calculate curve trajec-

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2020.11.13.379883doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.379883
http://creativecommons.org/licenses/by/4.0/


 

tories, we define a grid of points (concentrations) at which we want to make pre-

dictions and calculate the values of f at the selected locations xpred,i , i = 1,...,Npred. 

Jointly, observed and unobserved values are distributed as a multivariate normal 

 

Due to the properties of the multivariate normal distribution, the distribution for 

the unobserved values given the observed values is given by N(m, Σ), with m = 

µpred + (Kobs, pred)T ∗ (Kobs)−1 ∗ (fobs − µobs) and Σ = Kpred − (Kobs, pred)T ∗ (Kobs)−1 ∗ 

Kobs, pred. Here µpred = µ ∗ [1,...,1]T is a constant vector, Kobs is the covariance ma-

trix evaluated at observed locations, Kpred is the covariance matrix evaluated at lo-

cations for predictions, and Kobs, pred is the covariance matrix evaluated at the pairs 

of observed and prediction locations. 

Priors for model parameters 

Full Bayesian model formulation requires specification of prior distributions for parameters 

µ, σ, σrep, η, ρ and θ. Baseline response µ is assigned the weakly informative prior µ ∼ 

N(0,0.1). Scale σ, governing the concentration-to-concentration variation is assigned the in-

verse gamma prior σ ∼ InverseGamma(1,2), implying a mode of 1. Scale σrep, governing the 

replicate-to-replicate variation, is assigned the inverse gamma prior σrep ∼ In-

verseGamma(1,0.1) implying a mode of 0.05. In this way we express our belief that replicate-

to-replicate variation for the same concentration is smaller than the deviation of measure-

ments from the mean curve. The length-scale, ρ, should not be smaller than the minimal dis-

tance between concentrations (about 0.5 on the log10-concentration scale), and not larger 

than the range of concentrations (about 6 on the log10-concentration scale). We use a gamma 
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prior ρ ∼ Gamma(50,20) which does respect the constraints and has a mode of approximately 

2.5. This implies that for log10-concentrations between -10.5 and -4.5, correlations are non- 

negligible at distances of about 40% of the total length of the concentration interval. For the 

amplitude η, we use a normal prior η ∼ N(1,1), and for the threshold θ, a uniform distribution 

between the lowest and highest concentrations θ ∼ U(xmin,xmax). For degrees of freedom of the 

Student’s t-distribution v	we use Gamma(2,0.1). This prior has been proposed in12 and is now 

widely adopted by the Stan community. With mean of 20 and variance of 200 it provides 

room for a wide range of values for v. Our prior for g is Gamma(10, 1), which has mean of 

10, variance of 10 and hence specifies a plausible range of values as informed by Supplement 

Figure 3. 

 

Different baselines for treatments and controls 

 
Data normalizataion procedure includes the transformation x -> (x-<cr>), where x 

is the raw measured response, and <cr> is the median value for controls. As mean 

and median of controls may not coincide, the difference between them can be non-

zero. That is why we keep the parameter µ in the model, even if we expect its esti-

mates to be close to zero. In datasets, where a lot of measurements of controls and 

only few measurements for each treatment dose are available, it can happen that µ 

would represent the mean of controls stronger than the treatment. In cases when 

observed treatment response at low concentrations is not close to the mean of con-

trols, using µ as a baseline (value at low concentrations) for treatments may bias 

the response curve in the low-concentration area. To avoid such an effect, modifi-

cation of the model can be used, where the base level of the treatment is estimated 
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by the parameter µ and the mean of controls is estimated by a different parameter - 

µc. In that case, likelihood of the model takes the form  

ycontrolc ∼ tv(µc, sqrt(σ2 + σrep2 )), c = 1,..,.Ncontrol, 

yrep, ir ∼ tv	(N(yi, σ2), σrep)), y ~ GP(µ, K), r = 1,..,Nrep,  i = 1,..,N 

Usually, there won’t be many controls available, and the model with µc=µ would 

be more appropriate. If this is not the case, however, we suggest using the baseline 

for treatment different from the mean of controls. For this version of the model we 

suggest to keep the prior for µc as a normal distribution with mean 0 and standard 

deviation 0.1, and to choose the prior for µ as a normal distribution with mean 0 

and standard deviation 0.2. 

 
Calculating biologically relevant parameters and ranks 

In the process of Bayesian inference, we collect samples of the model parameters 

and the mean GP curve, which form the posterior distribution. If Niter draws (i.e. 

MCMC samples) have been saved, each of the curves can be used to derive further 

statistics, such as biologically meaningful quantities - DC50, Dmax or PoD. We per-

form the computations based on each drawn GP to create a sampling distribution 

of the quantities. These distributions reflect uncertainty of the estimates. A PoD is 

directly represented in the model by its parameter θ; Dmax is calculated as the maxi-

mal amount of degradation, i.e. the minimal value on the y-axis; and DC50 is calcu-

lated as the abscissa of the half-maximal degradation point. To find DC50 numeri-

cally, we first compute its ordinate yDC50 and then search for a point with the lowest 

x−value on the predictive grid with the minimal difference between the GP and 

yDC50. 
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For each saved MCMC iteration i in this process, we create a ranking of com-

pounds based on the magnitude of DC50. If (DC50)ij is an estimate obtained from 

iteration i, i ∈ (1,Niter) for compound j, j ∈ (1, Ncpds) (here Ncpds is the total number 

of compounds), then for a fixed i, the Ncpds estimates can be sorted. The order of 

the sorting yields the ranking of compounds, and the final rank of a compound is 

its most frequent rank of this compound across all iterations. This procedure is 

graphically presented on Figure 3. Fitting of the Bayesian model for each com-

pound is taking place independently from other compounds. In the presence of a 

large number of compounds which need to be compared, this step can be parallel-

ized and will not lead to increased computation time. Once all posterior samples 

have been collected, the sorting step is applied to each iteration i independently 

and, again, can be parallelized.   

Software 

The model was fit in Stan13 which uses a Hamiltonian Monte Carlo sampler. We 

used Rstudio14 to process the data and interface with Stan. The Bayesplot15 library 

was used to visualize convergence statistics. We used 4 chains of 10000 steps each 

to produce draws from the posterior. Convergence has been evaluated numerically 

using  R-hat and effective sample size statistics. R-hat compares within chain vari-

ation and between chain variation and effective sample size is an estimate of the 

number of independent draws from the posterior distribution. There are no strict 

thresholds for both statistics, but general guidance is that R-hat should be close to 

one and effective sample size should be not too small as compared to the total 

number of samples. Visual inspection of posterior distributions of model parame-

ters (Supplement Figure 4 shows results for one compound) also demonstrated 
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convergence as posterior distributions from different chains agree well. Mean 

elapsed CPU time (on a laptop with 2.3 GHz Intel Core i5 and 8 GB Memory) for 

4 chains was 9.23 seconds with standard deviation of 1.22 seconds. Estimates of 

model parameters for one compound are presented in Supplement Table 1. Predic-

tions were made on a regular grid of Npred = 1000 points spaced between the mini-

mal and maximal concentrations. Produced estimates of biologically relevant pa-

rameters are presented in Supplement Table 2. The code for fitting the data to one 

compound using logistic function as a weight function wθ,g(x) =logit−1(g*(x-θ)) is 

available on GitHub: 

 https://github.com/elizavetasemenova/gp_concentration_response. 

Results 

First, we fit the model to one compound with 12 concentrations (the dosage cur-

rently used in practice) and two replicates and discuss the results in detail. Next, 

we analyze 9 compounds with 18 concentrations. Data of the two experiments 

were available, and each experiment contained two replicates. In this way, the 

combined dataset provides four replicates per concentration for each of the nine 

compounds. We demonstrate uncertainty in the produced ranking based on DC50 

and suggest extending this metric to also include Dmax. Finally, we fit the alterna-

tive model with different baselines for treatments and controls to all 9 compounds. 

Example of one compound 

This dataset contains 12 concentrations with 2 replicates per compound. Figure 2 

shows the mean prediction, which closely follows the main trend in the data, and 

the qunatile-based (95%) Bayesian credible Interval16 (BCI; shaded region around 
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the curve). Despite the non-sigmoidal shape, the model accurately detects the low-

est part of the curve, which indicates the maximal effect (Dmax). In addition, the 

model automatically estimates a sensible value for the DC50 – similar to where a 

person might draw a vertical line. The PoD is estimated with less precision but co-

vers the range of concentrations where the curve is largely flat. 

Uncertainty in ranking of compounds 

The data in Figure 4 are from 2 experiments at 18 concentrations and with 2 repli-

cates per experiment. This is a very high resolution and would be rarely available 

in a screening process, and hence they yield tight uncertainty bounds for 

log10(DC50). However, even low uncertainty in the estimates translates into the un-

certainty of the rankings for many compounds. Figure 5 (a) displays posterior dis-

tributions for the log10(DC50) values and Figure 5 (b) displays the resulting ranks 

and their uncertainty.  Figure 4 shows that for most of the compounds the model 

provides sensible fits. Compounds 2 and 5 display a similar pattern: there is a dis-

continuity in the trend of the data. The fitted curve does not exactly fit the points at 

lower concentrations, or points at about -8.2 concentrations (on the log10 scale), 

but rather finds an average trend between the two extremes. While the model does 

not overfit, discontinuity in the data is reflected in the uncertainty of the curve esti-

mates in the neighborhood of this concentration. Furthermore, the model behaves 

robustly with the respect to the outlier of compound 2 (at log10-concentration of 6).  

Compounds ranked as the best (rank=1, 2) and the worst (rank=9, 8) are very dis-

tinct, while uncertainty in the ranks is higher for the other compounds. 

Decisions made solely on DC50 might overlook other important properties. 

Other estimated parameters of the model or the derived biologically meaning 
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quantities can be used for ranking. For instance, the maximal degradation Dmax car-

ries important information about a compound. There is multitude of ways to 

choose a ranking measure. Here we present how the combination of  DC50 and 

Dmax can be used. Figure 6 displays the estimates and BCIs for both parameters. 

Compounds in the bottom left quadrant are preferable. This agrees well with the 

ranking of compound nine - it has the lowest log10(DC50) and log10(Dmax); how-

ever, compound seven, confidently ranked second according to log10(DC50), shows 

less maximal degradation, and potentially, would be de-prioritized if more infor-

mation was taken into account. We suggest using a weighted combination of 

log10(DC50), and log10(Dmax): Dcomb . Here      and   

  are log10(DC50) and log10(Dmax) re-scaled to the [0,1] range, and α ∈ [0,1] is 

the weighting coefficient, which can be chosen by a scientist to give more prefer-

ence to DC50 (α close to 1), weight DC50 and Dmax equally (α = 1/2) or to prioritize 

Dmax (α close to 0). Using the weighted metric, we re-calculate ranks of the 9 com-

pounds according to different values of α (Table 1). We have performed the scal-

ing by subtracting the minimal value of all samples and dividing by the difference 

between minimal and maximal values of all samples. 

All nine compounds presented in Figure 4 are active compounds, i.e. they re-

spond to the increasing concentration in a significant way. We have tested our 

model on simulated “flat” data to verify that it would deal with inactive com-

pounds appropriately. For this, we have simulated responses with a mean equal to 

the mean of controls and a standard deviation which equals 1.1 standard deviation 

of controls. Supplement Figure 5 displays the fits of the Bayesian Hill’s model and 

the changepoint GP model to such data. Changepoint GP produces a nearly flat fit 

with Dmax estimates close to the mean of the simulated data. 
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Results of the model with different baselines for treatments and controls are pre-

sented on Supplement Figure 6. Uncertainty in µc is higher than in the model with 

equal baselines both due to a wider prior for µ, but also due to less data available 

for its estimation.  

  

Discussion 

We have used a changepoint GP concentration-response model, coupled with 

Bayesian inference of its parameters to flexibly fit PROTAC CR curves. A Bayes-

ian approach is advantageous for small amounts of data and can represent uncer-

tainty of the parameters and derived estimates in the form of distributions. A GP 

model does not require strong assumptions on curve shapes, as parametric models 

do. The model is stable to outliers due to using a Student’s distribution. The pres-

ence of outliers can be diagnosed using the estimates of the parameter v. Non-iden-

tifiability is a frequent problem for GPs: often only one of the length-scale or am-

plitude parameters can be identified, while the other parameter needs to be fixed 

for the analysis. We have used an informative prior for length-scale and have not 

encountered problems under the specified settings. 

We have demonstrated how uncertainty in the estimates of DC50 influences un-

certainty in ranks and have proposed a single metric to capture both DC50 and Dmax. 

This metric involves a weighting parameter that allows a scientist to choose their 

decision-making approach and tackle ranking in a quantified manner. We have 

demonstrated that the ranks of the worst (rank=9) and the best (rank=1) com-

pounds are fairly stable with respect to the varying weighting coefficient, while 

ranks of less clear leaders (e.g., compounds number 2 and 7) may change their or-

dering. Currently, decisions are mainly made based on DC50, which corresponds to 
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α = 1. The weighting can be extended to more parameters, e.g. DC50, Dmax, and θ if 

they all represent interest for screening; the combination metric would weight all 

three estimates     with α1 + α2 + α3 = 1, αk ∈ (0,1). 

For parametric models, such as a sigmoidal or double-sigmoidal, the area under 

curve (AUC) can be used as a single measure of compound’s potency. This ap-

proach, however, is less applicable to GP fits since such curves might experience 

local fluctuations. These fluctuations would have little influence on the estimates 

of parameters such as DC50, but cumulatively might contribute non- negligible 

amounts of AUC leading to erroneous conclusions. A potential solution could be 

computing AUC for GPs only in the domain between the minimal concentration 

and the first concentration where the maximal effect Dmax is achieved. In our exam-

ple we have mapped DC50 and Dmax by scaling. Alternative approaches can be 

used, such as desirability functions17. 

The proposed model has been used internally to answer a set of experimental 

design questions, such as “Is it better to have more concentrations, or more repli-

cates?” A series of comparisons has been done between 4,3,2 and 1 replicate for 18 

concentrations, and between different number of concentrations (9 and 18) for the 

same number of replicates. An example of 18 and 9 concentrations (2 replicates 

each), for the same compound as Figure 2 is shown in the Supplement Figure 2. 

The plot shows slightly more uncertainty in the model fit produced using 9 concen-

trations, while the general shape of the fit and DC50 estimate remain close. Model 

fits based on 4,3, and 2 replicates for the same compound are presented on Supple-

ment Figure 8. Both the curve shapes and amount of uncertainty are similar for all 

three fits. Our conclusion from this exercise, evaluating the trade-off between 

number of replicates and number of concentrations, was that more concentrations 
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is preferred to more replicates and that 12 concentrations with 1 replicate is suffi-

cient to produce a robust ranking. 

The changepoint kernel, used in this work, fits a flat curve to the data to the left 

side of the PoD and does not use the mechanistic understanding of the model oth-

erwise. As a result of that, some GP fits might display minor local fluctuations at 

higher concentrations, which a parametric model would not do. Nevertheless, these 

fluctuations would not have major impact on the estimates of the estimated param-

eters and ranking. If it is important to capture more mechanics in the curve-fitting 

step, it can be done by further expansion of the changepoint kernel. For instance, in 

case of PROTACs, one would expect the curve to flatten out after the hook. The 

changepoint kernel, in this case, would have three GP components (flat linear, 

smooth, and flat linear) and two inflexion point θ1 and θ2. Derivations of the kernel 

in this case, are provided in the Supplement. Another solution to the local fluctua-

tions at high concentrations could be provided by a concentration-dependent 

length-scale, such as, for instance ρ2(1+(xi −θ)2)(1+(xj −θ)2)18. 

GP models are computationally more involved than parametric models. Run-

ning Markov Chain Monte Carlo samplers might take longer than applying tradi-

tional (frequentist) parametric methods. As a result, incorporating Bayesian GP 

models into workflows might be less straightforward. However, as computational 

tools evolve, this limitation will be gradually diminished. Furthermore, frequentist 

optimization techniques have their own difficulties, such as subjective choice of 

initial values, and might have convergence issues.  

The most time-consuming steps in the compound ranking process is fitting of 

the Bayesian model and predicting the amount of degradation at unobserved con-

centrations. As the model can be fit to each of the compounds independently, it 
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takes the same amount of time to fit all compounds, as it takes to fit one com-

pound. Fitting of one compound on our machine takes, on average, 9 seconds (with 

standard deviation of 1.2 seconds between 4 chains). As the model is fit to the data 

for each compound independently, the process can be parallelized without addi-

tional time cost. The sorting procedure that provides the ranks is not specific to 

Bayesian methods and would be needed in a standard ranking procedure as well. 

The overall computation time is a trade-off with the number of iterations for 

Bayesian model fitting and the number of concentrations at which the response 

needs to be predicted. 

Among the nine presented compounds, one of them (compound 3) could not 

have reached its Dmax. The estimates produced by the changepoint GP model reflect 

the uncertainty in a wider BCI as compared to other compounds. Fit of compound 

3 does not have an asymptote at higher concentrations as values at these concentra-

tions keep declining monotonically. This is an issue of the range of observed con-

centrations, and not of the model. Width of the uncertainty interval for Dmax here is 

wider than for other presented compounds fitted by the changepoint GP model. For 

comparison, we have also produced Bayesian fits of the 4PL (4-parameter) model 

to the data, accounting for the same sources variation as described above, and the 

mean curve modelled as y = d + (a-d)/(1 + exp(-b(x-c))), where d denotes the 

amount of degradation at zero concentration, a denotes the Dmax, c stands for 

log10(DC50), x is log10-dose and b is the Hill’s slope. More details and produced 

fits for all 9 compounds are available in the Supplement Figure 9. For compound 

3, the BCI of Dmax  produced by the 4PL model is (-90.11, -85.93) and has the 

width 4.18; BCI produced by the changepoint GP model is (-91.66, -82.49) and has 
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the width 9.17;  non-Bayesian fit of the 4PL model (obtained using the drc R-pack-

age19) produces a CI of (-309.2, -67.86) of width 242. While the width of the BCI 

by the changepoint model might be more narrow than intuitively expected, the CI 

by the frequentist model is too wide: its upper limit of approximately -67 is much 

higher than the observed degradation at high concentrations (below -80). Addi-

tional quantities can be calculated to resolve this issue and verify whether Dmax has 

been attained. The derivative of the function, approaching  Dmax should be nearing 

zero, and hence the absolute value of the slope of the curve should be small. The 

magnitude of this derivative can be incorporated into the estimation of uncertainty 

of Dmax. In this work we have used data, pre-processed by GeneData via the nor-

malization step. The shift x-<cr> moves raw data x up or down by the mean of the 

controls to make all curves start at the value of approximately 0. The distribution 

of neutral controls is tight, and its mean and median are not far from each other. 

The estimates of parameter µ confirm that: e.g. Table 1 in the Supplement shows 

that this is a very small number and its credible interval includes 0. The entire 

transformation (x-<cr>)/(<sr>-<cr>) ensures that all data points lie approxi-

mately between 0 and -100. Hence, normalization affects curve-to-curve range, 

and enables comparability of curves and produced estimates. For the case when 

treatment response at low concentrations is not close to the median of controls, we 

have suggested an alternative model with different baselines of treatments and con-

trols. For compounds with lower base level µ than in model with equal baselines, 

e.g. compounds 2 and 5,  POD has shifted to the right; on the contrary, POD of 

compounds with higher µ, e.g. compounds 8,9, POD has shifted to the left. 
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Unlike parametric models, it is more difficult to link GPs to a mechanistic 

understanding. And sometimes models might display minor local fluctuations, 

which a parametric model would not have. Nevertheless, these fluctuations would 

not have major impact on the parameters estimates and ranking. We believe that 

this approach has a lot of potential and can be used by pharmaceutical companies 

by taking steps towards its automation. If the assumption about possible curve 

shapes holds, important choices to make are the priors, and degrees of freedom in 

the Student’s t-distribution. 
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Tables and Table Legends 

Table 1 

α    Compound number    

 1 2 3 4 5 6 7 8 9 

Compound’s rank (and its relative frequency) 

1 3 (0.97) 7 (0.94) 9 (1.00) 4 (0.95) 6 (0.88) 5 (0.91) 2 (1.00) 8 (1.00) 1 (1.00) 

2/3 3 (0.83) 2 (0.84) 9 (1.00) 5 (0.78) 7 (0.48) 4 (0.92) 6 (0.50) 8 (0.70) 1 (1.00) 

1/2 3 (0.89) 2 (1.00) 9 (1.00) 6 (0.63) 7 (0.77) 4 (0.81) 8 (0.99) 5 (0.68) 1 (1.00) 

1/3 3 (0.47) 2 (1.00) 9 (0.99) 6 (0.59) 7 (0.59) 5 (0.42) 8 (0.99) 5 (0.37) 1 (1.00) 

0 5 (0.63) 1 (0.62) 8 (0.70) 7 (0.52) 6 (0.60) 4 (0.61) 9 (1.00) 3 (0.94) 2 (0.62) 

Ranks of 9 compounds and uncertainty based on the combination metric

 for different values of α. 

 
 

Figures 

Figure 1: Sources of variation: curve uncertainty and replicate-to-replicate uncertainty. 
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Figure 2: Prediction for one compound: The predicted curve, calculated estimates 

and uncertainty intervals are shown. The PoD is estimated less precisely compared 

to the DC50 and Dmax. Controls are graphically overlayed at the lowest available 

concentration for treatments. 

 

Figure 3: From raw data to compound ranks. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2020.11.13.379883doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.379883
http://creativecommons.org/licenses/by/4.0/


 

 

Figure 4: GP model fits of 9 compounds, with 4 replicates each. The flexibility of the model 
allows it to fit a variety of concentration-response relationships, and despite some non-
sigmoidal shapes, the estimated DC50 and Dmax values correspond to what a person might 
draw by hand. Controls are graphically overlayed at the lowest available concentration for 
treatments. 
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Figure 5 (a): Posterior draws of log10(DC50) values. 

 

Figure 5 (b): Resulting ranks of compounds together with their uncertainty. 
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Figure 6: Two or more parameters can be used to rank compounds: Compounds 

with low values of      (scaled log10(DC50)) and  (scaled Dmax) are desir-

able as they indicate high potency and large effects. Compound 9 is distinguished 

as the best by these criteria. Error bars are 95% BCI. 
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Flexible fitting of PROTAC concentration-response

curves with Gaussian Processes - Supplement

Elizaveta Semenova1, Maria Luisa Guerriero1, Bairu Zhang1, Andreas
Hock2, Philip Hopcroft2, Ganesh Kadamur2, Avid M. Afzal1, and

Stanley E. Lazic3

1Data Sciences and Quantitative Biology, Discovery Sciences, R&D,
AstraZeneca, Cambridge, UK

2Mechanistic Biology and Profiling, Discovery Sciences, R&D,
AstraZeneca, Cambridge UK

3Prioris.ai Inc, Ottawa, Canada

Supplement

mean sd 10% 50% 90% n eff Rhat

σrep 0.11 0.02 0.08 0.11 0.14 1767.15 1.00
σ 0.29 0.03 0.25 0.29 0.33 3494.05 1.00
µ 0.02 0.04 -0.03 0.02 0.06 4795.64 1.00
ρ 2.55 0.34 2.14 2.53 2.99 4073.17 1.00
η 0.63 0.43 0.20 0.52 1.21 2538.65 1.00
ν 26.66 14.47 11.20 23.66 44.80 4361.59 1.00
g 9.89 3.19 6.12 9.51 14.14 5110.81 1.00

Table 1: Summary of the fitted model for one compound.

2.5% 50% 97.5%

Dmax -82.23 -77.90 -74.26
DC50 -7.99 -7.90 -7.78
theta -10.40 -9.39 -8.71

Table 2: Summary of the estimated biologically relevant model parameters
for one compound.
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σ2rep σ2 y

y

ytreatreplicateycontrolreplicate

(1)

(2)

(3)

Figure 2: Sources of variation for treatment and control data: y-mean pre-
dicted curve, σ - curve uncertainty, σrep - variation between replicates, and

y ∼ N(y, σ2I), (1)

ytreatment
rep ∼ tν(y, σrep), (2)

ycontrolrep ∼ tν(µ,
√
σ2 + σrep) (3)
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Figure 3: Example realisations of a changepoint Gaussian process - quali-
tative change in behavoiur as dependence on the parameter g: simulations
from changepoint kernel model, corresponding to the family of weighting
functions wθ,g(x) = σ(g ∗ (xθ)).
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Figure 4: Posterior distributions of model parameters from different chains
agree very well and show convergence.
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(a) Hill’s model
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Figure 5: Simulated ’flat’ response fitted with two models: (a). Hill’s (4-
parameter 4PL) model, (b). changepoint GP model.
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(a) 18 concentrations

−10 −9 −8 −7 −6 −5

−
10

0
−

80
−

60
−

40
−

20
0

log10−concentration [M]

Ta
rg

et
 p

ro
te

in
 d

eg
ra

da
tio

n 
(%

)

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

log10(PoD)

Dmax

log10(DC50)

●

●

observations−rep1
observations−rep2
controls
GP mean
GP 95% BCI
log10(PoD)
log10(PoD) 95% BCI
Dmax
Dmax 95% BCI
log10(DC50)
log10(DC50) 95% BCI

(b) 9 concentrations

Figure 7: Example of one compound: fitted model and calculated estimates
based on 18 and 9 measured concentrations in 2 replicates each.
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(c) 2 replicates

Figure 8: Example of one compound: fitted model and calculated estimates
based on 4,3 and 2 replicates, with 18 concentrations each.
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Model Summary

Priors for the changepoint Guassian Process model

y = y + ε, (y = µ+ f, µ = µ ∗ [1, ..., 1]T ),

f ∼ MVN(0,K), K = [k(xi, xj)]- covariance matrix,

ε ∼ N(0, σ2I),

µ ∼ N(0, 0.1),

σ ∼ InverseGamma(1, 2),

σrep ∼ InverseGamma(1, 0.1),

ρ ∼ Gamma(50, 20),

η ∼ N(1, 1),

θ ∼ U(xmin, xmax),

ν ∼ Gamma(2, 0.1),

g ∼ Gamma(10, 1),

k(xi, xj) = (1− wθ,g(xi))k1(xi, xj)(1− wθ,g(xj)) + wθ,g(xi)k2(xi, xj)wθ,g(xj),

k1(xi, xj) = 0,

k2(xi, xj) = η2(xi − θ)2(xj − θ)2 exp(−(xi − xj)2

ρ2
),

where wθ,g(x) = 1
1+exp(−g∗(x−θ)) is the weighting function. Note that if

wθ(x),g is a step function (i.e. g =∞) at x = θ, the special case of the kernel
becomes

k(xi, xj) =

{
0, if xi or xj ≤ θ,
η2(xi − θ)2(xj − θ)2 exp(− (xi−xj)2

ρ2
), if xi and xj > θ.

.

Likelihood of the changepoint Guassian Process model

yrrep,i ∼ t3(yi, σrep), i = 1, ..., N ; r = 1, ..., Nrep

yccontrol ∼ t3(µ,
√
σ2 + σ2rep), c = 1, ...Ncontrol.

4PL (Hill’s) model

y = d+
a− d

1 + exp(−b(x− c))
,

where d- degradation at zero concentration, a = Dmax, c = log10(DC50),
x - log10(dose), b - Hill’s slope. Priors, selected to produce fits on Sup-
plement Figure 4 are σ ∼ InvGamma(1, 2), σrep ∼ InvGamma(1, 0.1), d ∼
N(mean(ycontrol), 0.1), a ∼ N(mean(ytreatment), 0.1), b ∼ N(1, 5).
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Changepoint models

Two functions

Changepoint between two GPs and one transition point:

f1(x) ∼ GP(0, k1) f2(x) ∼ GP(0, k2),

f(x) := (1− w(x))f1(x) + w(x)f2(x) ∼ GP(0, k), where

k(x, x
′
) = (1− w(x))k1(x, x

′)(1− w(x′)) + w(x)k2(x, x
′)w(x′)

These formulas are easy to understand if we chose the transition function
as a step function w(x) = sθ(d), where d = x− θ and

sθ(d) =

{
0 if d ≤ 0,

1 if d > 0.

The most popular choice of w(x) is the inverse logit (sigmoidal) function. A
steep sigmoidal function σ(g ∗ x), g > 1 is a good approximator of the step
function.

Three functions

Changepoint between three GPs with two transition points θ1, θ2 can be
constructed in a similar manner: we need to construct a function which
behaves as f1(x) for x ≤ θ1, as f2(x) for θ1 < x ≤ θ2 and as f3(x) for
x > θ2. This can be achieved by

f(x) := (1− sθ1(x))f1(x) + sθ1(x)f2,3(x)

= (1− sθ1(x))f1(x) + sθ1(x) [(1− sθ2(x))f2(x) + sθ2(x)f3(x)]

= (1− sθ1(x))f1(x) + sθ1(x)(1− sθ2(x))f2(x) + sθ1(x)sθ2(x)f3(x).

The kernel of this representation can be derived as

k(x, x′) = (1− sθ1(x))k1(x, x
′)(1− sθ1(x′))+

sθ1(x)(1− sθ2(x))k2(x, x
′)sθ1(x′)(1− sθ2(x′))+

sθ1(x)sθ2(x)k3(x, x
′)sθ1(x′)sθ2(x′).

To enforce the hook behaviour with flat curve at low and high concentrations
and flexible shape in-between, a reasonable choice of kernels would be linear
(without slope) choices for k1 and k2 and a smooth kernel for k2.
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