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Abbreviations:

CTS: cohort target set, synonym of global hitting set

GEO: Gene Expression Omnibus

GHS: global hitting set, synonym of cohort target set
GTEX: Genotype-Tissue Expression (project or consortium)
HPA: Human Protein Atlas

HUGO: Human Genome Organization

IHS: individual hitting set, synonym of individual target set
ILP: integer linear programming

ITS: individual target set

Ib: lower bound on fraction of tumor cellskilled

RME: receptor-mediated endocytosis

TPM: transcripts per million

ub: upper bound on fraction of non-tumor cells killed
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Abstract

The availability of single-cell transcriptomics data opens new opportunities for rational design of
combination cancer treatments. Mining such data, we employed combinatorial optimization
techniques to explore the landscape of optima combination therapies in solid tumors including
brain, head and neck, melanoma, lung, breast and colon cancers. We assume that each individual
therapy can target any one of 1269 genes encoding cell surface receptors, which may be targets
of CAR-T, conjugated antibodies or coated nanoparticle therapies. As a basgline case, we studied
the killing of at least 80% of the tumor cells while sparing more than 90% of the non-tumor cells
in each patient, as a putative regimen. We find that in most cancer types, personalized
combinations composed of at most four targets are then sufficient. However, the number of
distinct targets that one would need to assemble to treat al patients in a cohort accordingly
would be around 10 in most cases. Further requiring that the target genes be also lowly expressed
in healthy tissues uncovers qualitatively similar trends. However, as one asks for more stringent
and selective killing beyond the baseline regimen we focused on, we find that the number of
targets needed rises rapidly. Emerging individual promising receptor targets include PTPRZ1,
which is frequently found in the optimal combinations for brain and head and neck cancers, and
EGFR, a recurring target in multiple tumor types. In sum, this systematic single-cell based
characterization of the landscape of combinatorial receptor-mediated cancer treatments
establishes first of their kind estimates on the number of targets needed, identifying promising

ones for future devel opment.
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| ntroduction

Personalized oncology offers hope that each patient's cancer can be treated based on its genomic
characteristics™?. Several trials have suggested that it is possible to collect genomics data fast
enough to inform treatment decisions>>. Meta-analysis of Phase | clinical trials completed during
2011-2013 showed that overall, trials that used molecular biomarker information to influence
treatment plans gave better results than trials that did not®. However, most precision oncology
treatments utilize only one or two medicines, and resistant clones frequently emerge,
emphasizing the need to deliver personalized medicine as multiple agents combined®**.
Important opportunities to combine systems biology and design of nanomaterials have been
recognized to deliver medicines in combination to overcome drug resistance and combine
biological effects'™.

Here, we propose and study a new conceptual framework for designing future precision
oncology treatments. It is motivated by the growing recognition that tumors typically have
considerable intra-tumor heterogeneity (ITH)*** and thus need to be targeted with a
combination of medicines such that as many as possible tumor cells are hit by at least one
medicine. Our analysisis based on two recently emerging technologies: (1) the advancement of
single-cell transcriptomics and proteomi cs measurements from patients' tumors, whichis
anticipated to gradually enter into clinical use™, and (2) theintroduction of “modular” treatments
that target specific overexpressed genes/proteins to recognize cells in a specific manner and then

use either the T cell immune response or a lethal toxin to kill the tumor cells preferentially.

Based on these two technological foundations, we formulate and systematically answer
two basic trandational questions. First, how many targeted treatments are needed to selectively
kill most tumor cells while sparing most of the non-tumor cellsin a given patient? And second,
given a cohort of patientsto treat, how many distinct single-target treatments need to be prepared
beforehand to treat each patient effectively with the per-patient minimum number of targeted

treatments?

We focus our analysis on genes encoding receptors on the cell surface, as these may be
precisely targeted by any one of at least six technologies, including CAR-T therapy™,
immunoctoxins ligated to antibodies™ 2, immunotoxins ligated to mimicking peptides'® and


https://doi.org/10.1101/2020.01.28.923532

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.923532; this version posted September 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

conventional chemotherapy ligated to nanoparticles®. These treatments are all termed
“modular”, asthey include one part that specifically targets the tumor cell viaagene/protein

overexpressed on its surface and another part, the cytotoxic mechanism that kills the cells.

Two recent genome-wide analyses of modular therapies have focused on CAR-T
therapy21'22
formulation, CAR-T therapy used one cell surface target that marks the cells of interest, such as

, S0 we focus first on this technology to put our work in context. In the original

CD19 asamarker for B cells. To date, CAR-T therapy has been effective in achieving
remissions for some blood cancers'®?, but less effective for solid tumors. MacKay et al.?
focused primarily on single targets and looked at combinations of two targets and did all analysis
in silico. Dannenfelser et al.% focused on predicting combinations of two and three targets and
did most of their work in silico, with in vitro validation of two high-scoring predicted
combinationsin renal cancer. Importantly, these studies have analyzed bulk tumor and normal
expression datato identify likely targets. Here we present the first analysis that amsto identify
modular targets based on the analysis of tumor single-cell transcriptomics. This enables to study
the research questions at a higher resolution but presents new analytical challenges that need to
be addressed.

Two related difficulties with CAR-T therapy arei) toxicity to non-cancer cells**? and ii)
difficulty in finding single targets that are sufficiently selective®. To address the toxicity
problem, MacKay et al.? selected 533 targets that had low expression in most tissues in the
Genotype-Tissue Expression (GTEX) data; however, their analysis did not require that the targets
are cell surface proteins. We proceed in a stepwise manner; we start with aformal analysis of a
space of 1269 candidate cell surface receptors. Then, we add alow-expression requirement like
that of MacKay et al.?. For completeness, we also tested their set of 533 genes.

To address the selectivity problem, various groups have engineered composite forms of
CAR-T treatments that implement Boolean AND, OR, and NOT gates that have been tested for
combinations of up to three target proteins”® . Both MacKay et al. and Dannenfelser et al.
presented in silico methods focusing on AND gates and pairs or trios of targets; Dannenfelser et
al. analyzed 2538 likely cell surface proteins that are not necessarily receptors. We have chosen
to focus on the smpler logical OR construction because that can be achieved not only by CAR-T
technology®”?, but can also be implemented via other modular receptor-mediated treatment
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technol ogies by combining multiple single-target treatments, assuming that the composite
treatment kills a cell if any one of the single treatmentskill the cell. Conceptually, such alogical
OR combination treatment can still achieve selectivity by choosing targets, each of whichis
expressed on a much higher proportion of cancer cells than non-cancer cells. One of our key
contributionsis to show that by using techniques from combinatorial optimization, one can find
such effective combinations involving many targets, while previous studies were limited to at
most three targets.

Beyond CAR-T, our analysis applies to several additional types of modular treatment
technologies that rely instead on receptor-mediated endocytosis (RME) delivering atoxin viaa
targeted receptor to enter the cell*>*2. These RM E-based technologies include, e.g., conjugated
antibodies and toxin delivering nanoparticles. Like CAR-T, these technologies do not
downregulate the target receptor. For RME technologies and other technologies that work
intracellularly, we anticipate combining modular treatments from one technology such that all
treatments use the same toxin or mechanism of cell killing, thereby mitigating the need to test for

interaction effects between pairs of different treatments.

To address this research challenge, we designed and implemented a computational
approach named MadHitter (after the Mad Hatter from Alice in Wonderland) to identify optimal
precision combination treatments that target membrane receptors (Figure 1, A-C). We define
three key parameters related to the stringency of killing the tumor and protecting the non-tumor
cells and explore how the optimal treatments vary with those parameters (Figure 1B, C). Solving
this problem is analogous to solving the classical “hitting set problem” in combinatorial
algorithms®, which is formally defined in the M ethods section (see also Supplementary
Materials 1). Unlike the previous studies on CAR-T targets, we define the problem in a
personalized manner, intending that each patient will get optimal treatments for her or his tumor

from among a collection of treatments available at the cohort level.
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Figure 1. Conceptual schematic example of MadHitter analysis of single-cell data transcriptomics from
three cancer patients. (A) A cohort of patients (threein this example) arrives for a study in which single-cell
tumor microenvironment (TME) transcri ptomics data are collected from each patient; the data are analyzed with
MadHitter and each patient receives an optimal personalized combination of targeted therapies from a pre-
specified set (pill bottle). MadHitter isaimed at optimizing combinations of targeted therapies that are modular,
that is, having arecognition unit that is gene/protein-specific, and ajoint killing subunit (similar for all gene
targets). Icons of four such modular therapies are shown; we focus on the three for which the target protein must
be on the cell surface and the two for which it must be a receptor, and we mention degraders only here. Three

main algorithm parameters are dencted near the MadHitter icon in panel A and explained in the later panels. (B)
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The single-cell TME data are represented in two matrices with the genes as rows and cells as columns,
partitioned into tumor (T) and non-tumor (N) cells. The expression ratio r determines by how much a gene must
be overexpressed for a cell to be considered as atargeted. A geneis considered ‘overexpressed’ in either anon-
tumor cell or atumor cell if its expressionisat least r times the mean, reference level; e.g, the reference level
for FLT1 is(7+11+9)/3 = 9 and only cell T3 has FLT1 expression above 9x2 = 18. The matrices on the right
side show a Boolean representation of which targets kill which cells, based on the expression values presented
in this toy problem in matrix B and taking r=2. Accordingly, the combination of EGFR and KDR would kill all
tumor cells and would spare al non-tumor cells. See another examplein Supplementary Figure S1 (C) The
main algorithm in MadHitter seeks a combination of targetsthat is as small as possible and would kill many
tumor cells and few non-tumor cells, in a patient-specific manner. The (b and ub parameters are the lower
bound on the fraction of tumor cells killed and the upper bound on the fraction of non-tumor cells whose killing
istolerated, respectively. Baseline settings used in our analysesarer = 2,lb = 0.8 and ub = 0.1, and are
varied in some of the analyses. Theright side of the panel shows a hypothetical example of the tradeoff between
killing tumor cells and sparing non-tumor cells. While target set A could kill alarger fraction of tumor cells
than target set B, MadHitter would select target set B since only it satisfies both our baseline settings and kills at
most 0.1 fraction of the non-tumor cells.
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Results

The Data and the Combinatorial Optimization Framework

We focused our analysis searching for optimal treatment combinationsin nine single-cell
RNAseq data sets that include tumor cells and non-tumor cells from at |east three patients that
were publicly available at the onset of our investigation (M ethods; Table 1). Those data sets
include four brain cancer data sets and one each from head and neck, melanoma, lung, breast and
colon cancers. Most analyses were done for all data sets, but for clarity of exposition, we focused
the main text analyses on four data sets from four different cancer types (brain, head and neck,
melanoma, lung) that are larger than the other five and hence, make the optimization problems
more challenging. The results for the other five data sets are provided in the Supplementary

Materials.

To formalize our questions as combinatorial optimization hitting set problems, we define
the following parameters and baseline values and explore how the optimal answers vary as
functions of these parameters. We specify alower bound on the fraction of tumor cells that
should bekilled, [b, which ranges from O to 1. Similarly, we define an upper bound on the
fraction of non-tumor cellskilled, ub, which also ranges from 0 to 1. To be concrete, our
basdline settings are [b = 0.8 and ub = 0.1 but we also explore other values, and the approach
(and code) are generic and can explore the landscape of solutions at any other settings deemed of
interest. To represent the concept that only cells that overexpress the target, we introduce an
additional parameter r. The expression ratio r defines which cells are killed, asfollows (Figure
1B): Denote the mean expression of agene g in non-cancer cellsthat have non-zero expression
by E(g). A given cell is considered killed if gene g istargeted and its expression level in that
celisatleastr x E(g). Higher values of r thus model more selective killing.

Having r as a modifiable parameter anticipates that in the future one could
experimentally tune the overexpression level (see Supplementary Materials 1) at which cell
killing occurs®. In this respect, technologies that rely on RME to get atoxin into the cell are
particularly tunable because there is known to be a non-linear relationship, called

“superselectivity” between the number of protein copies on the cell surface and the probability

9
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that RM E occurs successfully®*. In these technologies, the toxin or other therapy delivered by the
modular treatment enters cells in a gene-specific manner®™.CAR-T therapy activates T-cell

killing against cellsin a gene-specific manner™?,

The question of how sharp anon-linear superselective jump in ligand-receptor binding as
afunction of surface density of receptors is achievable in a nanoparticle system has been the
focus of both experimental and theoretical studies for nanoparticles and CAR-T, asreviewed in
Supplementary Materials 1. Theinverse of the slope of this binding function at the transition is
one way to estimate arealistic value of r. For nanoparticles, an increase of afactor of at most 2
in receptor density/expression appears to be sufficient to go from almost no binding to almost
perfect binding and this justifies our basdline choice of r = 2.0. For CAR-T, investigation of the
binding curve has only recently started, and the first key study achieved experimentaly a
receptor density ratio of 5-10 between almost no binding and almost perfect binding. These
CAR-T experiments were a proof-of-principle study using combinatorial logic encoded
genetically and it seems likely that more sophisticated CAR-T circuitry can achieve steeper
binding curves corresponding to lower values of r. Therefore, for most of our analyses, the
expression ratio r isvaried from 1.5 to 3.0, with a baseline of 2.0, based on experimentsin the
lab of N.A. and related to combinatorial chemistry modeling®; in one analysis, we varied r up to
5.0 (Supplementary Materials).

Given these definitions, we solve the following combinatorial optimization hitting set
problem (M ethods): Given an input of a single-cell transcriptomics sample of non-tumor and
tumor cells for each patient in a cohort of multiple patients, bounds ub and b, ratio r, and a set
of target genes, we seek a solution that includes a minimum-size combination of targetsin each
individual patient, while additionally minimizing the size of all targets given to the patient
cohort. The latter istermed the global minimum-size hitting set (GHS) in computer science
terminology or the cohort target set (CTS) in terminology specific to our problem, while the
optimal hitting set of genes targeting one patient is termed the individual target set (ITS). This
optimum hitting set problem with constraints can be solved to optimality using integer linear
programming (ILP) (Methods, Supplementary Figure S2). We solve different optimization
problem instances, each of which considers a different set of candidate target genes: 1269 genes

encoding cell surface receptor proteins, and subset of 58 out of these 1269 genes that already

10
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have published ligand-mimicking peptides, and a nested collection of sets of 424-900 out of the
1269 genes that are lowly expressed across normal human tissues below a series of decreasing
gene expression thresholds?. From a computational standpoint, there is no inherent theoretical
limit on the size of the candidate gene set, but in practice, such optimization tasks may become
intractable as this size increases. Our formulation is personalized as each patient receives the
minimum possible number of treatments. The global optimization comes into play only when
there are multiple solutions of the same size to treat a patient. For example, suppose we have two
patients such that patient A could be treated by targeting either { EGFR, FGFR2} or { MET,
FGFR2} and patient B could be treated by targeting either { EGFR, CD44} or { ANPEP, CD44}.
Then we prefer the CTS{EGFR, FGFR2, CD44} of size 3 and we treat patient A by targeting
{EGFR, FGFR2} and patient B by targeting { EGFR, CD44} .

As the number of cells per patient varies by three orders of magnitude across data sets,
we use random sampling to obtain hitting set instances of comparable sizes that adequately
capture tumor heterogeneity. We found that sampling hundreds of cells from the tumor is
sufficient to get enough datato represent all cells. In most of the experiments shown, the number
of cells sampled, which we denote by ¢, was 500. In some smaller data sets, we had to sample
smaller numbers of cells (M ethods). As shown in (Supplementary Materials 2, Figures S2-
S3), 500 cells, when available, are roughly sufficient for CTS size to plateau for our baseline
parameter settings, b = 0.8, ub = 0.1, = 2.0. Theresultsusing all cells and default parameters
are shown in Supplementary Table S1 and are similar to the results using sampling, where we
consider the latter more informative for future studies. Hence, for each individual within adata

set, we performed independent sampling of ¢ cells 20 times and their results were summarized.

Cohort and Individual Target Set Sizes as Functions of Tumor Killing and
Non-Tumor Sparing Goals

Given the single-cell tumor data sets and the ILP optimization framework described above, we
first studied how the resulting optimal cohort target set (CTS) may vary as afunction of the
parameters defining the optimization objectives in different cancer types. Figures 2 and $4-S8
in Supplementary Materials 3 show heatmaps of CTS sizes when varying Ib, ub, and r around
the baseline values of 0.8, 0.1, and 2.0, respectively. The CTS sizes for melanoma were largest,

11
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partly due to the larger number of patientsin that data set (T able 1). Indeed, as we sampled
subsets of 5 or 10 patients uniformly and observed that the mean CTS sizes grew from 7.9 (5
patient subsets) to 12.3 (10 patient subsets) to 31.0 (all patients, as shown in Figure 2).

Encouragingly, for most data sets and parameter settings, the optimal CTS sizes arein the
single digits. However, in several data sets, we observe asharp increasein CTS size as [b values
areincreased above 0.8 and/or asthe ub is decreased below 0.1, with a more pronounced effect
of varying lb. Thistransition is more discernable at the lowest value of r (1.5), probably because
when r islower, it becomes harder to find genes that are individually selective in killing tumor
cells and sparing non-tumor cells (Supplementary Figures $4-S8). The qualitative transition
observed in CTS sizes occurs robustly regardless of the threshold for filtering out low expressing

cells when preprocessing the data (Supplementary Materials 4, Figures S9-S11).
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Figure 2. Heat maps showing how the cohort target set size (CTS) variesas a function of Ib, ub, r

and across data sets. For each plot the x-axis and y-axis represent |b and ub parameter values,
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respectively. The scale on the right shows the cohort target set sizes by color scale. We show separate
plotsfor r = 2.0,3.0 hereand alarger set {1.5, 2.0, 2.5, 3.0} in Supplementary Materials 3. Individual
values are not necessarily integers because each value represents the mean of 20 replicates of sampling ¢
(500 for each of the data sets shown here) cells (Figure S2).

We next examined what are the resulting individual target set (ITS) sizes obtained in the
optimal combinations under the same conditions. In all data sets, the mean ITS sizesarein the
single digits for most values of [b and ub. The distributions of ITS sizes are shown for four data
sets and two combinations of (b, ub) (Figure 3) and for additional data setsin Supplementary
Materials 5, Figure S12. Overall, the mean ITS sizes with the baseline parameter values
(r=2.0,lb = 0.8,ub = 0.1) range from 1.0 to 3.91 among the nine data sets studied
(Supplementary Table S3); on average 4 targets per patient should hence suffice if enough
single-target treatments are available in the cohort target set. However, there is considerable

variability across patients.

Evidently, as we make the treatment requirements more stringent (by increasing Ib from
0.8 t0 0.9 and decreasing ub from 0.1 to 0.05), the variability in ITS size across patients became
larger. Importantly, this analysis provides rigorous quantifiable evidence grounding the
prevailing observation that among tumors of the same type, some individual tumors may be
much harder to treat than others. Taken together, these results show that we can compute precise
estimates of the number of targets needed for cohorts (in the tens) and individual patients (in the
single digits usually) and that these estimates are sensitive to the killing stringency, especially
when the [b increases above 0.8. The variation for more aggressive killing regimes, with values
of b up to 0.99 for the baseliner = 2.0 isdisplayed in Figures S13-S14 in Supplementary
Materials6. For fixed [b = 0.8,ub = 0.1 and varying r, to values as high as 5.0, smallest
CTSsizes aretypically obtained for r values close to 2.0, further motivating our choice of
r = 2 asthedefault value (Supplementary Materials 7, Figures S15-S16, Supplementary
Table S2). Finally, we show that, as expected, a‘control’ greedy heuristic algorithm searching
for small and effective target combinations finds I TS sizes substantially larger than the optimal
ITS sizes identified using our optimization algorithm (Figure 3). The greedy CTS sizeis greater
than the ILP optimal CTS sizefor eight out of nine data sets (Table S3 in Supplementary

Materials 8, M ethods). The comparison between heuristic and optimal solutionsis of interest
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because it quantifies the benefit of finding the optimum-size ITS and CTS and the previous
related studies reviewed in the Introduction used only heuristic methods for solution sizes above

; 22,35
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Figure 3. Thedistribution of optimal and greedy individual treatment combination sizes(ITS)
valuesin four different cancer types. We study both our baseline parameter setting (upper row panels)
and a markedly more stringent one (middle row plots). For the more stringent parameter setting, we
compare the ITS sizes obtained using MadHitter (middle row plots) and a greedy algorithm that triesto
add pairs of genes at atime (bottom row plots). In each plot, the patients are sorted from left to right
according to their mean ITS valuesin the optimal stringent regime. Additional comparisons between ITS
sizes at different parameter settings can be found in Supplementary M aterials 5. Description of the
greedy agorithm and more comparisons between the optimal and greedy algorithms are provided in

Supplementary M aterials 8.

14


https://doi.org/10.1101/2020.01.28.923532

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.923532; this version posted September 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

The Landscape of Combinations Achievable with Receptors Currently
Targetable by Published Ligand-Mimicking Peptides or those Tested in CAR-
T Trials

To get aview of the combination treatments that are possible with receptor targets for which
there are already existing modular targeting reagents, we conducted a literature search
identifying 58 out of the 1269 genes with published ligand-mimicking peptides that have been
already tested in in vitro models, usually cancer models (M ethods; Tables 3 and 4). We asked
whether we could find feasible optimal combinations in this case and if so, how do the optimal

CTSand ITS sizes compare vs. those computed for all 1269 genes?

Breast Colorectal Head and Neck  Algorithm/
10.0 5 511 Parameters
e | 4 -o-| 4
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@ 50 | .
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Figure 4. Comparison of Individual Target Set Sizeswith 1269 or 58 tar getsfor three out of
the six data setsthat have feasible solutions. We attempted to find feasible solutions for all
patients using 58 cell surface receptors that have published ligand-mimicking peptides that have
been tested in vitro or in pre-clinical models. There are feasible solutions for al patientsin six
data sets, but not for the brain (GSE84465), melanoma (GSE115978), and lung (E-M TAB-6149),
which were displayed in previous figures. Instead, we show here results for breast and colorectal
cancers, for which other analyses, such asthose in Figures 2 and 3, are in the Supplementary
Materials. Some of the optimal solutions obtained on the 58-receptors restricted set are of the

same size to those obtained on the whol e receptors set and some are larger.
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Computing the optimal CTS and ITS solutions for this basket of 58 targets, we found
feasible solutions for six of the data sets across all parameter combinations we surveyed and
three of these six areillustrated for each patient in Figur e 4. However, for three data sets, in
numerous parameter combinations we could not find optimal solutions that satisfy the
optimization constraints (Supplementary Materials 9, Figures S17-S19). That is, the currently
available targets do not allow one to design treatments that may achieve the specified selective
killing objectives, underscoring the need to develop new targeted cancer therapies, to make

personalized medicine more effective for more patients.

Overall, comparing the optimal solutions obtained with 58 targets to those we have
obtained with the 1269 targets, three qualitatively different behaviors are observed
(Supplementary Materials 9, Figures S17-S19): (1) In some datasets, it isjust alittle bit more
difficult to find optimal ITS and CTS solutions with the 58-gene pool, while in others, the
restriction to a smaller pool can be a severe constraint making the optimization problem
infeasible. (2) The smaller basket of gene targets may force more patients to receive similar
individual treatment sets and thereby reduces the size of the CTS. (3) Unlike the CTS size, the
ITS size must stay the same or increase when the pool of genesis reduced, because we find the
optimal ITS sizefor each patient. Overall, the average I TS sizes across each cohort using the
pool of 58 genes for baseline settings range from 1.16 to 4.0. Among cases that have any
solution, the average increases in the ITS sizes at baseline settings in the 58 genes case vs. that of
the 1269 case were moderate, ranging from 0.16 to 1.33.

We performed a similar analysis with 57 gene targets that were listed as the genes
encoding single proteinsin CAR-T trials (Supplementary Table $4; see one visualization of the
resultsin Supplementary Figure S20)%. However, using our baseline parameter settings and
either with cell sampling or analyzing all cells together only three out of nine data sets have
feasible solutions because the majority of the CAR-T target genes were filtered out by the
researchers who collected the primary data. Those include brain cancer GSE89567 (mean CTS
2.95,I1TS 1), brain GSE102130 (mean CTS 4, ITS 2) and breast cancer GSE118389 (mean CTS
7, 1TS 3). Thislimited success suggests that, to cover more cancer indications, CAR-T targets
that are more differentially expressed in solid tumors need to be developed and that it may be

necessary to target multiple receptors simultaneously??%.
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The success of CAR-T targeted to CD19 for B-cell acute lymphocytic leukemia (B-
ALL)%® and the availability of one single-cell B-ALL data set (GSE132509, M ethods)* allowed
us to assess further whether our 0.8 killing threshold for malignant cells reasonably captures the
success observed in ahuman trial. After filtering out cells expressing less than 20% of genes and
using only the cells consistently annotated as malignant in the six B-ALL samples, we found that
amean of 80.3% per patient of malignant cells express CD19 (Methods). Thisresultis
consistent with the 0.8 baseline value of b we have used throughout the paper. The annotations
of the non-malignant cells were not sufficiently consistent to assess the 0.1 baseline value of
ub. Notably, blood cancers are fundamentally different from solid tumors. A different line of
support for the choice of the 0.8 threshold is provided in M ethods.

Optimal Fairness-Based Combination Therapiesfor a Given Cohort of

Patients

Until now we have adhered to a patient-centered approach that aims to find the minimum-size
ITSfor each patient, first and foremost. We now study a different, cohort-centered approach,
where given a cohort of patients, we seek to minimize the total size of the overall CTS size,
while allowing for someincrease in the ITS sizes. The key question is how much larger are the
resulting ITS sizesif we optimize for minimizing the cohort (CTS size), rather than the
individuals (ITS size)? This challenge is motivated by a ‘fairness perspective (Supplementary
Materials 1), where we seek solutions that are beneficial for the entire community from a social
or economic perspective (in terms of CTS size) even if they are potentially sub-optimal at the
individual level (interms of ITS sizes). Here, the potential benefit is economic since running a
basket trial would be less expensive if one reduces the size of the basket of available treatments
(Figure 5A-B).

We formalized this‘fair CTS problem’ by adding a cost parameter « that specifies the
[imit on the excess number of (ITS) targets selected for any individual patient, compared to the
number selected in the individual-based approach that was studied up until now (formally, the
latter correspondsto setting « = 0). We formulated and solved vialLP thisfair CTS problem
for up to 1269 possible targets on all nine data sets (Methods). Wefixedr = 2 and ub = 0.1
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whilevarying a and [b. Figure 5C and Figures S21-S25 in Supplementary Materials 10 show
the optimal CTSand ITSsizesfora = 0,...,5.
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Figure 5. A schematic example demonstrating the rationale and wor kings of fairness-based

solutions. (A, B) Let us assume that each of three patients has two tumor cells (columns), each
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displaying five membrane receptors that are highly expressed only on the tumor cells and not on
the non-tumor ones (rows). If wetarget { APP, MET} (pand A, @ = 1) inal patients, then this
achievesa CTS size of 2, which is the minimum possible. Employing the original individual-
based optimizing objective, each patient could instead be treated by an ITS of size 1 by targeting
the distinct receptors called Target 1 (specific to Patient 1), Target 2 and Target 3, respectively,
but this would result in an optimal CTS of size 3 (panel B, a« = 0). The solution in panel A has
an unfairness value a« = 1 because the worst difference among all patientsisthat a patient
receives 1 more treatment than necessary. (C) Heatmaps showing how the CTS sizevariesas a
increases (y-axis), starting from its baseline value of 0 where each patient isassigned a
minimum-sizes individual treatment set (top row). The lower bound on tumor cellskilled (x-
axis) isalso varied while the upper bound on non-tumor cells killed is kept fixed at 0.1. We are
particularly interested in finding the smallest value on the y-axis at which the CTS size reaches
its minimum value, which is circled for the baseline [b = 0.8, because this bounds the tradeoff
between the achievable reduction in the number of targets needed to treat the whole cohort and

the number of extratargets above the ITS minimum that any patient might need to receive.

For 8 out of 9 data sets, we encouragingly find that the unfairness cost parameter « is
bounded by a constant of 3; i.e., it is sufficient to increase a by no more than 3 to obtain the
smallest CTS sizesin the optimally fair solutions. For the largest data set (melanoma), a = 4. As
we show in Supplementary Materials 10, empirically, even if one requires lower o values, then
as those approach 0, the size of the fairness-based CTS grows fairly moderately and remainsin
the lower double digits, and the mean size of the number of treatments given to each patient
(their ITS) isoverall < 5. Theoretically, we show that one can design instances for which a
would need to be at least vn — 1 to get a CTS of size less than the overall number of targetsn
(Supplementary Materials 10). However, in practice, we find that given the current tumor
single-cell expression data, fairness-based treatment strategies are likely to be a reasonable

economic option in the future.
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The Landscape of Optimal Solutions Tar geting Differentially Expressed
Tumor Receptorsthat are Lowly Expressed Across Many Healthy Tissues

We turn to examine the space of optimal solutions when restricting the set of digible surface
receptor gene targets to those that have lower expression across many noncancerous human
tissues (M ethods), aiming to mitigate potential damage to tissues unrelated to the tumor site. To
this end, we selected subsets of the 1269 cell surface receptor targets in which the genes have
overall lower expression across multiple normal tissues, by mining GTEx and the Human Protein
Atlas (HPA) (Methods). Varying the selectivity expression thresholds (expressed in transcripts
per million (TPM)) used to filter out genes whose mean expression across the normal adult
tissuesisabove vauesof 10, 5, 2, 1, 0.5, and 0.25 (i.e., employing more and more extensive
filtering as this threshold is decreased), decreases the size of the target cell surface receptor gene
list by more than half (Table 2).

Asshown in Figures 6A, B (and Supplementary Figures S26-S28), MadHitter
identifies very different cohort target sets (which are larger than the original optimal solutions, as
expected) asthe TPM selectivity threshold value is decreased. Furthermore, different ITS
instances may become infeasible (Supplementary Figure S29). At an individual patient level,
using lower selectivity threshold levels, which leads to a smaller space of membrane receptors to
choose from, also leads to increased mean ITS sizes (Supplementary Figures S30, S31). Across
the nine data sets, the selectivity threshold at which the CTS problem became infeasible varied
(Supplementary Figure S29). The differences observed could be the result of expression
heterogeneity of the cancer, number of patients within the data set, size of target gene set, lack of
expression of available gene targets and other unknown factors. In the future, further
experimentation is required to identify tissue-specific optimal gene expression thresholds that
will minimize side effects while allowing cancer cells to be killed by combinations of targeted
therapies. Finaly, for completeness, we also tested MadHitter on the set of 533 lowly expressed
genes suggested by MacKay et al.® All instances with default setting of r, Ib, ub have feasible
solutions for al patients. Mean ITS sizes are below 4 for eight of nine data sets, but closeto 10
for the brain cancer data set GSE84465. More details can be found in Supplementary Materials
11 and Table Sb.
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Figure6. Variation in the CTS size and composition as function of the magnitude of
filtering of genes expressed in noncancer ous human tissues, for different tumor types. (A-
B) The number of times a gene (cell-surface receptor) isincluded in the CTS (out of 20
replicates, which istherefore the Max count in panels A-B), where each column presents the
CTS solutions when the input target genes sets are filtered using a specific TPM filtering
threshold (M ethods), for (A) abreast cancer and (B) brain cancer. These data sets were selected
dueto their relatively small cohort target set sizes, permitting their visualization. (C-F) Circos
plots of the genes occurring most frequently in optimal CTS solutions (Ilength of arc along the
circumference) and their pairwise co-occurrence (thickness of the connecting edge) for the four
main cancer types, in our original target space of 1269 encoding cell-surface receptors. For each
data set, we sampled up to 50 optimal CTS solutions. Co-occurrence representations of the 12
most common target genes out of 1269 encoding cell-surface receptors (with greater than 5%
frequency of occurrence) are represented in a cancer specific manner for (C) brain cancer, (D)

head and neck cancer, (only seven genes have a frequency of 5% or more across optimal
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solutions), (E) melanoma, and (F) lung cancer. Genes and connections have distinct colors for

improved visbility.

Key Targets Composing Optimal Solutions Across the Space of 1269

membrane receptors

To identify the genes that occur most often in optimal solutions for our basdine settings, since
there may be multiple distinct optimal solutions composed of different target genes, we sampled
up to 50 optimal solutions for each optimization instance solved and recorded how often each
gene occurs and how often each pair of genes occur together (M ethods). We analyzed and
visualized these gene (co-)occurrences in three ways. First, we constructed co-occurrence circos
plots in which arcs around the circle represent frequently occurring genes and edges connect
targets that frequently co-occur in optimal CTS solutions. Figur e 6C-F shows the co-occurrence
visualizations for optimal CTS solutions obtained with the original, unfiltered target space of
1269 genes and in baseline parameter settings. The genes frequently occurring in optimal
solutions are quite specific and distinct between different cancer types. In melanoma, the edges
form a clique-like network because virtually all optimal solutions include the same clique of 12
genes (Figure 6E). The head and neck cancer data set has only one commonly co-occurring pair
{GPR87, CXADRY}, partly because the CTS sizes are much smaller, ranging from 2 to 5, and the
optimal solutions of sizeslarger than 2 vary substantially in the choices of the other gene(s)
(Figure 6D). The choices of these two genes are not obvious as CXADR ranks only 10™ by our
measure of gene overexpression (Supplementary Materials 8) and GPR87 is not in the top 20
genes. Of the cancer types not depicted in Figure 6, the breast cancer data set has acommonly
co-occurring set of size 4, { CLDN4, INSR, P2RY8, SORL} none of which ranksin the top 20
genes, and the colorectal cancer data set has a different commonly co-occurring set of size 4,
{GABRE, GPRR, LGRS, PTPRIJ} (data not shown). These variations should be viewed as
characteristic of different data sets, not of different tumor types, since we see different results for
the four brain cancer data sets.

We next tabulated sums of how often each gene occurred in optimal solutions for all nine
data sets (Supplementary Materials 12, Tables S6, S7 and S8), obtained when solving for
either 58 gene targets or 1269 gene targets. Strikingly, one gene, PTPRZ1 (protein tyrosine
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phosphatase receptor zeta 1), appears far more frequently than others, especially in three brain
cancer data sets (GSE70630, GSE89567, GSE102130, Supplementary Table S8). PTPRZ1 also
occurs commonly in optimal solutions for the head and neck cancer data set (Figure 6D). The
brain cancer finding coincides with previous reports that PTPRZ1 is overexpressed in
glioblastoma (GBM)**. PTPRZ1 also forms a fusion with the nearby oncogene MET in some
brain tumors that have an overexpression of the fused MET®. Notably, various cell line studies
and mouse studies have shown that inhibiting PTPRZ1, for example by shRNAsS, can slow
glioblastoma tumor growth and migration**%. There have been some attempts to inhibit PTPRZ1
pharmacologically in brain cancer and other brain disorders™*. In the four brain cancer data
sets, PTPRZ1 is expressed selectively above the basdliner = 2.0 in 0.99 (GSE89567), 0.84
(GSE70630), 0.96 (GSE102130) and 0.27 (GSE84465) proportion of cells in each cohort. The
much lower relative level of PTPRZ1 expression in GSE84465 is likely due to the heterogeneity
of brain cancer types in this data set*. Among the 58 genes with known ligand-mimicking
peptides, EGFR stands out as most common in optimal solutions (Supplementary Table S6).
Even when all 1269 genes are available, EGFR is most commonly selected for the brain cancer
data set (GSE84465) in which PTPRZ1 is not as highly overexpressed (Figure 6C).

PTPRZ1 was the fifth most frequently occurring gene in optimal solutions for the head
and neck cancer data set (GSE103322). The two most common genes by alarge margin are
CXADR and GPR87. CXADR has been studied primarily by virologists and immunologists
because it encodes a receptor for cocksackieviruses and adenoviruses®. In one breast cancer
study, CXADR was found to play arolein regulating PTEN in the AKT pathway, but CXADR
was underexpressed in breast cancer”’ whereas it is overexpressed in the head and neck cancer
datawe analyzed. GPR87 isararely studied G protein-coupled receptor with an unknown natural
ligand®. In the context of cancer, GPR87 has previously been reported as overexpressed in
several tumor typesincluding lung and liver*® and its overexpression may play an oncogenic role
via either the p53 pathway*® the NFkB pathway™ or other pathways.

Finally, we analyzed the set of genes in optimal solutions viathe STRING database and
associated tools™ to perform several types of gene set and pathway enrichment analyses. Figures
S32-S35 (Supplementary Materials 12) show STRING-derived protein-protein interaction
networks for the 25 most common genes in the same four data for which we showed co-
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occurrence graphsin Figure 6C-F. Again, EGFR stands out as being a highly connected protein
node in the solution networks for both the brain cancer and head and neck cancer data sets.
Among the 30 genes in the 1269-gene set that occur most commonly in optimal solutions
(Supplementary Table S7), there are six kinases (out of 88 total human transmembrane kinases
with acatalytic domain, STRING gene set enrichment p < 1e — 6), namely { EGFR, EPHB4,
ERBB3, FGFRL, INSR, NTRK2} and two phosphatases { PTPRJ, PTPRZ1}. The KEGG
pathways most significantly enriched, all at FDR < 0.005, are (“proteoglycans in cancer”)
represented by { CD44, EGFR, ERBB3, FGFR1, PLAUR}, (“adherens junction”) represented by
{EGFR, FGFR1, INSR, PTPRJ}, and (“calcium signaling pathway”) represented by { EDNRB,
EGFR, ERBB3, GRPR, P2RX6}. The one gene in the intersection of all these pathways and
functionsis EGFR.

Discussion

In this multi-disciplinary study, we harnessed techniques from combinatorial optimization to
analyze publicly available single-cell tumor transcriptomics datato chart the landscape of future
personalized combinations that are based on ‘modular’ therapies, including CAR-T therapy. We
showed that, for most tumors we studied, four modular medi cations targeting different
overexpressed receptors may suffice to selectively kill most tumor cells, while sparing most of
the non-cancerous cells (Figures 2 and 3 and Table S3. For the more restricted sets of low-
expression genes? or the 58 receptors with validated ligand-mimicking peptides (Tables 3 and
4), some patients do not have feasible solutions, especially as we reduce the TPM expression
used for filtering the gene set to avoid targeting non-cancerous tissues. These findings indicate,
on one hand, that researchers designing ligand-mimicking peptides have been astute in choosing
targets relevant to cancer. On the other hand, these results suggest that there is aneed for
extending the set of cell surface receptors that can be targeted to enter tumor cells with ligated
chemotherapy agents. There are two established methods to identify ligand-mimicking peptides

"2 the latter of which was awarded the

called “one bead one compound” and “phage display
2018 Nobel Prize in Chemistry. Both methods are applicable to all cell surface proteins and thus,
we believe that the set of proteins with validated peptides could be greatly expanded as

nanoparticle-based treatments get closer to being used in the clinic.
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Remarkably, we found that if one designs the optimal set of treatments for an entire
cohort adopting a fairness-based policy, then the size of the projected treatment combinations for
individual patients are at most 3 targets larger, and in most data sets at most 1 target receptor
larger than the optimal solutions that would have been assigned for these patients based on an
individual-centric policy (Figure 5, Supplementary Materials 10). This suggests that the
concern that the personalized treatment for any individual will be suboptimal solely because that

individual happens to have registered for a cohort trial appears to be tightly bounded.

Like the study of MacKay et al.?, our study isa conceptual computational investigation.
Asin the studies of Dannenfelser et al.* and MacKay et al.??, we assumed that treatment
selection will be based on measuring gene expression; neither we nor they considered the
possibility of treatments that target mutant proteins. Our framework could accommodate mutant
proteins, if mutations are called from the single-cell MRNA reads, but thisis challenging since
the reads usually do not cover full mMRNAs. We studied nine data single-cell expression data sets
for the first time, but it would be helpful to analyze more and larger data sets in the future. Even
among four data sets of the same (brain) cancer type, we observed considerable variability in
CTSand ITS sizes. Since our approach is general and the software is freely available as source
code, other researchers can test the method on new data sets or add new variables, constraints,
and optimality criteria. For example, we chose to analyze each single cell as a unit; many
analyses of SCRNA cancer data choose to cluster the cellsfirst and may instead use cell clusters
as the units of analysis. In that view, analysis of differential gene expression is usually done
between clusters, while we preferred to compare the expression of each genein each cell to the
expression of the same genein al non-cancer cells. Our investigation may lead others to further
improve our method and broaden its applicability. In future work, we plan to apply our approach
to study ways for selectively killing specific populations of immune cells, such as myeloid-
derived suppressor cells or T regulatory cells, because they inhibit tumor killing, while sparing

most other non-cancer cdlls.

We compared gene expression levels between non-cancer cells and cancer cells sampled
from the same patient, which avoids inter-patient expression variability>. Following recent
systematic efforts that have concluded that employing imputation in the analysis of single-cell

RNA-seq data has no clear benefits as the zeroes observed in the data reflects both true gene
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expression and measurement error>> >

, we chose to avoid an imputation step in our study. Of
course, others may take different decisions and include imputation in preprocessing the input
datain future studies. Asthisinvestigation isthefirst of its kind and we strived for simplicity at
this stage, we have taken the measured gene expression values asis, but future studies may
consider extending our approach consdering the stochastic nature of the expression of different

genes measured®”*®, possibly preferring targets whose expression is more stable.

Even though the combinatorial optimization problems solved here are in the worst-case
exponentialy hard (NP-complete® in computer science terminology), the actual instances that
arise from the single-cell data could be either formally solved to optimality or shown to be
infeasible with modern optimization software on the NIH Biowulf system, which has a hard limit
of 240 wall-clock hours for any job. Of note, Delaney et al., have recently formalized a related
optimization problem in analysis of single-cell clustered data for immunology™. Their
optimization problem is also NP-complete in the worst case and they could solve sets of up to
size four using heuristic methods®. We have shown that the optimal |LP solutions we obtained
are often substantially smaller than solutions obtained via a greedy heuristic (Figure 3,

Supplementary Materials 8 including Table S3).

On the cautionary side, experiments with target gene sets that were further filtered by low
expression in normal tissues showed that the individual target set problem can become infeasible
in many instances. Even when the instance remained feasible, optimal cohort treatment set sizes
increased rapidly as the expression levels allowed decreased (Figur e 6), pointing to potential
inherent limitations of applying such combination approaches to patientsin the clinic and the
need to carefully monitor their putative safety and toxicity in future applications. Finaly,
functional enrichment analysis of genes commonly occurring in the optimal target sets reinforced
the central role of the widely studied oncogene EGFR and other transmembrane kinases. We also
found that that the less-studied phosphatase PTPRZ1 is a useful target, especially in brain cancer.

In summary, this study isthe first to harness combinatorial optimization tools to analyze
emerging single-cell datato portray the landscape of feasible personalized combinationsin
cancer medicine. Our findings uncover promising membranal targets for the development of

future oncology medicines that may serve to optimize the treatment of cancer patient cohortsin
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several cancer types. The MadHitter approach and the accompanying software made public can
be readily applied to address additional fundamentally related research questions and analyze
additional cancer data sets as they become available.

M ethods

Data Sets

We retrieved and organized data sets from NCBI's Gene Expression Omnibus (GEO)* and
Ensembl’s ArrayExpess™® and the Broad Institute's Single Cell Portal
(https.//portals.broadinstitute.org/single_cell). Nine data sets had sufficient tumor and non-tumor

cells and were used in this study; an additional five data sets had sufficient tumor cells only and
were used in testing early versions of MadHitter.. Suitable data sets were identified by searching
scRNASeqDB®, CancerSea®, GEO, ArrayExpress, Google Scholar, the TISCH resource

(http://tisch.comp-genomics.org) and the 10x Genomics list of publications

(https://www.10xgenomics.com/resources/publications/). We required that each data set contain

measurements of RNA expression on single cells from human primary solid tumors of at least
two patients and the metadata are consistent with the primary data. We are grateful to several of
the data depositing authors of data sets for resolving metadata incons stencies by e-mail

correspondence and by sending additional files not available at GEO or ArrayExpress.

We excluded blood cancers and data sets with single patients. The only exception is that
we used one blood cancer data set (GSE132509) for a specific test of how we parameterized the
killing thresholds. When it was easily possible to separate cancer cells from non-cancer cells of a
similar type, we did so. In the specific case of GSE132509, there were two cell type annotations
in GEO and athird annotation at (http://tisch.comp-genomics.org) and the malignant cells were

far more consistent than the non-malignant cells. Therefore, for only the one analysis of
GSE132509, we limited computations to the malignant cells that were consistent in the three

annotations.

The main task in organizing each data set was to separate the cells from each sample or
each patient into one or more single files. Representations of the expression as binary, as read
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counts, or as normalized quantities such as transcripts per million (TPM) were retained from the
original data. When the data set included cell type assignments, we retained those to classify
cells as “cancer” or “non-cancer”, except in the data set of Karaayvaz et al.®® where it was
necessary to reapply filters described in the paper to exclude cells expressing few genes and to
identify likely cancer and likely non-cancer cells. To achieve partial consistency in the genes
included, we filtered data sets to include only those gene labels recognized as valid by the

HUGO Gene Nomenclature Committee (http://genenames.orq), but otherwise we retained

whatever recognized genes that the data submitters chose to include. After filtering out the non-
HUGO genes, but before reducing the set of genesto 1269 or 900 or 424 or 58, we filtered out
cells as follows. Some data sets came with low expressing cells filtered out. To achieve some
homogeneity, we filtered out any cells expressing fewer than 10% of all genes before we reduced
the number of genes. As an exception, for the blood cancer data set (GSE132509) we found it
necessary to raise the threshold to 20% because the data set had been noticeably less filtered than
the main nine data sets. In Supplementary Materials 4, we tested the robustness of this 10%
threshold. Finally, we retained either al available genes from among either our set of 1269 genes
encoding cell-surface receptors that met additional criteria on low expression or available ligand-

mimicking peptides.

Table 1. Summary descriptions of single-cell data sets from solid tumors used either for analysis
(9) or preliminary testing (5 additional) and one liquid tumor data set used for validation (1
additional). Data sets are ordered so that those from the same or similar tumor types are on
consecutive rows. Thefirst 13 and 15th data sets were obtained either from GEO or the Broad
Institute Single Cell Portal, but the GEO code is shown. The data set on the 14th row was

obtained from ArrayExpress. In some data sets that have both cancer and non-cancer cells, there
may be patients for whom only one type or the other is provided. Hence, the numbersin
parentheses in the third and fourth columns may differ. In most cases, the number of patients we
analyzed is the minimum of the two numbersin parentheses; for example, for GSE103322, we
analyzed data on 13 patients, which is the minimum of (13) and (15). Data set GSE115978%
supersedes and partly subsumes GSE7256%. For the blood cancer data set, we used only the six
samples from B-cell acute lymphoblastic leukemia (ALL) patients and report only those cells as
counted in the version at (http://tisch.comp-genomics.org); the data set also contains samples

from two patients with T-cell ALL and three healthy donors that we did not analyze.
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Data set Cancer type(s) Cancer Non- Clinical Reference(s)
code cells(patients) | cancer follow-up
cels
(patients)
GSE75688 | Breast 441(11) -- Metastasisor | 66
not
GSE118389 | Breast 804(6) 314(6) Metastassor | 63
not
GSE89567 | Brain (glioma) 5097(10) 1146(9) | No 67
GSE103224 | Brain (glioma) 23793(8) -- No 62
GSE70630 | Brain (glioma) 4044(6) 303(6) No 68
GSE57872 | Brain (glioma) 440(6) - No 69
GSE102130 | Brain (6 glioma 2858(9) 94(5) No 70
and 3 glioblastoma)
GSES84465 | Brain 1091(4) 651(4) No 45
(glioblastoma)
GSE81861 | Colorectal 272(10) 160(6) No 71
GSE103322 | Head and Neck 2093(13) 3197(15) | No 72
GSE115978 | Melanoma 2018(23) 4334(32) | Yes, immuno- | 64,65
therapy
GSE118828 | Ovarian 1415(11 578(2) No 73
primary)
973 (5
metastasis)
GSE67980 | Prostate 124(21) - Metastassor | 74
not
E-MTAB- | Lung 7351(5) 2730(5) | No 75
6149
GSE132509 | Acute 21329 (6B- |4744(6 | No 37
Lymphoblastic ALL) B-ALL)
Leukemia (ALL)
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Sampling Process to Gener ate Replicates of Data Sets

Asshown in Table 1, the number of cells available in the different single-cell data sets varies by
three orders of magnitude; to enable us to compare the findings across different data sets and
cancer types on more equal footing, we employed sampling from the larger sets to reduce this
difference to one order of magnitude. This goes along with the data collection processin the real
world as we might get measurements from different samples at different times. Suppose for a
data set we have n genes, and m cells comprising tumor cells and non-tumor cells. We want to
select asubset of m' < m cells. We select aset of m’ cells uniformly at random without
replacement from among all cells. Then we partition the selected cellsinto m,' tumor cells and
m,, non-tumor cells to define one replicate. In most of the computational experiments shown we
used 20 replicates and we report either the arithmetic mean or entire distribution of quantities

such asthe CTS size.

Considering a previoudly defined set of target genesand of HPA gene

expression acr oss different normal tissues

The general aim of our methods is to target the cancer cells while sparing the adjacent non-
cancer cells as much as possible. A related concern is that genes within the target set could be
expressed at high levelsin other normal tissues that are not part of the non-cancer cells from the
tumor microenvironment included in the input data sets. One way to address this problemisto
identify genes that have low expression in the majority of the tissues and to use them to obtain a
target set. This approach has been pioneered in arecent paper on selecting gene targets suitable
for CAR-T therapy®. The authors selected 533 candidate genes that they judged could be
reasonable targets for CAR-T. They made this selection based on expression data from the
Human Protein Atlas™ and the Genotype-Tissue Expression consortium (GTEx)’’, which have
expression information from multiple tissues which was used to identify low expressed target

genes.

McKay et al.? used athreshold of 15 TPM units of expression (written in their work as
log2(TPM+1) < 4), but they allowed a small number of tissues to exceed this threshold. Instead,
we used quantitative levels of expression for finer granularity in analysis, as described in the next
subsection. One clinical differenceisthat we looked only at adult tissues because we are
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anayzing adult tumors, while CAR-T therapy can be used for either childhood or adult tumors.
The reason to focus on cell-surface receptors, as suggested by Dannenfelser et a.?, isthat CAR-
T therapy requires a cell-surface target that may or may not be a receptor, antibody technologies
require a cell surface receptor, and the ligand-mimicking peptide nanotechnology that we

summarized in the Introduction also requires cell surface receptor targets.

Construction of target gene setsthat are lowly expressed in normal tissues

To analyze the tissue specificity of the 1269 candidate target genes, the RNAseq based multiple
tissue expression data was obtained from the Human Protein Atlas (HPA) database
(https.//www.protel natlas.org/about/downl oad ; Date: May 29, 2020). The HPA database

includes expression values (in units of transcripts per million (TPM)) for 37 tissues from HPA

(rna_tissue_hpa.tsv.zip)™® and 36 tissues from the Genotype- Tissue Expression consortium

(rna tissue gtex.tsv.zip)”’. Next, to identify target genes with low or no expression within
majority of adult human tissues, for the 1269 candidate genes we identified genes whose average
expression across tissues is below certain threshold value (0.25, 0.5, 1, 2, 5, and 10 TPM) in both
HPA and GTEXx data sets. Using the intersection of low expression candidate genes from HPA
and GTEXx data sets, we generated lists of high confidence targets. The size of the resulting high
confidence target genes varied from 424 (average expression less than 0.25 TPM) to 900
(average expression across tissue less than 10 TPM) genes (Table 2). While the total number of
genes decreases slowly, the decrease is much steeper if one excludes olfactory receptors and
taste receptors (T able 2). These sensory receptors are not typically considered as cancer targets,
although afew of these receptors are selected in optimal target sets when there are few
alternatives (Figur e 6). MadHitter was run on all nine data sets using the expression information

from the high confidence gene lists.

Table 2: Size of high confidence target gene sets for different thresholds.

Thresholds Size of gene set No of genes which No of genes with
EXpression across are NOT olfactory ligand mimicking
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tissues (TPM) (OR*) and taste peptides (intersection
receptors (TAS*) with Tables 3 and 4)

0.25 424 97 1

0.5 494 141 3

1 o47 187 3

2 632 269 6

5 762 398 10

10 900 536 19

Assembling Lists of Membrane Target Genes

We are interested in the set of genes G that i) have the encoded protein expressed on the cell
surface and ii) for which some biochemistry lab has found a small peptide (i.e., amino acid
sequences of 5-30 amino acids) that can attach itself to the target protein and get inside the cell
carrying atiny cargo of atoxic drug that will kill the cell and iii) encode proteins that are
receptors. The third condition is needed because many proteins that reside on the cell surface are
not receptors that can undergo RME. The first condition can be reliably tested using arecently
published list of 2799 genes encoding human predicted cell surface proteins’®; we reduced the
list to 1269 by requiring that the proteins be receptors, which is necessary for RME-based
therapies but not for CAR-T therpy?*. For condition ii), we found two review articlesin the

19-2
e90

chemistry literatur that list targets effectively meeting this condition. Intersecting the lists

meeting conditionsi) and ii) gave us 38 genes/proteins that could be targeted (T able 3).

Most of the data sets listed in Table 1 had expression data on 1200-1220 of these genes
because the list of 1269 includes many olfactory receptor genes that may be omitted from
standard genome-wide expression experiments. Among the 38 genesin Table 3, 13/14 data sets
have all 38 genes, but GSE57872 was substantially filtered and has only 10/38 genes; since

GSE57872 lacks non-tumor cells, we did not use this data set in any analyses shown.
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Because the latter review® was published in 2017, we expected that there are now
additional genes for which ligand-mimicking peptides are known. We found 20 additional genes
and those are listed in Table 4. Thus, our target set analyses restricted to genes with known
ligand-mimicking peptidesuse 58 = 38 + 20 targets.

Table 3. Single proteins that can be targeted by peptides based on references 18, 19 and are

expressed on the cell surface™, For easier correspondence with the gene expression data, the

entries are listed in aphabetical order by gene symboal. In thistable, we follow the clinical
genetics formatting convention that proteins are in Roman and gene symbols arein italics.

Protein Gene Symbol
APN/CD13 ANPEP
APP APP
PD-L1 CD274
CDh44 CD44
P32/gC1gR CD93
E-cadherin CDH1
N-cadherin CDH2
CD21 CR2
EGFR EGFR
Epha2 EPHA2
EphB4 EPHB4
HER2 ERBB2
FGFR1 FGFR1
FGFR2 FGFR2
FGFR3 FGFR3
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FGFR4 FGFR4
VEGFR1 FLT1
VEGFR3 FLT4
PSMA FOLH1
GPC3 GPC3
IL-10RA IL10RA
IL-11Ra IL11RA
IL-13Ra2 IL13RA2
IL-6Ra IL6R
GP130 IL6ST
VEGFR2 KDR
MUC18 MCAM
Met MET
MMP9 MMP9
Thomsen-Friedenreich carbohydrate antigen | MUC1
NRP-1 NRP1
PDGFRp PDGFRB
CD133 PROM1
PTPRJ PTPRJ
HSPG DC2
E-selectin SELE
Tie2 TEK
VPAC1 VIPR1

Table 4. Single proteins that can be targeted by ligand-mimicking peptides but are not included

in the two principal reviews that we consulted'®? and are among 1269 cell surface receptors”,
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Since the evidence that these 20 genes have ligand-mimicking peptides is scattered in the
literature, we include at |east one PubMed ID of a paper describing a suitable peptide.

Protein Gene Symbol At Least One PubMed ID
ActRIIB ACVR2B 28955765

CD163 CD163 27563889

CXCR4 CXCR4 19482312, 22523575
ephrin A4 EPHA4 15681844, 22523575
ephrin B1 EPHB1 15722342, 22523575
ephrin B2 EPHB2 15722342, 22523575
ephrin B3 EPHB3 15722342, 22523575
gonadotrophin releasing GNRHR 20814857, 22523575
hormone receptor

G Protein coupled receptor 55 | GPR55 28029647

bombesin receptor 2 GRPR 20814857, 22523575
IL4 receptor ILAR 19012727

low density lipoprotein LDLR 27656777

receptor

leptin receptor LEPR 19233229, 26265355
LRP1 LRP1 29090274
melanocortin 1 receptor MCI1R 22964391
melanocortin 4 receptor MC4R 17591746

CD206 MRC1 30768279

uqui nase plasminogen PLAUR 25080049

activator receptor

neurokinin-1 receptor TACR1 29498264

VPAC2 VIPR2 30077368
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Definition of the Minimum Hitting Set Problem and Solution Feasibility

One of Karp's original NP-complete problemsis called “hitting set” and is defined as follows™.
Let U beafinite universal set of elements. Let S;, S5, S5, ..., S, be subsetsof U. Isthere a small
subset H € U suchthatfori =1,2,3,...,k, S; N Hisnon-empty. In our setting, U isthe set of
target genes and the subsets S; are the single cells. In reference 79, numerous applications for
hitting set and the closely related problems of subset cover and dominating set are described; in
addition, practical algorithms for hitting set are compared on real and synthetic data.

Among the applications of hitting set and closely related NP-complete problemsin
biology and biochemistry are stability analysis of metabolic networks®™®®*, identification of
critical pathsin gene signaling and regulatory networks®>®” and selection of a set of drugsto treat
cell lines®™® or single patients™**. More information about related work can be found in

Supplementary Materials 1.

Two different difficulties arising in problems such as hitting set are that 1) an instance
may be infeasible meaning that there does not exist a solution satisfying all constraints and 2) an
instance may be intractable meaning that in the time available, one cannot either i) prove that the
instanceisinfeasible or i) find an optimal feasible solution. All instances of minimum hitting set
that we considered were tractable on the NIH Biowulf system. Many instances were provably
infeasible; in almost all cases. we did not plot the infeasible parameter combinations. However,
in Figure 4, the instance for the melanoma data set with the more stringent parameters was
infeasible because of only one patient sample, so we omitted that patient for both parameter

settingsin Figure 4.

Basic Optimal Target Set Formulation

Given acollection S = {§,,S,, S5, ...} of subsetsof aset U, the hitting set problem isto find the
smallest subset H € U that intersects every set in S. The hitting set problem is equivalent to the
set cover problem and hence is NP-complete. The following ILP formulates this target set

problem:
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min Z x(g9)

geu
Yges; X(9) 21 vS; €5 (1)

In this formulation, there isabinary variable x(g) for each element g € Uthat denotes whether
the element g is selected or not. Congtraint (1) makes sure that from each set S; in S, at least one
element is selected.

For any data set of tumor cells, we begin with the model that we specify a set of genes
that can be targeted, and that is U. Each cell is represented by the subset of genesin U whose
expression is greater than zero. In biological terms, acell iskilled (hit) if it expresses at any level
on one of the genesthat is selected to be atarget (i.e., in the optimal target set) in the treatment.
In thisinitial formulation, all tumor cells are combined asif they come from one patient because
we model that the treatment goal isto kill (hit) al tumor cells (all subsets). In alater subsection,
we consider afair version of this problem, taking into account that each patient is part of a
cohort. Before that, we model the oncologist’ s intuition that we want to target genes that are

overexpressed in the tumor.

Combining Data on Tumor Cellsand Non-Tumor Cells

To make the hitting set formulation more realistic, we would likely moddl that a cell (set) is
killed (hit) only if one of itstargetsis overexpressed compared to typical expression in non-
cancer cells. Such modeling can be applied in the nine single-cell data sets that have data on non-
cancer cdlsto reflect the principle that we would like the treatment to kill the tumor cells and

spare the non-tumor cells.

Let NT be the set of non-tumor cells. For each gene g, define its average expression
E(g) asthe arithmetic mean among all the non-zero values of the expression level of g and cells
in NT. The zeroes are ignored because many of these likely represent dropouts in the expression
measurement. Following the design of experimentsin the lab of N. A., we define an expression
ratio threshold factor r as areal number whose baseline value is 2.0. We adjust the formulation
of the previous subsection, so that the set representing a cell (in the tumor cell set) contains only

those genes g such that the expression of g is greater than r X E (g) instead of greater than zero.

37


https://doi.org/10.1101/2020.01.28.923532

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.923532; this version posted September 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

We keep the objective function limited to the tumor cells, but we also store a set to represent
each non-tumor cell, and we tabulate which non-tumor cells (sets) would be killed (hit) because
for at least one of the genesin the optimal target set, the expression of that gene in that non-
tumor cell exceeds the threshold » x E(g). We add two continuous parameters [b and ub each in
therange [0,1] and representing respectively alower bound on the proportion of tumor cells
killed and an upper bound on the proportion of non-tumor cells killed. The parameters [b, ub are
used only in two constraints, and we do not favor optimal solutions that kill more tumor cells or

fewer non-tumor cells, so long as the solutions obey the constraints.

More explicitly, if welet E(g, C) bethe expression level of gene g incdl C, then g isin
the set of genesthat can cover C if andonly if E(g,C) = r x E(g). We inspect this relationship

for every pair of genes and cells to come up with the hitting set instance of our ILPs.

Our choice of the lower bound (Ib) on the proportion of tumor cells killed in the range
[0.7,0.9] issomewhat arbitrary at this stage, but it is motivated by the widely used response
evaluation criteriain solid tumors (RECIST) revised guidelines version 1.1%. Those criteria
include the category of partial response (PR), which isusually classified together with complete
response (CR) as aresponder when one makes a dichotomy between response and non-response.
PR isdefined as “ At least a 30% decrease in the sum of diameters of target lesions, taking as
reference the baseline sum diameters.” Because volume is proportional to the cube of diameter, a
30% decrease in the diameter sum corresponds to a decrease of at least 66% in the volume,
which we round up to 70% (0.7). Because the tumor mass contains both tumor cells and non-
tumor cells and we want to kill the tumor cells disproportionately, we increased the baseline
threshold for b to 80% (0.8) and considered values as high as 0.95 or even 0.99 in some
supplementary analyses. In any case, Ib is a user-controlled parameter and can be set as the user
of our software deems appropriate. Since most cancer treatments have some toxicity, we set the
basdline value of ub to the low nonzero value 0.1; in some analyses, we use the lower value
0.05. If one wanted to distinguish the different types of non-tumor cells, one could add different

upper bound parameters for each cell type.
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The Fair Cohort Target Set Problem for a Multi-Patient Cohort

We want to formulate an integer linear program that selects a set of genes $* from available

genesin such away that, for each patient, there exists an individual target set His* C S*of a
relatively small size (compared to the optimal ITS of that patient alone which is denoted by

H(?)).

Let U= {91, O, ..., uuj} bethe set of genes, where |U| denotes the number of elementsin the
universe of genes U. There are n patients. For the i patient, we denote by Sp(i)» the set of tumor
cellsrelated to patient i. For each tumor cell C € Sp(;), We describe it as a set of geneswhichis

known to be targetableto cell C. That is, g € C if and only if adrug containing g can target the
cel C. IntheILP, thereisabinary variable x(g) corresponding to each gene g € U that shows
whether the gene g is selected or not. Thereis abinary variable x(g, P(i)) which shows whether
agenegis selected in thetarget set of patient P(i). Let a be an adjustable positive integer,
which we interpret as a slack for each patient’s solution. The objective function isto minimize
the total number of genes selected, subject to having atarget set of size at most H (i) + « for
patient P(i) where1 < i < n (constraint (2)).

Constraint (3) ensures that, for patient P(i),we do not select any gene g that are not selected in
the global set.

Constraint (4) ensures all the sets corresponding to tumor cells of patient P (i) are hit.
min Ysey x(g) (1)
Ygev X(g,P(D)) sH@D+a Vi (2
x(g,P(i)) < x(g) Vvivg eU (3

Ygec X(g,P(@) =21 VIVC €Spyy  (4)
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In this ILP, there is a variable corresponding to each gene. Additionally, thereis a variable per
each pair of gene and patient, therefore, the total number of variablesis |U|(n + 1). Thetota

number of congtraintsin the form of constraints (2), (3), and (4) aren, n|U|, and ¥iLq [Sp; |

respectively.

Parameterization of the Fair Cohort Target Set Problem

In the Fair Cohort Target Set ILP shown above, we give more preference towards minimizing
number of genes needed in the CTS. However, we do not take into account the number of non-
tumor cells killed. Killing (covering) too many non-tumor cells potentially hurts patients. In
order to avoid that, we add an additional constraint to both the ILP for the local instances and the
global instance. Intuitively, for patient P (i), given an upper bound of the portion of the non-
tumor cell killed ub, we want to find the smallest cohort target set H(i) with the following

properties.
1. H(i) coversall thetumor cells of patient P(i).

2. H(i) coversat most ub * |[NTp(;y| where NTp ;) isthe set of non-tumor cells known for

patient P(i); the binary variable y (C) represents whether the cell Cis covered.
The ILP can be formulated as follows:
min Y.y x(9) (1)
Ygec X(g) =21 VC €5 ()

y(C) = max x(g) VC € NTp; (3)
gec

ZCENTp(i) y(C) < ub * |NTP(l)| (4)

In the abovementioned ILP, the total number of variablesis |U| + [Sp(;)| + |NTpe;)|, where there
isavariable corresponding to each gene and a variable corresponding to each cell of patient

P(i). The total numbers of constraintsin the form of constraints (2), (3), and (4) are

1Sec|» INTeiy|- 1U1, and 1 respectively. In the actual ILP implementation, constraint (3) isin

fact |U| different congtraints for each C € NTp(;).
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With this formulation, the existence of afeasible solution is not guaranteed. However, covering
all tumor cells might not always be necessary either as we discussed above in the context of
RECIST criteriafor tumor response to treatment. Hence, we add another parameter b to let us
model this scenario. In the high-level, thisistheratio of the tumor cells we want to cover. The
ILP can be formulated as follows:

min Ygoep x(g) (1)
Ycespyy YO Z1b*|Spyl 2

y(C) Zn;gg,c x(g) VC €Spyy UNTpuy  (3)

ZCENTp(i) y(C) S ub * |NTP(1)| (4)

Notice that constraint (2) here is different from the one above as we only care about the total
number of tumor cells covered. In the above ILP, the total number of variablesis [U| + |Sp;| +

|N To) | where there is a variable corresponding to each gene and a variable corresponding to
each cdll of patient P(i). The total numbers of constraints in the form of constraints (2), (3), and

@ ae 1, ([Spy| + [NTpe»])-1U|, and 1 respectively.

Even with both ub and b, the feasibility of the ILP is still not guaranteed. However,
modeling the ILP in this way allows us to parameterize the ILP for various other scenarios of
interest. While the two ILPs above are designed for one patient, one can extend these ILPs for
multi-patient cohort. In away that is similar to how we define x(g, P(i)), the binary variable
y(C, P(i)) denotes whether the cell C is covered for thei™ patient.

min Seep x(@) (O

Seev %(g,P()) SHD+a Vi (2)
x(g,P(D) < x(9) Vig €U (3)
y(C,P() = max x(g,P()) ViVC € Spqy (4
Scesn, YCPM) 2 1b*1Sp] Vi (5)
Scentsgy Y(CPM) S ubx [NTp| Vi (6)
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In the abovementioned ILP, the total number of variablesis |U| + n|U| + X (|Spe)| +
|NTP(i) |) where there is a variable corresponding to each gene, a variable per each pair of gene
and patient, and a variable corresponding to each cell of each patient P(i). The total numbers of
constraintsin the form of constraints (2), (3), (4), (5), and (6) aren, n|U|, X1 (|Spe |- 1UD) 1,
and n respectively.

| mplementation Note, Accounting for M ultiple Optima and Software
Availability

We implemented in Python 3 the above fair cohort target set formulations, with the expression
ratio r as an option when non-tumor cells are available. The parameters «, Ib, ub can be set by
the user in the command line. To solve the ILPs to optimality we usually used the SCIP library
and its Python interface®™. To obtain multiple optimal solutions of equal size we used the Gurobi
library (https.//www.gurobi.com) and its python interface. When evaluating multiple optima, for

all feasible instances, we sampled 50 optimal solutions that may or may not be distinct, using the
Gurobi function select_solution(). To determine how often each gene or pair of genes occur in
optimal solutions, we computed the arithmetic mean of gene frequencies and gene pair

frequencies over all sampled optimal solutions.

The software package is called MadHitter. The main program is called hitting_set.py. We
include in MadHitter a separate program to sample cells and generate replicates, called
sample_columns.py. So long as one seeks only single optimal solutions for each instance, exactly
one of SCIP and Gurobi is sufficient to use MadHitter. We verified that SCIP and Gurobi give
optimal solutions of the same size. If one wants to sample multiple optima, this can be done only
with the Gurobi library. The choice between SCIP and Gurobi and the number of optimato
sample are controlled by command-line parameters use_gurobi and num_sol, respectively. The
MadHitter software is available on GitHub at https://github.com/ruppinlab/madhitter
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