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Summary

Gene Set analysis allows to evaluate the impact of groups of genes on an outcome
of interest, such as the occurrence of a disease. Through the definition of the gene
sets, gene set analysis takes into account biological knowledge and makes it easier to
interpret the results, while improving the statistical power compared to a gene-wise
analysis. In the time-to-event context, few methods exist, but most of them do not
take into account the correlation that occurs inside a gene set, which can be strong.
As the Generalized Berk-Jones statistics showed great consistency and includes the
correlation inside the test statistic, we adapted this method to the time-to-event con-
text by using a Cox model. We compared our approach to other methods based on the
Cox model, and showed that the Generalize Berk-Jones statistic offers great adapt-
ability, meaning that it can be used in all kinds of data structures. We applied the
different methods to two different contexts: Gliomas and Breast cancer. In terms of
statistical power, we did offer similar results to the other Cox model methods, but
with greater accuracy. In the breast cancer framework, we showed better statistical
power than methods based on Kernel Machine score.
KEYWORDS:
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1 INTRODUCTION

The analysis of the whole transcriptome thanks to RNA-seq1 usually relies on differential expression analysis approaches.
Statistical methods such as edgeR2, DESeq23, limma-voom4, or dearseq5 allow comparing gene expression between groups
of patients or within patients over time to identify the genes involved in diseases6 or committed by an intervention in a trial
(e.g. a vaccine)7. Yet, gene-wise analyzes have several limitations: i) the high-dimensionality of gene expression data (tens of
thousands of genes measured per sample) might lead to either no gene being detected differentially expressed after multiple
testing correction, or on the contrary to a very large list of genes difficult to interpret biologically; ii) many genes interact within
biological pathways, but with potentially only small individual changes, thus leading to all genes within a pathway to be non-
significant after multiple-testing correction. To tackle those issues and avoid missing important biological links with the output
of interest, gene Set Analysis leverages predefined sets of genes (available in databases such as MSigDB8, KEGG9 or Gene
Ontology10 for instance) in order to identify groups of genes differentially expressed rather than single genes. Both the diminution
of the number of statistical tests to perform and the strength of a coordinated signal within a gene set increase statistical power.
Numerous methods have been proposed to analyze gene set expression11, for example GSA12, Gene Set Enrichment Analysis
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(GSEA)13, Time-course Gene Set Analysis (TcGSA)14, Generalized Higher Criticism (GHC)15, dearseq5 or the Generalized
Berk-Jones (GBJ) statistic16.
In the time-to-event context, some methods for gene expression analysis are able to tackle high dimensional data such as

survival random forest17 or penalized Cox regression18, but only a handful methods are available to perform gene set analysis.
Based on Kernel Machine, Cai et al.19 proposed a score test for survival gene set analysis, that Neykov et al.20 later adapted to
take into account competing risk. Besides, three additional methods are building on the Cox model to perform survival gene set
analysis, using different test statistics and relying on permutations to compute the associated p-values: i) the global test21,
ii) the Wald test22, and iii) the global boost test23. In a review performed by Lee et al.24, all three tests outperformed
GSEA in term of statistical power. However, the global test rely on the strong hypothesis that all regression coefficients are
sampled from the same distribution, and none of the compared methods takes into account the correlation structures between
the genes in the pathway.
Gaynor et al.16 compared the GBJ statistic with GSA, GSEA, and GHC to identify gene sets differentially expressed between

two tumor grade, and they concluded that their proposed GBJ method was more consistent. The GBJ statistic has the advantage
of not requiring any distributional assumption on the count data or the regression coefficients, while also taking into account
the correlation structure between the genes within the same set. We propose to adapt the GBJ statistic in the time-to-event
context using a statistic derived from the Cox model. We denote our method by sGBJ for "survival Generalized Berk–Jones".
Section 2 describes our new method sGBJ, then Section 3 evaluates its performance in a simulation study, similarly to Lee
et al.24. Section 4 presents two real data analyses, with brain cancer data and breast cancer data respectively. Finally Section
5 discusses our results and their limits. The sGBJ method is implemented in a R package, available on the CRAN at https:
//CRAN.R-project.org/package=sGBJ

2 METHOD

2.1 Generalized Berk–Jones set-based testing method
The GBJ statistic can be used in a set based testing procedure to determine the effect of a set of genes on a given clinical outcome
(e.g: tumor grade). Introduced by Sun and Lin25, it was used in the context of Genome-Wide Association Studies (GWAS)26 and
its consistency was evaluated for identifying pathways whose expression is associated with either low or high grade of breast
cancer16.
Here is a 4 steps description of the GBJ approach developed by Gaynor et al.16:
1. Model and null hypothesis specification for a given gene set of d genes. Sun and Lin25 study the association between the

outcome of interest Yi of patient i with the vector of gene expression of d genes Gi in a generalized linear model, with �i
the conditional mean of Yi and Xi the other covariates:

g(�i) = X
⊺
i� +G

⊺
i � (1)

2. For each gene j of a given gene set with j = {1, ..., d}, a score value Zj is computed (e.g. from the score test statistic as
in Sun and Lin25) that must verify Z ∼ N (0,�) under the null hypothesis.

3. The GBJ statistic26 is computed for the whole gene set based on the Zj values of each gene using the threshold function
S, defined as S(t) = ∑d

j=1 1
{

|Zj| ≥ t
} and computing the number of genes of the gene set that have an absolute value

of their score Zj higher than a limit t.
4. Once the GBJ statistic g is computed, its associated p-values is determined by inverting g with a root-finding algorithm

to determine the boundaries points bj , i.e. the limit value of the jtℎ greatest absolute value of Z (if this bound is higher
than bj , then the observed statistic should be greater than g).

2.2 Time-to-event context
The GBJ method as defined by Sun and Lin25 can be applied to any generalized linear model, but not for time-to-event data
analysis. From the third step onward, the procedure relies on a score statistic calculated for each gene within the gene set, with
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a multivariate normal distribution assumption on this score centered around zero under the null hypothesis (i.e. no association
between gene expression and the dependent variable Y ).We propose the survival GBJmethod (sGBJ) which uses a score adapted
to time-to-event to compute the GBJ statistic.
1. Model
To deal with time-to-event outcomes, we rely on a Cox proportional hazards regression model:

�(t,Gi) = �0(t)exp(G
⊺
i �), (2)

with Gi the vector of gene expressions of patient i. The null hypothesis is that there is no association between patient survival
and the expression of genes within the set:H0 ∶ � = 0dx1.
2. Z score
For each gene j of the gene set, we compute the value Zj being the square root of the Wald statistic27:

Zj =
√

Wj =
�̂j − �0
se(�̂j)

=
�̂j

se(�̂j)
. (3)

This gives us a vector Z that follows N (0,�) under the null hypothesisH0.
� is estimated through permutations of the original survival observations: for each permutation p ∈ {1,… , P }, theZ∗

jp value
for each gene j gives us P Z∗p vectors of length d, allowing us to estimate the matrix �̂.
3. GBJ statistic
The GBJ statistic is computed according to the formula from Sun and Lin25:

GBJ = max
{1≥j≥ d

2
}
log

[

Pr
{

S(|Z|d−j+1) = j|E(Z) = μ̂jd.Jd, cov(Z) = �̂
}

Pr
{

S(|Z|d−j+1) = j|E(Z) = 0.Jd, cov(Z) = �̂
}

]

x1
{

2ϕ(|Z|d−j+1) <
j
d

}

, (4)
with JTd = (1, 1, ..., 1)dx1, � the survival function of a standard normal random variable, and �̂jd > 0 solving the following
equation:

j
d
= 1 −

{

�(|Z|d−j+1 − �̂jd) − �(−|Z|d−j+1 − �̂jd)
}

. (5)
The GBJ statistic is calculated only on the higher half values of |Z|, and can, as Sun et al.26 explained it, be represented as the
maximum of a set of likelihood ratios on S(t).
4. p-value computation
The p-value can be formulated as

Pr(Gd ≥ g) = 1 − Pr
{

∀j = 1, .., d ∶ |Zj| ≤ bj|Z ∼ N (0,�)
}

, (6)
and the associated rejection region is then

Pr
{

∀j ∶ |Zj| ≤ bj|Z ∼ N (0,�)
}

= Pr
{

∀j ∶ S(bj) ≤ (d − j)|Z ∼ N (0,�)
}

. (7)

3 SIMULATIONS AND COMPARISON

3.1 Simulation method
sGBJ does not require any distributional assumption on the gene expression matrix, thus we simulated this matrix for 50 obser-
vations following a multinormal distribution N (0,C), with C being the genes variance-covariance matrix. Following a similar
procedure than what Lee et al.24 proposed in their comparison of survival gene sets analysis, we simulated a gene set of 50 genes,
among which a proportion pg of genes were significantly associated with survival. pg was either 0.05, 0.1, or 0.2 depending on
the scenario. We simulated a variance of Cjj = 0.2 for each gene j. We generated three correlations scenarios:

• Case (I): no covariance between the genes: Cjk = Ckj = 0
• Case (II): covariance of 0.4 × �jk with �jk ∼ N (0.4, 0.12) between the significant genes j and k, and no correlation

otherwise;
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• Case (III): covariance of 0.4 × �jk with �jk ∼ N (0, 0.012) between all gene pairs j and k.
Survival times of the 50 observations were then generated using a Cox model featuring an effect � for the significant genes. We
again studied three effect types:

• Type A: �j ∼ N (0, 0.52) for each significant genes
• Type B: for half of the significant genes �j ∼ N (0.1, 0.52), and for the other half �k ∼ N (−0.1, 0.52)

• Type C: for half of the significant genes �j ∼ N (0.1, 0.252), and for the other half �k ∼ N (−0.1, 12)

Finally we considered potential censoring. Censoring times were generated following an exponential distribution for 30% of the
observations. For each simulation scenario, 2, 000 independent Monte-Carlo repetitions were generated, allowing us to compute
the statistical power for each case.
sGBJwas compared to three state-of-the-art methods: i) the global test21, ii) the Wald test22, and iii) the global boost

test23, that are also based on statistics derived from the Cox model. The global test relies on the hypothesis that all �j are
sampled from the same normal distribution centered in 0 with a common variance �2, so the null hypothesis can be reduced to
testing �2 = 0. The Wald test uses the sum of squares of the Wald statistics from a Cox model apply individually to each gene
within a gene set, possibly adjusted to other covariates. The global boost test combines the Cox model with a boosting
algorithm to assess the additional predictive value of gene expression within a gene set. Each method relies on a different test
statistic, and the corresponding p-value is evaluated by permutations for all three methods.

3.2 Results
All methods control the type-I error adequately in all simulation scenarios (see Supplementary Figure A1). Compared to the
three state-of-the-art methods, sGBJ exhibits the highest statistical power in almost all simulation scenarios (see Figure 1 ). In
the rare exceptions, e.g. in type A - case (I), the difference between the best performing method and sGBJ’s statistical power is
negligible. In contrast, the three other methods are less consistent in showing good performance (e.g. while the global boost
test performs well in several cases, its statistical power significantly drops for the correlation structure in case (II); conversely
the Wald test and the global test performs well in case (II), but show poor performance in type C - case (I)). sGBJ is thus a
very competitive alternative to the existing state-of-the-art. In particular, in presence of effect heterogeneity within the gene set
(e.g. type C scenario where both the mean and variance of the significant genes effect �i can vary), sGBJ performs better than the
competing methods (especially the global test which hypothesizes that all significant �i are sampled from the same normal
distribution with mean 0). Furthermore, sGBJ is almost always the highest in term of statistical power when the percentage of
significant genes is low, making it the method of choice for detecting weak signals.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.07.459329doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459329


VILLAIN ET AL. 5

Type A Type B Type C

C
ase (I)

C
ase (II)

C
ase (III)

0.05 0.10 0.15 0.200.05 0.10 0.15 0.200.05 0.10 0.15 0.20

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

Proportion of significant genes

S
ta

tis
tic

al
 P

ow
er

Censoring
proportion

0%

30%

Method

Global Boost Test

Wald Test

Global Test

sGBJ

FIGURE 1 The statistical power of the four methods (sGBJ, Global boost test, Wald test and Global test) are com-
pared over the six different combinations: three Cases of correlation (I, II and III) and three Types of effects (A, B and C, see
Section 3.1 for more details). Each method is represented by a color, with the statistical power computed for different proportions
of significant genes. Dotted lines represent a censoring fraction of 0.3; full lines, a censoring fraction of 0.
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4 REAL DATA APPLICATIONS

4.1 Survival analysis in glioma subtypes using the Rembrant database
Glioma represent over 80% of malignant brain tumor, and are associated with poor survival with less than 5% of survival at 5
years for the glioblastoma (themost common type of glioma)28. Glioma can be classified in different types according to theWorld
Health Organization (WHO), with mostly histological and molecular alterations criteria (a first classification in 2007 revised
in 2016). The severity can increase from grade I to grade IV, being mostly the glioblastoma29. The high genetic heterogeneity
of glioma, and the poor response to targeted treatment30,31 with a high rate of recurrence, makes it hard to treat patients with
glioma. To better understand the mechanisms underlying glioma, researchers are actively investigating the molecular and genetic
processes linked with the different types of gliomas and patient survival or risk of recurrence.
Rembrandt is one of the largest public databases on Glioma, featuring clinical and genomic data on 671 patients with any types

of gliomas (based on the 2007 WHO classification) collected by 14 institutions, as a bioinformatic platform for brain cancer
research. They are accessible on the Georgetown University’s G-DOC System32,33, and described by Madhavan et al.34. For our
application, we compared the patients with two of the main glioma types: i) astrocytoma, and ii) oligodendroglioma.We included
the patients from Rembrant for whom both tumor gene expression (as measured by micro-array) and overall survival follow-up
was available, with 23% of patients still alive at the end of the study. Glioblastoma patients were excluded to avoid too large
genetic variation across compared glioma types. Table 1 presents the different characteristics of the total 154 patients included,
and Figure 2 displays the corresponding Kaplan-Meier curves stratified on the glioma type. We observe that astrocytoma and
oligodendroglioma patients present similar survival curves.

Astrocytoma (108) Oligodendroglioma (46)
Male 70 (65 %) 23 (50%)
Death 89 (82 %) 37 (81 %)
Median follow-up period in years (min ; max) 2.7 (0.02 ; 17.8) 2.0 (0.08 ; 20.9)

TABLE 1 Characteristics of Astrocytoma and Oligodendroglioma patients included from the Rembrant database
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FIGURE 2 Kaplan-Meier curves of Rembrandt patients, stratified by type of glioma. Dotted lines represent the time to 50 %
survival.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.07.459329doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.07.459329


VILLAIN ET AL. 7

We studied the association between the patient risk of recurrence and pathway gene expression, overall and according to
the two glioma types (astrocytoma and oligodendroglioma). We investigated two pathway collections from MSigDB8: i) the
C8 collection, that includes 671 gene sets related to cellular type, and ii) the C6 collection that contains 189 gene sets related
to cellular pathways often found to be dis-regulated in oncogenic studies. We used the following hazard equation to link the
recurrence time with gene expression within a gene set of interest:

�
(

t|Gi,Zi
)

= �0(t) exp
(

G⊺
i � + Z

⊺
i 

)

, (8)
with �0(t) the baseline hazard function, Gij the gene expression of the gene j for the patient i, �j the associated effect, and Zil
the values of the covariates l (i.e. age and sex) with 
l the associated effect. The null hypothesis tested by the method is that all
�j are zeros within a gene set.
While no pathway is identified as significantly associated with recurrence risk in oligodendroglioma patients, most pathways

were found significant in the astrocytoma patients (98% of the oncogenic pathways and 92% of the cell type pathways), as
well as in all patients without stratification (after Benjamini-Hochberg for multiple testing correction on the number of gene
sets tested35). All methods yield similar results in the number of significant gene sets (cf Figure 3 ). However the accuracy of
sGBJ is greater compared to the three competing methods which all compute p-values by permutation. We performed 1,000
permutations (the default for the global boost test implementation in R). This limited number of permutations (due to
computation time considerations) has no impact for the oligodendroglioma patients (as p-values are well above 10−3), and only
little impact for the astrocytoma patients. However, this highlights the numerical precision shortcomings of the existing methods.
Indeed, especially in multiple testing settings, it is critical to correctly and precisely estimate p-values36. As there were fewer
patients in the oligodendroglioma group than the astrocytoma group (46 patients for oligodendroglioma, 108 for astrocytoma),
statistical power might not have been sufficient to identify significant gene sets. Similarly to Gaynor et al.16, this lead us to
investigate the top pathways rather than all the significant pathways (see Table 2 ). For the astrocytoma and all patients, we can
see that a high number of identified oncogenic pathways are well known to be linked specifically with Glioma, such as E2F1
pathway37, P53 pathway38, and so are some of the identified cell type pathways39 40. Even in the oligodendroglioma group, some
of the pathways in the top ten identified are also known to be specifically linked with glioma, such as the pathways linked with
the KRAS gene41, or pathways linked with dedifferentiation of neurons and astrocytes42, among others43 44. Thus, identified
pathways are consistent with other studies findings.

4.2 Progression free survival in breast cancer
Breast cancer is the most common cancer, with a number of global death predicted to reach 11 million per year by 203045.
Survival is highly impacted by the presence of metastasis46, which justifies the search for genes or pathways associated with
either death or metastasis.
We analyzed the breast cancer data published by Van de Vivjier et al.47, featuring both gene expression and clinical data for

260 patients having breast cancer. Gene expression was measured using microarrays and the median follow-up was 7.1 years.
Two events of interest were recorded: the apparition of metastasis and the death. We studied the metastasis free survival, i.e
a composite outcome considering time to either metastasis or death, and its potential association with specific gene sets or
pathways. Table 3 presents the different characteristics of the patients included, and Figure 4 displays the corresponding
Kaplan-Meier curves stratified on cancer severity.
We studied the association between the metastasis free survival and gene set expression adjusted on age48 and without

stratifying on severity grade using the following Cox model:

�(t,Gi) = �0(t)exp(G
⊺
i � + γAgei), (9)

with �0(t) the baseline hazard function, Gij the gene expression of the gene j for the patient i and �j the associated effect. The
null hypothesis tested by the method is that all � are nulls. We investigated 639 of pathways from the KEGG database49, and
also a manually curated subset of 70 pathways from this list selected by Cai et al.19 for their known association with breast
cancer patient survival, and also analyzed in Neykov et al.20 to study competing risk between metastasis and death.
Among the manually curated selection of 70 pathways by Cai et al.19, 52 pathways (i.e. 75%) were significantly associated

with metastasis free survival according to sGBJ, after Benjamini-Hochberg correction (see Supplementary Figure B1). In their
initial work, Cai et al. proposed a new method based on a Kernel Machine score relying on a flexible framework that allows non
linear effects of the genes on the survival19, but were only capable of identifying 23 out of 70 pathways among the pre-selection
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FIGURE3 Raw p-values in function of the ordered ranks of sGBJ for the 4methods (sGBJ , global boost test, Wald test
and global test), with the 5% threshold and the Benjamini Hochberg limit, computed for astrocytoma, oligodendroglioma
and all patients. Nota Bene: The Benjamini Hochberg limit only applies for the sGBJ method, as the ranks are computed for
sGBJ only.

that were known to be associated with breast cancer survival. Among the top ten pathways identified from the whole 639 KEGG
gene sets and reported in Table 4 , most have a link with cancer in general or directly with breast cancer: "G1 to S cell cycle
reactome" and "glycosis and glucogneogenesis" have been reported to be associated with breast cancer development50 51, while
observations shown that the "pyrimidine metabolism" and the "inositol metobolism" might be involved in cancer52 53.
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Cell type Oncogenic

Pathway p-value Pathway p-value

Total

hay bone marrow nk cells 1.6 × 10−9 E2F1 UP.V1 UP 1.9 × 10−8

hay bone marrow naive t cell 2.1 × 10−8 AKT UP.V1 UP 6.8 × 10−8

hu fetal retina rpe 7.9 × 10−8 P53 DN.V1 DN 2.9 × 10−7

cui developing heart c6 epicardial cell 1.1 × 10−7 CYCLIN D1 KE .V1 UP 5.3 × 10−7

cui developing heart valvar endothelial cell 1.4 × 10−7 ESC V6.5 UP LATE.V1 DN 5.3 × 10−7

muraro pancreas mesenchymal stromal cell 1.6 × 10−7 IL15 UP.V1 DN 5.9 × 10−7

manno midbrain neurotypes hrgl1 3.4 × 10−7 E2F1 UP.V1 DN 5.9 × 10−7

manno midbrain neurotypes hperic 3.5 × 10−7 TBK1.DF UP 2.1 × 10−6

la kidney c19 collecting duct intercalated cells type a medulla 4.1 × 10−7 IL21 UP.V1 UP 2.1 × 10−6

hay bone marrow early erythroblast 7.7 × 10−7 TGFB UP.V1 DN 2.2 × 10−6

Astrocytoma

cui developing heart c7 mast cell 8.4 × 10−8 E2F1 UP.V1 UP 4.8 × 10−9

hay bone marrow nk cells 8.4 × 10−8 TGFB UP.V1 DN 6.4 × 10−9

hu fetal retina rpe 8.4 × 10−8 PTEN DN.V1 UP 6.4 × 10−9

zhong pfc major types microglia 9.7 × 10−8 IL15 UP.V1 DN 7.8 × 10−8

aizarani liver c14 hepatocytes 2 9.7 × 10−8 ESC V6.5 UP LATE.V1 DN 7.8 × 10−8

la kidney c17 collecting system pcs stressed dissoc subset 9.7 × 10−8 CSR EARLY UP.V1 UP 7.8 × 10−8

hu fetal retina fibroblast 9.7 × 10−8 RB DN.V1 UP 8.8 × 10−8

aizarani liver c11 hepatocytes 1 1.5 × 10−7 CYCLIN D1 KE .V1 UP 8.8 × 10−8

muraro pancreas mesenchymal stromal cell 1.6 × 10−7 IL21 UP.V1 UP 8.8 × 10−8

manno midbrain neurotypes hmgl 2.1 × 10−7 GCNP SHH UP LATE.V1 DN 8.8 × 10−8

Oligodendroglioma

zhong pfc c1 astrocyte 0.86 CAHOY ASTROGLIAL 0.85
zhong pfc c2 thy1 pos opc 0.86 KRAS.50 UP.V1 UP 0.85
zheng cord blood c2 putative basophil eosinophil mast cell progenitor 0.86 CSR LATE UP.V1 DN 0.85
durante adult olfactory neuroepithelium vascular smooth muscle cells 0.86 KRAS.DF.V1 UP 0.85
gao stomach 24w c2 tff2pos multipotent progenitor 0.86 CSR EARLY UP.V1 DN 0.85
cui developing heart c6 epicardial cell 0.86 RELA DN.V1 UP 0.85
durante adult olfactory neuroepithelium respiratory ciliated cells 0.86 GLI1 UP.V1 DN 0.85
gao large intestine 24w c7 goblet progenitor 0.86 TBK1.DN.48HRS UP 0.85
cui developing heart c5 valvar cell 0.86 LTE2 UP.V1 DN 0.85
manno midbrain neurotypes hnbm 0.86 MEK UP.V1 DN 0.85

TABLE 2 Top ten pathways for the Cell types (C8 collection) and Oncogenic signature (C6 collection), with the astrocytoma,
oligodendroglioma and all patients

Mean age in years (sd) 44.2 (5.4)
Event (metastasis or death) 83 (32 %)
Grade
1 70 (28 %)
2 91 (35 %)
3 99 (38 %)

Median follow-up period in years (min ; max) 7.1 (0.05 ; 18.3)

TABLE 3 Characteristics of the 260 patients included in our metastasis free survival analysis of data from Van de Vivjier et
al.47
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FIGURE 4 Kaplan-Meier curves of Breast cancer patients, stratified on the grade. Dotted lines represent the time to 50 %
survival.

Selected pathways Total pathways

Pathway p-value Pathway p-value

hsa04115 p53 signaling pathway 4.3 × 10−6 hsa04110 cell cycle 1.6 × 10−9
hsa00970 aminoacyl trna biosynthesis 4.3 × 10−6 g1 to s cell cycle reactome 1.6 × 10−9
hsa03030 dna polymerase 1.4 × 10−5 pyrimidine metabolism 9.1 × 10−9
hsa04010 mapk signaling pathway 2.5 × 10−6 cell cycle kegg 2.1 × 10−8
breast cancer estrogen signaling 2.5 × 10−5 hsa00240 pyrimidine metabolism 3.1 × 10−8
hsa00790 folate biosynthesis 2.5 × 10−5 dna replication reactome 5.0 × 10−8
tnfr1pathway 4.5 × 10−5 glycolysis and gluconeogenesis 2.8 × 10−7
mapkpathway 4.5 × 10−5 inositol metabolism 6.9 × 10−7
p53pathway 4.5 × 10−5 hsa00010 glycolysis and gluconeogenesis 1.1 × 10−6
erkpathway 9.5 × 10−5 aminoacyl trna biosynthesis 1.1 × 10−6

TABLE 4 Top ten pathways for the total set of 639 pathways and the selected 70 pathways, with their p-values after correction.
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5 DISCUSSION

Only few gene set analysis methods are currently suited to analyze time-to-event data. The current state-of-the-art methods rely
on strong assumptions and do not account for the correlation structure between genes, that might be strong in some cases. In this
work, we extend the GBJ test for gene set analysis in survival analysis. sGBJ relies on Cox model estimations, thus it relies on the
proportional hazards hypothesis like the three other competing methods. Yet, sGBJ does not require any additional hypothesis
on the gene expression distribution, or the significant genes estimated coefficients, or on the correlation between genes within
the gene set (as this correlation structure is estimated and taken into account in the sGBJ statistic). In numerical simulations, we
demonstrated the good performance of sGBJ in all situation, making it a versatile alternative to either the global test, the
Wald test or the global boost test which can be underperforming as soon as their assumptions are not met or there is a
strong correlation between genes. Indeed, sGBJ seems more robust to different correlation structures and effect heterogeneity
than existing methods. On the contrary, our numerical simulation study shows that neither the global test, nor the Wald
test, nor the global boost test have consistent and reliable performance, exhibiting dramatic decrease in statistical power
when some of their specific distributional assumptions are violated.
Another advantage of sGBJ is the absence of distributional assumptions on the gene expression measurements. Thus sGBJ is

suited for the analysis of RNAseq data as well as microarray data. sGBJ can even be used for other omics data, such as proteomics
data, as long as there is a known grouping structure. Notably, as sGBJ relies on estimations from a Cox model, it shares its
assumptions such as the proportional hazards hypothesis – and so do the three competing methods.
In two real data applications – on glioma and on breast cancer – we showed that sGBJ offered greater accuracy compared to

competing methods for estimating the lowest p-values, an important feature in multiple testing context36. The accuracy of the
competing methods can be improved at the price of significantly longer computation times. In the breast cancer study, sGBJ
identified more significant pathways among those known to have a link with breast cancer than the previous kernel methods
applied to analyze this particular dataset19,20. Pathways identified in breast cancer and in glioma were consistent with other
studies findings (e.g "G1 to S cell cycle reactome" or "glycosis and glucogneogenesis"50,51 in breast cancer and E2F1 or P5337,38
in glioma).
The adaptation of sGBJ method to the time-to-event context is implemented in a R package available on the CRAN at https:

//CRAN.R-project.org/package=sGBJ.
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