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Abstract 
 
1H MRI maps brain structure and function non-invasively through versatile contrasts that 

exploit inhomogeneity in tissue micro-environments. Inferring histopathological 

information from MRI findings, however, remains challenging due to absence of direct 

links between MRI signals and cellular structures. Here, we show that deep convolutional 

neural networks, developed using co-registered multi-contrast MRI and histological data 

of the mouse brain, can estimate histological staining intensity directly from MRI signals 

at each pixel. The results provide three-dimensional maps of axons and myelin with tissue 

contrasts that closely mimics target histology and enhanced sensitivity and specificity 

compared to conventional MRI markers. Furthermore, the relative contribution of each 

MRI contrast within the networks can be used to optimize multi-contrast MRI acquisition. 

We anticipate our method to be a starting point for translation of MRI results into easy-to-

understand virtual histology for neurobiologists and provide resources for validating novel 

MRI techniques.  
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Introduction: 

     Magnetic resonance imaging (MRI) is one of a few techniques that can image the brain 

non-invasively and without ionizing radiation, and this advantage is further augmented by 

a large collection of versatile tissue contrasts. While MRI provides unparalleled insight 

into brain structures and functions at the macroscopic level (1), inferring the spatial 

organization of microscopic structures (e.g. axons and myelin) and their integrity from MR 

signals remains a challenging inverse problem. Without a thorough understanding of the 

link between MR signals and specific cellular structures, uncertainty often arises when 

determining the exact pathological events and their severities. The lack of specificity 

hinders direct translation of MRI findings into histopathology and limits its diagnostic value.       

    Tremendous efforts have been devoted to developing new mechanisms to amplify the 

affinity of MRI signals to target cellular structures in order to improve sensitivity and 

specificity. Recent progress in multi-modal MRI promises enhanced specificity by 

integrating multiple MR contrasts that target distinct aspects of a cellular structure (2). For 

example, magnetization transfer (MT), T2, and diffusion MRI are sensitive to the physical 

and chemical compositions of myelin, and combining them can lead to more specific 

myelin measurements than individual contrast (3). Progress in this front, however, has 

been hindered by the lack of realistic tissue models for inference and ground truth 

histological data for validation. 

The objective of this study is to test whether deep convolutional neural networks 

(CNNs), developed using co-registered histology and MRI data, can bypass the above-

mentioned obstacles and enhance our ability to map key cellular structures from MR 

signals. With its capability to bridge data acquired with different modalities (4-6), the deep 

learning framework (7) has clear advantages over existing modeling approaches, as it is 

data-driven and not limited by particular models and associated assumptions. As MR 

signals are the ensemble average of all spins within each pixel, a typical set of three-

dimensional (3D) MRI data with millions of pixels, thus provides ample instances to train 

deep CNNs. Through training, the networks can potentially reconstruct the link between 

MR signals and cellular structures in co-registered histology and translate multi-contrast 

MRI data into maps that mimic histology. Our results demonstrate that this approach 

offers enhanced specificity for detecting axons and myelin compared to existing MRI-
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based markers. Furthermore, careful examinations of the networks allow us to measure 

the relative contribution of individual MR contrast, which can be used to optimize multi-

contrast MRI strategy and evaluate novel imaging contrasts.  

 

Results:  

Prediction of auto-fluorescence images of the mouse brain from MR images using deep 

learning 

We first demonstrated our method using co-registered three-dimensional (3D) MRI and 

auto-fluorescence (AF) data. MRI dataset from ex vivo C57BL/6 mouse brain (P60, n=6), 

each contained 67 3D MR (T2, MT, and diffusion) images, were spatially normalized to 

the Allen Reference Atlas (ARA) (8) (Fig. 1A). We then selected 100 AF datasets from 

the Allen Mouse Brain Connectivity Atlas (AMBCA) (9) with minimal amounts of tracer 

signals in the forebrain. The contrast in the AF data is not specific to a particular structure, 

but a majority of hypo-intense regions co-localized with myelinated white matter tracts 

(10). These 3D AF data had already been normalized to the ARA and were down-sampled 

to the resolution of the MRI data (0.06 mm isotropic). Mismatches between the MRI and 

AF images were mostly within one to two pixels (Supplementary Fig. 1A-B).  

A deep CNN, named MRH-AF, was trained using multiple 3x3 patches from the 

forebrain region of each MRI data (40,000 patches, N=6) as inputs and their 

corresponding patches in the co-registered AF data as targets (Fig. 1B) (Details on the 

network and training can be found in the Methods section). In order to determine the 

amount of training data sufficient to capture the relationship between these two modalities, 

we performed separate training sessions with target AF data ranging from randomly 

selected 60 subjects (i), 6 subjects (ii), single subject data (iii), down to 5,000 and 1,000 

3x3 patches randomly selected within a single subject data (iv & v) (Fig. 1C). The 3x3 

patch size was shown to accommodate residual mismatches between MRI and AF data 

(Supplementary Fig. 1F-H), and we chose such as small patch size instead of the entire 

image for training because we aim to define the local relationship between cellular 

structures within an MRI pixel and corresponding ensemble-averaged MRI signals.  

    The performance of MRH-AF was evaluated using the average 3D AF data in the ARA 

(CCF version 3, average of 1,675 mouse brains)(9) as the reference and MRI data from 
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a separate group of mice (P60, n=4) as the inputs. The MRH-AF results trained with 60-

subject AF data as training targets (i) showed good agreement with the reference (Fig. 

1D) and strong voxel-wise signal correlation (R2=0.73, p<0.001, Supplementary Fig. 3A). 

The agreement was maintained for (ii) and (iii) both visually and quantitatively, as 

measured by the root mean square errors (RMSE) and structural similarity index (SSIM) 

(Fig. 1D-E). The specificity to hypo-intense regions in the reference defined by optimal 

thresholding was evaluated using receiver operating characteristic (ROC) analysis. The 

MRH-AFs trained with 60 and 6-subject AF data (i and ii) showed high specificity with 

areas under curve (AUCs) greater than 0.94, and the MRH-AF trained with 1-subject data 

(iii) had a slightly reduced average AUC of 0.937 (Fig. 1F). The variation in the ROC 

curves in (iii), caused by the inter-subject variations in AF signals among subjects chosen 

for training, was relatively small. Further reducing the size of training data (iv and v) 

resulted in declined performances (Fig. 1D-F), emphasizing the need for sufficient 

training data.  

The way that MRH-AF in (iii) translated individual 3x3 MR patches into AF signals was 

visualized in a 2D feature space derived by t-Distributed Stochastic Neighbor Embedding 

(t-SNE) analysis(11) (Fig. 1G). Patches in the MRI data that were assigned with hypo-

intense AF signals (orange) mostly clustered at the lower right corner, well separated from 

patches that were assigned with hyper-intense AF signals (turquoise) or near the brain 

surface (gray). Representative patches from the first two categories showed distinctive 

signal profiles (Fig. 1H).  Overall, the result demonstrates that the ability of MRH-AF to 

translate multi-contrast MRI data into maps that mimic the tissue AF contrast in the 

AMBCA.   
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Fig. 1: Connect multi-contrast MRI and auto-fluorescence (AF) data of the mouse brain 

using deep learning. A: T2-weighted (T2W), magnetization transfer ratio (MTR), and 

diffusion weighted images (DWI) were registered to the ARA space, from which 100 

already registered AF data were selected and down-sampled to the same resolution of 

the MRI data. B: The deep CNN contained 64 layers and was trained using multiple 3x3 

MRI patches as inputs and corresponding 3x3 patches from histology as targets. C:  The 

CNN was trained using the MRI data (n=6) and different amounts of randomly selected 

AF data (i – v). The results generated by applying the CNN to a separate set of MRI data 

(n=4) were shown on the right for visual comparison with the reference (Ref: average AF 

data from 1,675 subject). D-E: Quantitative evaluation of the results in C with respect to 

the reference using RMSE and SSIM. The error bars indicate the standard deviations due 

to random selections of AF data used to train the network. F: The receiver operating 

characteristic curves of the results in C in identifying hypo-intense structures in the 
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reference and their areas under the curve (AUCs). The ROC curves from 25 separate 

experiments in (iii) (light green) show the variability with respect to the mean ROC curve 

(dark green) due to inter-subject variations in AF intensity. G: The distribution of randomly 

selected 3x3 MRI patches in the network’s 2D feature space, defined using the t-SNE 

analysis based on case (iii) in C, shows three clusters of patches based on the intensity 

of their corresponding patches in the reference AF data (turquoise: hyper-intense, orange: 

hypo-intense; gray: brain surfaces). H: MRI signals from two representative patches with 

hyper-intense AF signals (turquoise) and two patches with hypo-intense AF signals 

(orange). The orange profiles show higher diffusion-weighted imaging (DWI) signals and 

larger oscillation among them than the turquoise profiles (both at b=2,000 s/mm2 and 

5,000 s/mm2). 

   

Estimation of the relative contribution of individual MRI contrast  

        Based on the local ensemble average property of MR signals, we probed the inner-

working of MRH-AF by adding random noises to each of the 67 MR images, one at a time, 

as perturbations to the network (12). We then measured the effect on network outcomes 

with respect to noise-free results (Fig. 2A), which reflected how each MR image 

influenced the outcome of MRH-AF or its relative contribution in the network. Similar 

information can also be obtained by training the networks with different subsets of the 

MRI contrasts and comparing the network predictions, but the perturbation method allows 

us to probe the existing network without retraining. We found that adding noises to a few 

images (e.g., T2 and MT images) produced noticeably larger effects, in terms of output 

image quality and the ability of the network to separate different tissue types, than adding 

a comparable level of noises to other images (Supplementary Figs. 4-5).  This 

information can be used to accelerate MRI acquisition by prioritizing the acquisition of 

images or contrasts with high relative contributions. The top 4, 17, and 38 images ranked 

based on their contributions accounted for 28%, 50%, and 75% of the total contribution 

to the final result respectively (Fig. 2B). Results from training the network with the top 38 

MR images as inputs showed comparable visual quality (Fig. 2B-C) and diagnostic power 

(Fig. 2D) as the results based on the full dataset, but only required 57% the imaging time.   
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Fig. 2: Estimating how each MR image influences the final result. A: Plots of the relative 

contribution of individual MRI images, normalized by the total contribution of all MR 

images. Images displayed on the outer ring (light blue, MRH-AF) show the network 

outcomes after adding 10% random noises to a specific MR image on the inner ring (light 

yellow). B: The relative contributions of all 67 MR images arranged in descending order 

and their cumulative contribution. The images on the right show the MRH-AF results with 

the network trained using only the top 4, 17, 38, and all images as inputs. C: RMSE 

measurements of images in B (n=4) with respect to the reference AF data. Lower RMSE 

values indicate better image quality. * indicates statistically significant difference (p=0.028, 

t-test). D: ROC curves of MRH-AF results in B and the AUC values.   

 

 

Use deep learning to generate virtual maps of axon and myelin and enhance specificity 

Next, we trained our network using serial histological sections immuno-stained for 

neurofilament (NF) and myelin basic protein (MBP), two commonly used markers for 

axons and myelin, from the Allen mouse brain atlas. These images were down-sampled, 

normalized to the ARA (Supplementary Fig. 6). Part of the images were used for training 

and the rest were used as references. Due to limited histological images stained for 

myelin and axons, we adopted the transfer learning strategy (13). Using the MRH-AF 
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network as a starting point, we fixed most of its network layers while leaving the last three 

convolutional layers as trainable with MBP and NF stained histological images.  

 The MRH results (Fig. 3A) showed closer visual congruence with the histological 

references than commonly used MRI-based markers for axons (fractional anisotropy, FA) 

and myelin (magnetization transfer ratio, MTR, and radial diffusivity (14), DR). Even 

though MRH was trained using coronal sections, it can generate maps along other axes 

when applied to 3D MRI data (Fig. 3B). The MRH-NF/MBP results also showed strong 

signal correlations with the reference data (R2 = 0.61/0.73, respectively, Supplementary 

Fig. 3B-C). ROC analyses (Fig. 3B) on detecting axon and myelin rich structures 

demonstrate improved specificity, while t-SNE analyses visualize how the two networks 

separate the patches in MRI data that corresponded to NF and MBP rich structures from 

the rest (Fig. 3C). Applying the MRH-MBP network to MRI data that were collected from 

dysmyelinating shiverer and control mouse brains (n=5/5) generated maps that 

resembled the MBP-stained histology (Fig. 3D). In the corpus callosum, the MRH-MBP 

results showed similar contrasts between shiverer and control moue brains as MTR (Fig. 

3E). 

The MRH results, in combination with the structural labels in ARA, provided insights 

into how the networks balanced multiple MRI contrasts to map axons and myelin in brain 

regions with distinct microstructural compositions. In the cortex, MRH-NF and MTR 

showed similar contrasts and comparable specificities to axons (Fig. 3D), while in the 

whole brain, MTR had a noticeable lower specificity than MRH-NF and FA (Fig. 3B). This 

suggests that MRH-NF assigned additional weightings on MTR when processing cortical 

patches. Similarly, in ROC analysis for pixels within the hippocampus, the curve of MRH-

MBP closely followed the curve of DR at b=5,000 s/mm2, in a departure from the whole 

brain result (Fig. 3B). Visual inspections of the MRH-MBP results revealed a layer 

structure in the hippocampus, which was not obvious in the MTR map but visible in the 

radial diffusivity (DR) map at b=5,000 s/mm2 (Fig. 3E). Relative contributions of T2W and 

MT signals were significantly higher in the cortex and hippocampus than in white matter 

regions for both MRH-NF and MRH-MBP (Fig. 3F). 
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Fig. 3: Inferring maps of neurofilament (NF) and myelin basic protein (MBP) from multi-

contrast MRI data. A: Comparisons of MRH-NF/MBP results with reference histology and 

MRI-based markers that are commonly used to characterize axon and myelin in the brain 

(MTR: magnetization transfer ratio; FA: fractional anisotropy; DR: radial diffusivity). Even 

though MRH-NF/MBP were trained using coronal sections, they were able to generate 

maps for orthogonal sections (e.g. horizontal sections in the bottom row) from 3D MRI, 

as expected from the local ensemble average property. The results show general 

agreements with structures in comparable horizontal MTR and FA maps but distinct tissue 

contrasts. B: ROC analyses of MRH-NF and MRH-MBP show enhanced specificity to 

their target structures defined in the reference data than MTR, FA, and DR. Here, DR 
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values from DWIs with b-values of 2,000 and 5,000 s/mm2 are examined separately. C: 

The distribution of randomly selected 3x3 MRI patches in the network’s 2D feature spaces 

of MRH-NF and MRH-MBP defined using the t-SNE analyses. D: Representative MRH-

MBP results from dysmyelinated shiverer and control mouse brains, which were not 

included in training, show better agreement with histology than maps of MTR, FA, and 

DR.  E: Differences in MRH-MBP, MTR, and DR values of the corpus callosum (t-test, n=5 

in each group, p=0.00018/0.0061/0.475, respectively). F-G: Enlarged maps of the cortical 

(F) and hippocampal (G) regions of normal C57BL6 mouse brains comparing the tissue 

contrasts in MRH-NF/MBP with histology and MRI. In (G), white arrows point to a layer 

structure in the hippocampus. ROC analyses performed within the cortex and 

hippocampus show that MRH-NF/MBP have higher specificity than FA, MTR, and DR, but 

with lower AUCs than in B due to distinct tissue properties. H: Relative contributions of 

T2W, MT, diffusion MRI (DWI-L: b=2,000 s/mm2; DWI-H: b=5,000 s/mm2) for the whole 

brain, white matter, and cortex/hippocampus. *: p<0.005 (paired t-test, n=4, from left to 

right, p=0.0043 / 0.000021 / 0.00072 / 0.0014 for NF, p=0.000058 / 0.000035 / 0.000002 

/ 0.00392 for MBP, respectively). Details on the contributions of each MRI contrast can 

be found in Supplementary Fig. 7.  

    

 

Use deep learning to generate maps that mimic Nissl staining:  

    MRH networks can also be extended to other types of MR contrasts and histology. To 

demonstrate this, we used MRH to test whether cellularity in the mouse brain can be 

inferred from diffusion MRI signals, as our previous studies suggest that oscillating 

gradient spin echo (OGSE)(15) diffusion MRI can generate a contrast similar to Nissl-

staining in both normal and injured mouse brains(16, 17). We separated the down-

sampled single subject 3D Nissl data from ARA into two parts. One was used as the 

training target, and the rest was used as the reference for testing (Fig. 4A). The inputs to 

the so-called MRH-Nissl network included conventional pulsed gradient spin echo (PGSE) 

and recently developed OGSE diffusion MRI data. In the testing regions, the network that 

utilized all OGSE and PGSE data as inputs generated maps with good agreement with 

the ground truth Nissl data (Fig. 4A), showing higher sensitivity and specificity than PGSE 
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(Fig. 4B). In the 2D feature space from t-SNE analysis (Fig. 4C), the patches that 

correspond to regions with low Nissl signals were separated from other patches that 

correspond to regions with strong Nissl signals. Representative signal profiles from the 

three categories (Fig. 4D) revealed that signals in the high Nissl signal patches decreased 

as the oscillating frequency increased, whereas the other two types of patches showed 

no such pattern. Detailed analysis of contrast contribution showed that PGSE and OGSE 

data contribute equally (Fig. 4E), indicating the importance of OGSE data in generating 

the target tissue contrast. The MRH-Nissl map of the sas4-/-p53-/- mouse brain, which 

contains a band of heterotopia consists of undifferentiated neurons(18), produced image 

contrasts that matched Nissl-stained histology (Fig. 4F).  

Fig. 4: Generating maps that mimic Nissl stained histology from multi-contrast MRI data. 

A: Comparisons of reference Nissl histology and MRH-Nissl results with PGSE, OGSE, 

combined PGSE and OGSE diffusion MRI data in both training and testing datasets. The 

entire datasets consist of PGSE and OGSE data acquired with oscillating frequencies of 

50, 100, and 150 Hz, a total of 42 images. B: ROC curves of MRH-Nissl show enhanced 
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specificity for structures with high cellularity (strong Nissl staining) when both PGSE and 

OGSE data were included in the inputs than PGSE only. C: The distribution of randomly 

selected 3x3 MRI patches in the network’s 2D feature spaces of MRH-Nissl defined using 

t-SNE analyses. Green and orange dots correspond to regions with high and low 

cellularity, respectively, and gray dots represent patches on the brain surface. D: 

Representative signal profiles from different groups in C. E: Relative contributions of 

PGSE and three OGSE diffusion MRI datasets F: Representative MRH-Nissl results from 

sas4-/-p53-/- and control mouse brains compared with Nissl stained sections. The location 

of the cortical heterotopia, consists of undifferentiated neurons, is indicated by the dashed 

lines in the mutant mouse brain image.  

 

Discussions: 

    The present study focused on inferring maps of key cellular structures in the mouse 

brain from multi-contrast MRI data. Previous works on this problem include: new MRI 

contrasts that capture specific aspects of cellular structures of interest (19, 20); carefully 

constructed tissue models for MR signals(21); statistical methods to extract relevant 

information from multi-contrast MRI(2); and techniques to register histology and MRI 

data(22, 23) for validation (24, 25). Here, we built on these efforts by demonstrating that 

deep learning networks trained by co-registered histological and MRI data can improve 

our ability to detect target cellular structures.  

    Previous studies on the relationship between histology and MRI signals focused on 

correlating histological and MRI markers as co-registered MRI and histological data as 

well as realistic tissue models are scarce (21, 26). Adopting similar approaches described 

by recent reports (4, 6) on using deep learning to generate histological labels from 

unlabeled light microscopy images, we demonstrate a proof of concept of using deep 

learning to solve the inverse problem of inferring histological information from MRI signals. 

Even though the resolution of the virtual histology is inevitably limited by the resolution of 

the input MRI data (~100 m/pixel) (Supplementary Fig. 8), the presented approach has 

many potential applications in biomedical research involving MRI. It can enhance our 

ability to accurately map selected cellular structures and their pathology in mouse models 

of diseases using non-invasive MRI, with contrasts familiar to neurobiologists. Although 
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the networks cannot be applied to human MRI directly due to vast differences in tissue 

properties and scanning protocols, understanding how the networks improve specificity 

based on given MRI contrasts will guide the development of optimal imaging strategy in 

the clinics. In addition, the co-registered histology and MRI dataset provide a testbed for 

developing new MRI strategies. As it is relatively easy to normalize any new MRI data to 

our 3D multi-contrast MRI data and co-registered histology, the sensitivity and specificity 

of a new MRI contrast to target cellular structures can be evaluated. With quantitative 

information on the contributions of different MR contrasts, it is now straightforward to 

design accurate and efficient multi-contrast MRI strategy. 

    Perfect co-registration between MRI and histology is highly challenging, as 

conventional tissue preparations inevitably introduce tissue deformation and damages. In 

addition, differences in tissue contrasts between histology and MRI also limit the accuracy 

of registration. Serial two-photon tomography used by the Allen Institute and similar 

methods allow 3D uniform sampling of the entire brain, which  facilitate registration using 

established registration pipelines(27). We expect recent advances in tissue clearing 

techniques can assist in this aspect once issues such as tissue shrinkage and penetration 

of antibodies for more target cellular structures are resolved. Remaining mismatches can 

be accommodated by choosing the appropriate patch size in the network as shown in our 

results and earlier studies(28). 

There are several directions to further improve our work. First, it is important to curate 

a training dataset that covers a broad spectrum of conditions and, ideally, with MRI and 

histology data acquired from the same animal. The data included in this study were adult 

mouse brain and most white matter structures are myelinated. As a result, the network to 

predict axons place a substantial weight on MRI contrasts that reflect myelin content (e.g., 

MT). With the inclusion of unmyelinated embryonic or neonatal mouse brains, we 

anticipate that the contribution of myelin will be reduced. Inclusion of pathological 

examples, such as shiverer mouse brain data, for training will likely improve our ability to 

characterize pathological conditions. Secondly, the CNNs constructed in this study 

involved several common building blocks of deep learning, and new advances on network 

architecture design (e.g. (29, 30)) could further enhance the performance. While CNNs 

have been commonly treated as black boxes, several recently reported approaches, such 
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as deep Taylor decomposition(31) and Grad-CAM(32), can help explain the inner-working. 

Third, developing similar networks for in vivo MRI data and potential clinical application 

will require additional effort. The MRI data used in this study were collected from post-

mortem mouse brain specimens, which are different from in vivo mouse brains due to 

death and chemical fixation. Differences in tissue properties between human and mouse 

brains also require additional steps. Finally, deep learning cannot replace the good 

understanding of the physics involved in MRI contrasts and the development of new MRI 

contrast that targets specific cellular structures.  

 

Materials and Methods:  

Animals and ex vivo MRI. All animal experiments have been approved by the Institute 

Animal Care and Use Committee at New York University, Memorial Sloan Kettering 

Cancer Center, and Johns Hopkins University. Adult C57BL/6 mice (P60, n=10, Charles 

River, Wilmington, MA, USA), sas4-/-p53-/- (18) and littermate controls (n=4/4, P28), rag2-

/- shiverer and littermate controls (n=5/5, P50) were perfusion fixed with 4% 

paraformaldehyde (PFA) in PBS. The samples were preserved in 4% PFA for 24 hours 

before transferring to PBS. Ex vivo MRI of mouse brain specimens was performed on a 

horizontal 7 Tesla MR scanner (Bruker Biospin, Billerica, MA, USA) with a triple-axis 

gradient system. Images were acquired using a quadrature volume excitation coil (72 mm 

inner diameter) and a receive-only 4-channel phased array cryogenic coil. The specimens 

were imaged with the skull intact and placed in a syringe filled with Fomblin (perfluorinated 

polyether, Solvay Specialty Polymers USA, LLC, Alpharetta, GA, USA) to prevent tissue 

dehydration. Three-dimensional diffusion MRI data were acquired using a modified 3D 

diffusion-weighted gradient- and spin-echo (DW-GRASE) sequence (33) with the 

following parameters: echo time (TE)/repetition time (TR) = 30/400ms; two signal 

averages; field of view (FOV) = 12.8 mm x 10 mm x 18 mm, resolution = 0.1 mm x 0.1 

mm x 0.1 mm; two non-diffusion weighted images (b0s); 30 diffusion encoding directions; 

and b = 2,000 and 5,000 s/mm2, total 60 diffusion weighted images (DWIs). Co-registered 

T2-weighted and magnetization transfer (MT) MRI data were acquired using a rapid 

acquisition with relaxation enhancement (RARE) sequence with the same FOV, 

resolution, and signal averages as the diffusion MRI acquisition and the following 
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parameters: T2: TE/TR=50/3000 ms; MT: TE/TR=8/800ms, one baseline image (M0) and 

one MT-weighted (Mt) images with offset frequency/power = -3 KHz/20 T were acquired. 

The total imaging time was approximately 12 hours for each specimen. For the sas4-/-

p53-/- and littermate controls (n=4/4, P28), PGSE and OGSE diffusion MRI data were 

acquired with the protocol described in (17) and a spatial resolution of 0.1 mm x 0.1 mm 

x 0.1 mm. All 3D MRI data were interpolated to a numerical resolution of 0.06 mm x 0.06 

mm x 0.06 mm to match the resolution of our MRI-based atlas (34).  

Magnetization transfer ratio (MTR) images were generated as MTR=(M0-Mt)/M0. From 

the diffusion MRI data, diffusion tensors were calculated using the log-linear fitting method 

implemented in MRtrix (http://www.mrtrix.org) at each pixel, and maps of mean and radial 

diffusivities and fractional anisotropy were generated,  The mouse brain images were 

spatial normalized to an ex vivo MRI template (34) using the Large Deformation 

Diffeomorphic Metric Mapping (LDDMM) method (35) implemented in the DiffeoMap 

software (www.mristudio.org). The template images had been normalized to the Allen 

reference atlas using landmark-based image mapping and LDDMM. 

Histological data. From the Allen moue brain atlas, single subject 3D Nissl data and 3D 

AF data (n=100), which were already registered to the ARA space, were down sampled 

to 0.06 mm isotropic resolution. The sas4-/-p53-/-, rag2-/- shiverer and control mouse brains 

were cryopreserved and cut into 30 μm coronal sections and processed for Nissl and 

immunofluorescence. For immunofluorescence, sections were first washed with PBS, 

blocked with 5% bovine serum albumin, and incubated overnight at 4 °C with primary 

antibodies: anti-myelin basic protein (AbD Serotec, MCA4095). Sections were rinsed with 

PBS and incubated with Alexa fluor secondary antibodies (Invitrogen) cover-slipped with 

anti-fade mounting medium containing DAPI (Vectrolabs, H-1200). Images were obtained 

and tile-stitched using an inverted microscope (Zeiss, Axio Observer.Z1) equipped with a 

motorized table.   

Registration of MRI and histological data. Group average 3D MRI data in our 

previously published mouse brain atlas(34) were first spatially normalized to the ARA 

space. Briefly, fourteen major brain structures (e.g., cortex, hippocampus, striatum) in the 

atlas MRI data were manually segmented following the structural delineations in the ARA. 

Voxels that belong to these structures in the MRI and average 3D AF data in the ARA 
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(down sampled to 0.06 mm isotropic resolution) were assigned distinct intensity values, 

and a diffeomorphic mapping between the discretized atlas MRI and ARA AF data was 

computed using LDDMM. The mapping was then applied to the original atlas MRI data to 

generate an MRI template registered to the ARA space. Using dual-channel LDDMM (35) 

based on tissue contrasts in the average DWI and FA images and the MRI template, the 

3D MRI data acquired in this study were accurately normalized to the ARA space.  

    NF and MBP stained images of the C57BL/6 mouse brain were downloaded from the 

ARA reference dataset. Images with major artifacts or tissue loss were excluded. Small 

tissue tearing and staining artifacts were removed using the Inpainting feature 

implemented in the photoshop heading brush tool (www.adobe.com), and dark pixels in 

the ventricles were replaced by the average intensity values of the cortex to match MRI 

data (Supplementary Fig. 4A).  The repaired images were down-sampled to an in-plane 

resolution of 0.06 mm/pixel. For each 2D histological image, the best-matching MRI 

section in the MRI template was identified, and a coarse-to-fine alignment from histology 

to MRI using affine transform and landmark-based image warping tool in ImageJ 

(https://imageJ.nete/BUnwarpJ). The aligned 2D sections were then assembled into a 3D 

volume and mapped to the MRI template using LDDMM (between NF/MBP and FA) to 

further improve the quality of registration.  

Evaluation of image resolution. The resolution of MRI, histological images,  were 

evaluated using a parameter-free decorrelation analysis method (36), without the initial 

edge apodization step.  

Design and training of the MRH networks. MRH-networks are constructed using a 

CNN model with convolutions from the MRI to histology space. The networks were 

implemented using the deep learning toolbox in Matlab (www.mathworks.com) using the 

directed acyclic graph architecture. To accommodate residual mismatches between MRI 

and histological data, the network consistently applied convolutional layers until the end 

layer that computed the distance loss to the target histology. The number of layers and 

neurons in each layer were determined empirically to balance performance and the risk 

of overfitting. We chose 64 hidden layers, each with 64 neurons, which applied a filter 

size of 3x3 and included a rectified linear unit (ReLu). Most of the hidden layers utilized 

skip connections to jump over layers to avoid vanishing gradients(37). The network was 
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initialized with orthogonal random weights and was trained using a stochastic gradient 

descent optimizer to minimize pixel-level absolute distance loss (Supplementary Fig. 

2A-B). Several choices of mini batch sizes were tested and the size was set to 128 to 

attain a balance between training speed and performance. Stochastic gradient descent 

with a momentum beta of 0.9 was used for stochastic optimization, with an initial learning 

rate of 0.1 and a learning rate factor of 0.1. During training, the learning rate was reduced 

by a factor of 0.1 every 10 epochs. Maximum epoch number was set at 60, but early 

stopping was employed if the validation set loss did not decrease in 5 epochs. During 

hyper-parameter tuning, 1000 3x3 patches were randomly held out to as the validation 

dataset and isolated from the training dataset. The weights from the epoch with the lowest 

validation loss were selected for final testing.  

    When retraining the MRH-AF neural network using MBP/NF data, we refined the last 

three layers parameters while leave the rest layer parameters untouched in the Matlab 

deep learning toolbox using the directed acyclic graph architecture. The hyperprameters 

and training patches is the same as MRH-AF. Specifically, the network training initial 

learning rate was 0.0001, while learning rate factor was 0.1 to accomplish transfer 

learning. Using the stochastic gradient descent optimizer, our transfer learning converged 

as shown in Supplementary Fig. 2C-D. 

t-Distributed Stochastic Neighbor Embedding(t-SNE) analysis. The t-SNE cluster 

was performed using the Matlab t-SNE analysis function on the network prediction based 

on values in 2,000 randomly selected 3x3 patches in the mouse brain MRI data.  

Contribution analysis. Following the perturbation method described by Olden et al.(12), 

Rician noises were added to one input MR image to the pre-trained MRH networks, and 

RMSE between the noise contaminated outputs and the original output without noise was 

recorded.  By repeating this procedure for all MR images, the sensitivities of MRH to each 

of the 67 input MR image or their contributions were obtained.   

Evaluate the effect of pixel mismatches. In the experiment that used the DWI and FA 

data of the mouse brains to train an MRH network, simulated pixel displacements were 

used to deform the FA data (target), which were perfectly co-registered to the DWI data 

(inputs), to test the effect of pixel mismatches between input and target data on network 

prediction. Gaussian random displacement fields were generated for pixels on a 1 mm by 
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1 mm grid in the coronal plane and propagated to other pixels by B-spline interpolations. 

The displacement fields followed a Chi distribution with 2 degrees of freedom and were 

adjusted to match the level of pixel mismatches observed between MRI and histological 

data.  

Statistical analysis. Statistical significance was determined using unpaired Student’s t-

test with threshold set at 0.05. All statistical tests were performed with Prism (GraphPad). 

All values in bar graphs indicate mean + standard deviation.  
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