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Abstract 15 

Genome engineering methodologies are transforming biological research and discovery. 16 
Approaches based on CRISPR technology have been broadly adopted and there is growing 17 
interest in the generation of massively parallel edited cell libraries. Comparing the libraries 18 
generated by these varying approaches is challenging and researchers lack a common 19 
framework for defining and assessing the characteristics of these libraries. Here we describe a 20 
framework for evaluating massively parallel libraries of edited genomes based on established 21 
methods for sampling complex populations. We define specific attributes and metrics that are 22 
informative for describing a complex cell library and provide examples for estimating these 23 
values. We also connect this analysis to generic phenotyping approaches, using either pooled 24 
(typically via a selection assay) or isolate (often referred to as screening) phenotyping 25 
approaches. We approach this from the context of creating massively parallel, precisely edited 26 
libraries with one edit per cell, though the approach holds for other types of modifications, 27 
including libraries containing multiple edits per cell (combinatorial editing). This framework is a 28 
critical component for evaluating and comparing new technologies as well as understanding 29 
how a massively parallel edited cell library will perform in a given phenotyping approach. 30 

Introduction 31 
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Genome engineering methodologies are transforming biological research and discovery. 32 
Approaches based on CRISPR technology have been broadly adopted due to the relative ease 33 
of targeting defined genomic regions using specific guide RNAs (gRNAs) (Jinek et al. 2012). 34 
While there has been a large focus on modifying one or a small number of sites for translational 35 
research and therapeutics, there is growing interest in the generation of massively parallel 36 
edited cell libraries (Ding et al. 2014; Frangoul et al. 2020; Wilkinson et al. 2021). These libraries 37 
can accelerate the pace of genome discovery or cell engineering by allowing for the 38 
simultaneous interrogation of hundreds to thousands of loci in a single experiment. Current 39 
genome-wide approaches typically either leverage knock-out libraries – largely relying on 40 
error-prone repair processes for sequence disruptions – or rely on transcriptional modulation 41 
by tethering a nuclease-deficient Cas9 with a transcriptional repressor or activator to modulate 42 
gene expression (Mali et al. 2013; Cong et al. 2013; Gilbert et al. 2014). Recently, the generation 43 
of genome-wide libraries of precise edits has been described in microbes and human (Garst et 44 
al. 2017; Sadhu et al. 2018; Bao et al. 2018; Sharon et al. 2018; Hanna et al. 2021). This ability to 45 
make more refined changes will provide greater precision and information around genotype-46 
phenotype relationships. Comparing the libraries generated by these varying approaches is 47 
challenging and groups typically take different approaches and measures in reporting their 48 
work. What is currently lacking is a common framework for defining and assessing the 49 
characteristics of these libraries.  50 

The evaluation of these complex libraries can be challenging. The library represents a mixed 51 
population, with some cells containing the desired edit and the remaining cells constituting a 52 
Burden Population (Table 1) of cells containing incomplete, unintended or no edits. The 53 
population of cells containing the designed edits will also be a mosaic, with individual edit 54 
representations being driven by the representation of the design in the reagent pool, the 55 
functionality of the guide, the edit rate at different loci and any fitness effects an edit may have 56 
on an individual cell. Frequently the efficiency of massively parallel editing experiments is 57 
extrapolated based on experiments where editing has been performed in isolates rather than 58 
in a pooled manner (Sadhu et al. 2018; Sharon et al. 2018). Although this methodology is more 59 
experimentally tractable, it is not necessarily predictive of performance in a pooled setting. 60 
Additional biological factors can strongly affect outcomes, such as differential growth rates of 61 
cells that have undergone the editing process, the introduction of edits that impair cell viability 62 
to varying degrees, cells in which no double-stranded break (DSB) is created and which thus 63 
grow faster, and cells in which a DSB is created with failure to repair leading to their depletion. 64 
All of these factors impact the final library composition. In general, it is preferable for a library 65 
to contain a high fraction of edited cells, with an even representation of edits. Understanding 66 
the library composition is critical for assessing if a cell library is fit for a given phenotyping 67 
regime, though in practice obtaining this information can be technically challenging or cost 68 
prohibitive.  69 

Here we describe a framework for evaluating massively parallel libraries of edited genomes 70 
based on established methods for sampling complex populations. We define specific attributes 71 
and metrics that are informative for describing a complex cell library and provide examples for 72 
estimating these values. Obtaining all of these measures may be challenging or expensive, so 73 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.23.458228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.458228
http://creativecommons.org/licenses/by-nd/4.0/


 3 

we also provide a theoretical framework to allow assessment of a given library in the absence 74 
of some desired data points. We also connect this analysis to generic phenotyping approaches, 75 
using either pooled (typically via a selection assay) or isolate (often referred to as screening) 76 
phenotyping approaches. We approach this from the context of creating massively parallel, 77 
precisely edited libraries with one edit per cell, though the approach holds for other types of 78 
modifications, including libraries containing multiple edits per cell (combinatorial editing). This 79 
framework is a critical component for evaluating and comparing new technologies as well as 80 
understanding how a massively parallel edited cell library will perform in a given phenotyping 81 
approach. 82 

Library Characterization 83 

Massively parallel genome engineering results in a library of cells, where most cells contain 84 
design reagents (that is, the combination of gRNA and repair template) encoding distinct edits. 85 
Each design reagent is represented in hundreds to thousands of cells. In microbial libraries, 86 
these reagents are often maintained as plasmids, while in mammalian libraries, episomes or 87 
genome-integrating vectors, such as lentivirus, must be used if the reagents are to be 88 
maintained within the population over the course of an experiment. A percentage of the 89 
population will contain the desired edits, while the remaining population constitutes a Burden 90 
Population. In order to characterize such a library, we must define and measure several 91 
characteristics. Table 1 provides a list of terms and measures useful for characterizing libraries.  92 

Table 1: terms and definitions useful for characterizing complex cell libraries 93 

TERM DEFINITION 
BURDEN POPULATION The population of cells in a library that is either unedited 

or contains unintended edits.  
COMPLETE INTENDED EDIT A precise edit that includes all modifications specified in 

the repair template (sometimes referred to as the 
homology arm) with no additional unintended 
modifications (Figure 1).   

EDIT COEFFICIENT OF 
VARIATION (EDIT CV) 

An aggregate measure across all the edits in a library, the 
coefficient of variation for the frequencies of the 
Complete Intended Edits in the edited cells of the library, 
defined as the standard deviation of edit frequencies 
normalized to their mean. 

EDIT FRACTION The fraction of cells in a library containing the Complete 
Intended Edit at the locus of interest (in a precise editing 
library) or an edit in the target region (in an imprecise 
editing library). 

EDIT FRACTIONAL RICHNESS The Edit Richness (see below) scaled by the library size, a 
value in the range [0, 1]. 

EDIT RICHNESS The number of unique Complete Intended Edits present in 
a sample. 
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INTENDED EDIT The modification of specific bases in a defined region of a 
genome.  
(https://www.nist.gov/programs-projects/nist-genome-
editing-lexicon#3.4) 

REAGENT COEFFICIENT OF 
VARIATION (REAGENT CV) 

An aggregate measure across all the editing reagents in a 
library, the coefficient of variation for the frequencies of 
the editing reagents (typically plasmids, episomes or 
virus) in the library. Defined as for Edit CV 

REAGENT FRACTIONAL 
RICHNESS 

The Reagent Richness (see below) scaled by the library 
size, a value in the range [0, 1]. 

REAGENT RICHNESS The number of unique reagents present in a sample. 
SCREENER’S SCORE The predicted Edit Fractional Richness for a 1x screen 

(number of isolates screened = number of designs in 
library) assuming a 30% Edit Fraction. 

SELECTOR’S SCORE The predicted Edit Fractional Richness for a selection 
assuming 1x106 cells and 30% Edit Fraction. 

Definitions Useful for Library Characterization 94 

Defining an edit 95 

When using CRISPR-Cas based systems to generate a desired sequence variant through 96 
precise editing, a guide and repair template are defined (commonly through software). In 97 
many cases, auxiliary edits to the PAM site are included to prevent the nuclease from recutting 98 
the edited locus. We define a ‘Complete Intended Edit’ as an instance where the repair 99 
template sequence (the desired variant and any auxiliary edits) is faithfully and completely 100 
placed into the genome (Figure 1). Cases where only part of the repair template sequence is 101 
conferred to the genome are classified as incomplete edits and are considered part of the 102 
burden, though there will be differences from the reference sequence. Unintended events, 103 
either occurring at the edit locus or elsewhere in the genome, are also considered part of the 104 
Burden Population along with unedited cells.  105 

When producing imprecise edits, such as in the case of non-homologous end joining (NHEJ)-106 
mediated knockout libraries, the concept of a Complete Intended Edit is not relevant. 107 
However, in this case, the desired events would be insertion-deletion events occurring at the 108 
target site. Events that do not lead to a true loss of functional protein (knockout) or that 109 
happen outside of target region would fall into the Burden Population. In this framework, only 110 
Complete Intended Edits (in precise editing) or target site changes leading to a knockout (in 111 
imprecise editing) are considered edits. A formal definition of what is meant by an edit allows 112 
us to develop a more rigorous framework by which to evaluate these complex cell libraries. In 113 
the discussion that follows, the term “edit” refers to Complete Intended Edit unless indicated 114 
otherwise. 115 
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 116 

Figure 1. Challenges of edit identification in a large pool of precisely edited cells. A complete and intended edit 117 
occurs only when the complete repair template is faithfully placed in the genome; this includes the desired edit 118 
and any auxiliary edits made to prevent recutting of the edited locus. Cases where only part of the repair template 119 
are incorporated into the genome are considered incomplete and count as burden rather than an edit, even if they 120 
include the desired variant. Any other unintended or unedited cells are also considered part of the burden. 121 

Estimation of the Edit Fraction 122 

The Edit Fraction is a critical component of characterizing a massively parallel genome 123 
engineered library. Ideally, we would like to identify all edits that occurred within a population. 124 
In practice, this is challenging because of the mosaic nature of the library; at any given locus, 125 
the count of reference sequence representation will far exceed the count of edit-containing 126 
sequences. Fortunately, determination of the overall Edit Fraction does not require complete 127 
evaluation of all members of the library. We describe two approaches for identifying the Edit 128 
Fraction in a library: a shallow sampling of the library by deeply sequencing isolates or a deeper 129 
sampling of the library by shallow sequencing of a pool of cells (Figure 2).  130 

One way to assess the Edit Fraction is to sample isolates selected from the population (Figure 131 
2A). After sufficient cell divisions, standard sequencing approaches, such as whole genome 132 
shotgun (WGS) of each isolate, can be employed. This requires only collection and growth of 133 
isolates (typically by low density plating and picking single colonies into a 96-well plate) and 134 
library preparation. While this produces a large number of reads outside of the targeted locus 135 
that do not contribute to edit detection, these reads can be assessed for off-target events. 136 
Alternatively, one could take an approach to identify the design reagent in each isolate (see 137 
below), and then use a targeted sequencing approach, such as hybrid capture or genomic 138 
amplification, to confirm the validity of the edit. This approach has the benefit of more 139 
efficiently utilizing sequencing reads but takes longer and requires two library preparations, in 140 
addition to the creation of custom reagents for each edit locus. Regardless of whether whole 141 
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genome or targeted sequencing is performed, this isolate evaluation approach generally 142 
results in very shallow sampling of a library.  143 

An alternative approach to characterizing the Edit Fraction in a library employs limited WGS on 144 
the entire population of cells at a shallow read depth, an approach we term pooled WGS 145 
(pWGS) (Figure 2B). While the population of cells used as input for this analysis may number in 146 
the millions, the cost of sequencing will typically limit the number of cells ultimately sampled, 147 
often in the range of a few hundred to a few thousand. For example, if an experiment involves 148 
sequencing to an average genomic coverage depth of 1000x, it will profile approximately 1000 149 
cells’ worth of DNA at each targeted edit locus. In contrast to isolate sampling, the pooled 150 
approach limits the manual work of colony isolation and growth at the expense of greater 151 
complexity in sequence analysis. If a pWGS assay is tuned to sequence roughly 1000 genomes’ 152 
worth of DNA per locus, then for an edit library of 1000 or more members, the assay should be 153 
viewed as a sampling of mainly the right tail of the edit frequency distribution. Sampling 154 
deeper would require substantially more sequencing, on the order of billions of read pairs or 155 
more (Figure 3D and supplemental section 8). Even though the pWGS sampling depth is 156 
typically shallow and thus incapable of providing reliable data on a pre-design basis, the sum of 157 
the per-design Edit Fractions produces a reliable estimate of the overall Edit Fraction in the 158 
library (Figure 3A). In either the isolate or pWGS approach, many edits that are present in the 159 
pool will be missed in the sequencing results due to being present at very low frequency 160 
relative to the per-locus sampling depth. Despite the absence of many of the edits in the 161 
sample, making the assumption that the underlying edit frequencies follow a parametric 162 
distribution can allow for reliable estimation of the Edit CV (Table 1 and Figure 3D). In 163 
situations where the edits are clustered in a subset of the genome, targeted sequencing 164 
approaches can provide a more cost-efficient readout of the edit frequencies. Assay replicates 165 
will provide differing parameter estimates due to sampling biases in the context of shallow 166 
coverage; therefore, inspection of confidence intervals is helpful to guide appropriate 167 
interpretation.   168 
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 169 

 170 

 171 

Figure 2. Measurements of interest when evaluating a multiplex precisely edited library. This simplified example 172 
is based on a contrived library targeting 13 distinct edits, with half of the cells in the pool containing a Complete 173 
Intended Edit and 12 of the designs represented. Open circles represent cells of the Burden Population, most of 174 
which will contain editing reagents if selection pressure is maintained. Dashed circles represent the design 175 
reagent. Rectangular boxes represent sequence reads, open are wild type while filled are Complete Intended Edit-176 
containing reads.  A. A shallow library sampling but deep sequencing approach involves edit detection by 177 
selecting isolates and performing whole genome shotgun (WGS) analysis. For the isolates selected, this can 178 
provide detailed edit data, as well as information on any unintended events, but the approach samples only a 179 
small number of cells in the library. It is important to use sufficiently deep sequencing on each isolate to provide 180 
good power for detecting edits. B. An alternative approach involves doing a broad library sampling but shallow 181 
sequence assessment of the library to obtain an estimate of the fraction of cells containing an edit. As with the 182 
previous approach, many individual edits that are present in the pool will be absent from the sample; 183 
nevertheless, an estimate of Edit Fraction f can be obtained by summing the fraction of edited reads at each locus 184 
(designated by L_x). At approximately 1000x coverage and with Edit Fraction f, 1000f edited cells will be sampled. 185 
Increasing read depth will increase the number of cells sampled, but very high coverage would be required to 186 
deeply assay at each edit locus. C. Design distribution can be measured directly from the reagents, typically 187 
through a short-read sequencing (NGS) assay using amplification handles. The reagents will be detected in both 188 
the edited and Burden Populations, and this assay will not distinguish those populations.  189 
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 190 

 191 

Figure 3: Example usage of pWGS and design reagent amplicon sequencing assays to characterize an E. coli edit 192 
library. After exclusion of controls, the library consists of 928 designs including insertions, deletions and 193 
substitutions spanning the genome. The resulting edits are not expected to result in any notable effects on 194 
cellular fitness.  A: Number of sequencing reads with exact match to expected edits in a pWGS run. The pWGS run 195 
included 157M 2x150 read pairs. After exclusion of reads failing quality filters the mean coverage depth fully 196 
spanning the targeted edits is 3434. Summing the per-locus Edit Fractions produces an estimate of 0.44 for the 197 
overall Edit Fraction in the pool, thus the pWGS run profiles approximately 1501 genomes’ worth of DNA overall. 198 
A total of 1615 edited reads is seen, comprising 546 unique edits (y-axis) with read depth per edit ranging from 1 199 
to 15 (x-axis).  B: Scatterplot comparing the edit frequencies estimated from pWGS with design reagent 200 
frequencies estimated from amplicon sequencing of reagents.  C: Histogram and cumulative distribution function 201 
(CDF) of reagent representation (defined as the product of reagent frequency and library size), measured by 202 
amplicon sequencing of the design reagents. The assay consists of 3.0M reads. Fitting the design reagent 203 
frequencies to a beta distribution via maximum likelihood estimation (MLE), the data are well described by a beta 204 
distribution with mean 1/928 and CV 0.73.  D: Histogram and CDF as in C, but for the representation of edits as 205 
measured by pWGS. Given that the pWGS run is sampling roughly 1501 genomes’ worth of DNA per locus, it 206 
should be viewed as a sampling of mainly the right tail of the edit frequency distribution. The fraction of the edit 207 
library that is observed at least once is 0.59. Fitting edit frequencies with a beta distribution via MLE, the estimate 208 
of CV is 1.01. Observation of a greater fraction of all possible edits in the library would require substantially more 209 
sequencing. For example, if the goal were to directly observe 90% of the edits in pWGS, it would require detection 210 
of edits whose frequencies among the 44% of edited cells is around the 10th percentile of the reagent frequency 211 
distribution, or 1e-4. Aiming for an expected edit read count of 10, to have a reasonable chance of observing edits 212 
at the 10th percentile, it would take a mean coverage depth of 213K. This is 62-fold larger than the actual 213 
coverage depth for the pWGS run, which would require a total sequencing throughput of 9.8B read pairs. E: 214 
Screener’s curve, showing the predicted Reagent Fractional Richness (solid curve) and Edit Fractional Richness 215 
(dashed curve) as a function of the number of clonal isolates phenotyped in a screening experiment. The red 216 
curves are based on a beta binomial model fit. The blue curve is a prediction based on the nonparametric estimate 217 
of the distribution of reagent frequencies, a nonparametric fit to the edit frequencies is not useful given the 218 
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limited sampling depth of the pWGS data. The point indicated on the curve corresponds to the Screener’s score, 219 
which is the predicted Edit Fractional Richness when sampling depth is equal to the library size times the Edit 220 
Fraction. F: Selector’s curve, showing the same data as in E but with the x-axis changed to log scale and domain 221 
extended to cover the deep sampling that is typically relevant for the large number of cells sampled in selection 222 
applications. The solid point indicated on the curve corresponds to the Selector’s score, which is the predicted 223 
Edit Fractional Richness when sampling 1M cells. 224 

Estimation of Reagent Distribution 225 

Direct detection of edits in massively parallel editing libraries is ideal for assessing library 226 
diversity, but in practice it is often prohibitively expensive due to the depth of sequencing 227 
required. In lieu of extensive genomic sequencing, many approaches make it relatively 228 
straightforward to detect the reagents conferring edits, so profiling the reagent distribution 229 
can be a useful proxy for the edit distribution. Typically, each cell contains multiple clonal 230 
reagent copies, and most reagents will be present in hundreds to thousands of cells. Ideally, all 231 
designs would be equally represented, but in practice most libraries have a distribution of 232 
representation. Every manipulation of the library (reagent manufacturing, transformation, 233 
growth of the cell population) introduces an opportunity to alter this distribution. 234 
Understanding the distribution of reagents is critical for interpreting phenotyping results and 235 
will help define the effect size and significance of results. For example, if a phenotyping 236 
approach is assessing depletion of reagents as a measure proxy for genotype (a common 237 
approach in essential gene screens), designs in the extreme left tail of the distribution will likely 238 
be underpowered for association with a phenotype. 239 

Sequencing the reagent library throughout the experimental process provides useful insight 240 
into how various manipulations can impact design reagent distribution. This approach can be 241 
useful for approximating edits post-phenotyping, particularly in the case of strong selective 242 
pressure. In a library containing a mixture of active and inactive gRNA-donor cassettes, the 243 
number of viable edited cells is tightly coupled to gRNA activity, rate of homology directed 244 
repair (HDR) and the relative survival rate of edited members of the population.  DNA synthesis 245 
errors that result in unintended editing events during the homology-directed repair process or 246 
poor transformation efficiency can impact uniform representation of intended edits (Roy et al. 247 
2018). These effects can reduce the effective diversity in an edited library, directly impacting 248 
the success of phenotyping. For instance, edited variant libraries may lack the desired intended 249 
diversity due to editing process failures or takeover by a sub-population of a particular 250 
Complete Intended Edit, unintended edits or unedited cells.  In each of these cases, the cost 251 
and effectiveness of phenotypic investigations will be adversely affected.  252 

Typically, short read sequencing (NGS) of the reagent is used to determine the library 253 
distribution from a sample of the library (Fig 2C). Approaches that either detect a barcode 254 
(Garst et al. 2017; Sadhu et al. 2018) or the reagents themselves (Bao et al. 2018; Sharon et al. 255 
2018) are used. It is assumed that the read counts for a design reagent are proportional to the 256 
number of cells containing that design; thus, a read count is equivalent to a design reagent 257 
count. The dispersion of the distribution is measured by the Reagent CV (Table 1, Figure 3C). 258 
Larger Reagent CV values indicate greater variance in the relative abundances of the designs, 259 
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which can lead to under- or overrepresentation of individual designs. Prior to applying selective 260 
pressure, a small Reagent CV is preferable for all phenotyping approaches, though libraries 261 
with larger Reagent CVs can still be useful for some experiments. It is important to note that 262 
while the Reagent CV is a useful and accessible metric, what matters most for many 263 
applications is the Edit CV (Table 1). If every design reagent has an equal probability of 264 
producing an edit, the Reagent CV and Edit CV will be equal to one another. In most real-world 265 
situations there are various sources of bias, including those mentioned above, which result in 266 
the Edit CV being larger than the Reagent CV, to an extent that will depend on the 267 
experimental context (Figure 3D).  268 

We have introduced measures that can be useful for describing aspects of a massively parallel 269 
edited cell library. We next introduce approaches for combining these measures to produce 270 
metrics that can be utilized for evaluating these libraries.  271 

Metrics for Library Evaluation 272 

In this section we define several concepts that utilize the above measurements to provide a 273 
fuller characterization of a library. Neither Edit Fraction nor reagent distribution alone can fully 274 
characterize the utility of a library. When sampling a library with a high Edit Fraction but poor 275 
representation of some or many library members, any phenotyping regime will be continually 276 
sampling only a small subset of the desired variation. Alternatively, even representation of the 277 
designs with a poor Edit Fraction will lead to over-sampling of the Burden Population. Different 278 
phenotyping approaches will be more or less tolerant to deviations in either Edit Fraction or 279 
design reagent distribution. Below, we describe metrics that combine these two measures into 280 
a score that can be used to quickly assess the utility of a given library.  281 

Edit Library Richness 282 

When sampling cells or isolates from an engineered cell library, the quantity that is typically 283 
most important is the number of unique edits represented in the sample. Borrowing from the 284 
ecological literature, the term “richness” is used to refer to the number of unique edits in the 285 
sample from the library (Levin et al. 2012). The expected richness 𝜇!  of a sample of m cells or 286 
isolates from a library of S edits can be predicted given 𝑓, the fraction of cells that contain an 287 
edit, and the frequencies 𝑝"  of each edit among the edited cells. 288 

 289 

As with other measures, the variance of the sample’s richness can be calculated (supplemental 290 
section 1). For some approaches, a variant will need to be observed more than once to provide 291 
statistical power for making the genotype-phenotype correlation. In these cases, there is a 292 
tractable generalization for when richness is defined in terms of needing at least 𝑛 293 
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observations of each edit (supplemental section 2). This is useful in cases where the dynamic 294 
range of quantification relies on a set number of observations of the edit. There is an accurate 295 
approximation for the mean and variance of richness, useful both for its mathematical 296 
convenience and because it reduces computational complexity from 𝑂(𝑛#𝑆#) to 𝑂(𝑛𝑆) 297 
(supplemental section 3). 298 

Under the assumption that all designs have equal probability of conferring their edits, 299 
measurements of reagent frequencies and of the Edit Fraction can be used to predict the 300 
richness in a variety of circumstances. It is useful to plot the predicted richness against the 301 
number of cell isolates evaluated in a screen or selection, producing a “Screener’s Curve” 302 
(Figure 3E, 4E and 5C) or a “Selector’s Curve” (Figure 3F, 4F and 5D). These plots serve as a 303 
guide to set expectations of what fraction of an edit library will be probed in a screen or 304 
selection. 305 

The appropriate sample size m from which to make richness predictions will depend strongly 306 
on the particular situation. In some cases, the cost of phenotyping each sample is high, and the 307 
sample size needs to be kept small for practical reasons. In other cases, deep sampling is 308 
affordable, and many cells can be sampled. To be able to quantify a library’s suitability for 309 
screening and selection applications, and to be able to do so in the absence of an estimate of 310 
Edit Fraction, two metrics are introduced - the Screener’s Score and the Selector’s Score. The 311 
Screener’s Score is defined as the expected Edit Fractional Richness when sampling S times (a 312 
1-fold sampling of the library) and with Edit Fraction set to 0.3. The maximum possible value 313 
for the Screener’s Score is 1 − 𝑒$%.' or 0.26 (supplemental section 4). The Selector’s Score is 314 
defined as the expected Edit Fractional Richness when sampling 10( times (a reasonable 315 
number of input cells for a selection protocol), with the same Edit Fraction of 0.3. The 316 
Selector’s Score can take on any value in the range [0,1]. These scores are intended to be 317 
general measures and more detailed information concerning the Edit Fraction would make this 318 
estimate more accurate. Figure 4 illustrates how these concepts can be used to quantitatively 319 
assess different libraries for screening and selection purposes. 320 
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 321 
 322 

Figure 4: Comparative evaluation of two runs of a 10,000 member E. coli library, the runs are named X and Y. A 323 
and B: histogram and CDF (blue) of design frequencies as determined by deep amplicon sequencing of the 324 
reagents. The red curves correspond to beta distributions fit by Maximum Likelihood Estimation (MLE). The 325 
estimates for Reagent CV are 0.79 and 0.90 for runs X and Y respectively. C and D: histogram and CDF (blue) of 326 
genomic edit frequencies as determined by pWGS. The red curves are beta distributions fit by MLE, the shaded 327 
area spans the 95% confidence interval for the edit CV estimates. The estimated edit CVs are 1.54 and 2.48 for 328 
runs X and Y respectively. The pWGS assay is a shallow sampling of edits, with an estimated sampling depth of 329 
488 and 724 in runs X and Y respectively, which is very small compared to the library size of 10,000. The pWGS 330 
assay also enables estimation of Edit Fraction, the estimates are 0.25 and 0.57 for runs X and Y. Run X has a lower 331 
Edit Fraction but also a lower edit CV compared to run Y, so determination of which run is better to use in 332 
downstream applications will depend on the situation. E: Screener’s curves plotting predicted Edit Fractional 333 
Richness against sample size for the two runs. The points on the curves correspond to the Screener’s Scores using 334 
the estimated Edit Fractions. For a screen of 20,000 or fewer isolates (twice the library size), run Y is predicted to 335 
yield greater Edit Fractional Richness, with its larger Edit Fraction making up for its larger edit CV. F: Selector’s 336 
curves, like E but with the x-axis expanded to span a range more typical for a selection application. The points on 337 
the curves denote the Selector’s Scores, the predicted Edit Fractional Richness when sampling 106 cells. The lower 338 
edit CV of run X makes it a better choice for a selection application, despite it having less than half the Edit 339 
Fraction of run Y. 340 

When an estimate of Edit Fraction is available to complement the estimates of design reagent 341 
frequencies, the Empirical Screener’s Score and Empirical Selector’s Score can be evaluated in 342 
a similar manner, replacing the fixed assumption of 0.3 Edit Fraction with the empirically 343 
determined estimate (Figure 3D). These curves aid in understanding the best phenotypic 344 
approaches to take given various library characteristics and experimental goals.  345 

Maximizing Library Richness 346 
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The four variables appearing in the expression for richness motivate different approaches for 347 
maximizing the richness of a sample, though in practical applications some of the approaches 348 
may be inaccessible (supplemental section 4). The first approach is the obvious one of 349 
increasing the sample size – the larger the sample, the greater the richness. The second 350 
approach is to increase the probability f that a design reagent confers an edit - something that 351 
can be achieved, for example, by improving models for gRNA design. The third approach is to 352 
increase the library size S. Lastly, the edit CV has a direct impact, with more evenly distributed 353 
libraries resulting in greater richness. 354 

For a sample of size m from a library of size S with Edit Fraction f, the maximum richness 355 

possible is 𝑆 01 − 𝑒$
!"
# 1, attained for a perfectly even library where all design reagent 356 

frequencies are equal to 1/𝑆 (supplemental section 4). 357 

Predicting Library Richness 358 

The predictor of library richness introduced above requires an estimate of the frequency of 359 
every member of the library. In some situations where deep sampling from the library is 360 
feasible it will be possible to get good frequency estimates, but for large libraries it is often 361 
desirable to be able to predict richness from shallow sampling, to help guide decisions about 362 
when to proceed with deep sampling. 363 

The problem of predicting future richness from an initial sampling is commonly referred to as 364 
the unknown species problem in ecology, one of the earliest solutions was the Good-Toulmin 365 
estimator (Good and Toulmin 1956). The Good-Toulmin estimator is a nonparametric 366 
approach which works well for predicting up to twice the depth as available in the initial 367 
sample but beyond that it becomes unstable.  An improved nonparametric approach 368 
introduced the use of rational function approximations to produce stable estimates at 369 
sampling depths orders of magnitude larger than the initial sample (Daley and Smith 2013) and 370 
subsequent work extended the approach to predict richness when requiring more than one 371 
observation of each library member (https://arxiv.org/pdf/1607.02804.pdf). 372 

An alternative approach is to assume a parametric model to describe the library frequencies.  A 373 
benefit of the parametric approach is that it can produce good estimates from shallow 374 
sampling, as long as the model is a good fit for the underlying data.  The beta distribution, 375 
described by two parameters, is a natural model to consider and one that is often an excellent 376 
fit for genome editing libraries (Figures 3, 4, S4).  When using a model for design reagent 377 
frequencies where the total library size is known, a constraint is needed to ensure that the 378 
frequencies sum to 1, or equivalently, to ensure their mean is 1/S; as a result, there is only one 379 
free parameter. It turns out to be convenient to use the CV as the free parameter. When design 380 
reagent frequencies follow a beta distribution, there is a closed-form solution available for the 381 
expected Edit Fractional Richness, where Edit Fractional Richness is defined as the Edit 382 
Richness scaled by the library size (supplemental section 6). For a beta model, Edit Fractional 383 
Richness depends on only two parameters - the CV of the design reagent frequencies c, and 384 
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the sampling fraction 𝐹, defined as mf/S, which can be thought of as the effective fraction of 385 
the library that is profiled in a sampling of 𝑚 cells (Figure 5). The expected Edit Fractional 386 
Richness 𝜇!,* where at least n observations of an edit are required, is well approximated as 387 

 388 

Consistent with the expression for Edit Fractional Richness, the number of observations of 389 
each edit in the sample follows a negative binomial distribution with failure probability set to 390 
1/(1 + 𝐹𝑐#) and failure count set to 1/𝑐#. There is also an expression for the variance of 391 
richness (supplemental section 6). These expressions can be used with the delta method to 392 
account for uncertainty in the estimates of CV and Edit Fraction, enabling construction of 393 
confidence intervals for Screener’s and Selector’s curves. 394 

Supplemental section 9.3 presents a comparison of parametric and nonparametric estimators 395 
of richness on some empirical data. 396 

Applying These Estimates and Metrics 397 

Massively parallel genome engineered libraries provide rich diversity for a variety of 398 
applications. The framework described above can be applied to experimental design, library 399 
evaluation and comparing results from different approaches. Below, we describe using this 400 
framework to evaluate libraries for utility in either forward engineering or genome discovery 401 
applications.  402 

Forward Engineering Experiments 403 

Forward Engineering of biological systems relies on effective methods to generate beneficial 404 
genetic diversity to provide the fuel for evolutionary optimization (Fox and Giver 2011). 405 
Screening of isolated genetic variants that drive improved phenotypes becomes an exercise in 406 
maximizing richness while managing sampling depth. As noted above, increasing the library 407 
size is a way of maximizing richness. Shallow screening of large libraries has proven to be an 408 
efficient way to maximize the beneficial diversity rate, as most of the genotypes observed are 409 
likely to be unique at lower sampling depth (Alvizo et al. 2014). 410 

The effects of library size, Edit Fraction and Edit CV for screening experiments is shown in 411 
Figure 5. The discovery rates for libraries with differing Edit CVs are plotted, showing the effect 412 
to which libraries with higher variance in the distribution of the population forces much deeper 413 
screening in order to continue to observe unique variants. For forward engineers seeking 414 
simply to maximize the discovery rate of beneficial diversity, a shallow sampling from a large 415 
library is a particularly effective approach. For shallow sampling, the impact of Edit CV on Edit 416 
Fractional Richness is modest, as few of the sampled variants are duplicates. Conversely, with 417 
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deeper sampling (where researchers desire observing the highest fraction of designs) the 418 
effect of a larger Edit CV becomes more limiting. As the Edit CV of the library population 419 
increases, it becomes increasingly difficult to observe those designs present at the lower 420 
frequencies in the population. Edit Fraction has a linear effect on screening outcomes - halving 421 
the edit rate while doubling the sample size results in no net change in expected richness. 422 

 423 
 424 
 425 
Figure 5: Exploration of richness under the assumption that edit frequencies follow a beta distribution. A: Edit 426 
Richness for different library sizes, assuming an Edit CV of 1.5 and an Edit Fraction of 0.6. B: Edit Fractional 427 
richness for the same scenarios as used in A. C: Screener’s curves, showing Edit Fractional Richness as a function 428 
of Fractional Sampling, with different values for edit CV. Fractional Sampling is defined as the product of 429 
sampling depth (the number of cells or isolates sampled) and Edit Fraction divided by the library size. Fractional 430 
Sampling and Edit CV are all that is required to predict Edit Fractional Richness under the beta assumption. D: 431 
Selector’s curves, which are the same figure as C with a log-scale x-axis to enable prediction of Edit Fractional 432 
Richness with the deep sampling that is typically used for a selection experiment 433 

 434 

Genome Discovery 435 
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While forward engineering is driven largely by the identification of desired phenotypes, 436 
genome discovery is often focused on testing specific variants to determine if they drive a 437 
phenotype. In this case, a researcher may be more interested in observing all, or most, variants 438 
within a library several times in order to develop robust hypotheses around genotype-439 
phenotype correlations. In this case, maximizing library coverage may be the most beneficial 440 
approach. When employing an isolate phenotyping approach, this will likely require minimizing 441 
library size	so that the edits can be sampled multiple times. When employing a selection 442 
strategy, increasing library size may be appropriate if Edit CV is held low. This will be driven by 443 
the number of times a researcher wants to observe edits in the left tail of the distribution. For 444 
more precise genotype-phenotype correlations, assessing more libraries containing a smaller 445 
number of edits will likely yield more robust results. Strategic use of the Screener’s and 446 
Selector’s Scores in planning experiments can maximize outcomes by informing sampling 447 
depth needed to robustly associate genotypic changes with phenotypes of interest.  448 

Conclusions 449 

As technology continues to improve, the ability to create larger libraries with precise edits will 450 
become commonplace. To date, no common standards exist for describing and evaluating cell 451 
libraries. This makes comparing libraries produced using different approaches challenging. 452 
Perhaps more importantly, a lack of common standards makes planning experiments and 453 
evaluating libraries as fit-for-purpose challenging, and these measures differ from lab to lab. 454 
Here, we have proposed a framework for evaluating massively parallel libraries of genome 455 
engineered cells. We have provided precise definitions around what constitutes an edit. While 456 
previous groups have often looked at the reagents within a complex cell library, we 457 
demonstrate the value of measuring the fraction of cells within the pool that actually contain 458 
an edit and we introduce methodology to directly profile the distribution of edit frequencies. 459 
This provides for robust characterization of library properties without needing to employ 460 
expensive and labor-intensive approaches to understand editing at every target site. We 461 
introduce the concept of edit library richness to more fully describe a library quantitatively, as 462 
the Edit Fraction is insufficient to fully characterize a library’s quality. When generating a 463 
complex editing library, it is valuable to have a large percentage of the designs represented in 464 
the final population, not just have a large Edit Fraction that all contain the same, or a few edits. 465 
We also provide models and methods that allow predictions of library quality when some key 466 
metrics, typically Edit Fraction, are not available. Development of a robust framework for 467 
evaluating complex cell libraries will be necessary to inform which approaches will be useful for 468 
phenotypic analysis of a library. Establishment of common methods will facilitate comparing 469 
libraries created from various methods. While we have focused on libraries of precise genome 470 
edits, the metrics, models and methods proposed here can be applied to any type of library 471 
conforming to the general statistical assumptions introduced. 472 

Copyright @2021 Inscripta, Inc 473 
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Supplemental Materials 475 

Mathematical derivations and deeper discussion of the metrics are available in the attached 476 
Supplement. Code and data used for analyses can be accessed online 477 
at https://github.com/InscriptaLabs/cell_lib_eval_paper. 478 
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