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Abstract 
 
To facilitate pre-symptomatic diagnosis of late-onset Alzheimer’s disease, non-invasive imaging 
biomarkers could be combined with genetic risk information. In this work, we investigated the 
structural brain networks of young adults in relation to polygenic risk for Alzheimer’s disease, 
using magnetic resonance imaging (MRI) and genotype data for 564 19-year-old participants 
from the Avon Longitudinal Study of Parents and Children. Diffusion MRI was acquired on a 3T 
scanner, and the data were used to perform whole-brain tractography. The resulting tractograms 
were used to generate structural brain networks, using the number of streamlines and the 
diffusion tensor fractional anisotropy as edge weights. This was done for the whole-brain 
connectome, and for the default mode, limbic and visual subnetworks. Graph theoretical metrics 
were calculated for these networks, for each participant. The hubs of the networks were also 
identified, and the connectivity of the rich-club, feeder and local connections was also 
calculated. Polygenic risk scores (PRS), estimating the burden of genetic risk carried by an 
individual, were calculated both at genome-wide level and for nine specific disease pathways. 
The correlation coefficients were calculated between the PRSs and a) the graph theoretical 
metrics of the structural networks and b) the rich-club, feeder and local connectivity of the whole-
brain networks.  
 
In the visual subnetwork, the mean nodal strength exhibited a negative correlation with the 
genome-wide PRS including the APOE locus, while the mean betweenness centrality showed 
a positive correlation with the pathway-specific PRS for plasma lipoprotein particle assembly 
including the APOE locus. The rich-club connectivity was reduced in participants with higher 
genome-wide PRS including the APOE locus. Our results indicate small changes in the brain 
connectome of young adults at risk of developing Alzheimer’s disease in later life. 
 
Keywords: ALSPAC, Alzheimer’s disease, polygenic risk score, brain structure, brain networks, 
diffusion MRI, tractography 
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1. Introduction 
 
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects over 35 
million people world-wide (Prince et al., 2013). It leads to severe cognitive impairment and the 
inability of patients to function independently. There is a pressing need to identify non-invasive 
biomarkers that could facilitate pre-symptomatic diagnosis when disease-modifying therapies 
become available. Although a minority of early-onset AD cases are caused by mutations in 
specific genes with autosomal dominant inheritance (Tanzi, 2012), the majority of AD has a 
complex genetic architecture and is highly heritable (Gatz et al., 2006), with different genes 
conveying different amounts of risk. Genome-wide Association Studies (GWAS) have 
implicated many Single Nucleotide Polymorphisms (SNPs) (Kunkle et al., 2019), of which the 
apolipoprotein e4 allele (APOE4) confers the greatest risk (Lambert et al., 2013; Yu et al., 2014; 
Farrer et al., 1997), but is neither necessary nor sufficient to cause AD (Sims et al, 2020). AD 
GWAS have also found evidence that specific biological processes, or disease pathways, such 
as cell trafficking, beta amyloid production, tau protein regulation and cholesterol transport are 
involved (Kunkle et al., 2019; Jones et al., 2010). Polygenic risk scores (PRSs), which aggregate 
risk loci genome-wide (Wray et al., 2014), are highly predictive of AD (Sleegers et al., 2015; 
Xiao et al., 2015; Yokohama et al., 2015; Escott-Price et al., 2015; Escott-Price et al., 2017; 
Tosto et al., 2017; Chaudhury et al., 2018; Cruchaga et al., 2018; Harrison et al., 2020; Altmann 
et al., 2020) and have been widely used in the search for biomarkers for the disease (Harrison 
et al., 2020). 
 
Obtaining reliable biomarkers in a non-invasive manner is very valuable and could be better 
tolerated by participants compared to more invasive methods (Prestia et al., 2013; Zhang et al., 
2012). Magnetic resonance imaging (MRI) can non-invasively measure characteristics of the 
brain’s structure. Diffusion-weighted MRI (dMRI) has allowed mapping of the brain’s white-
matter (WM) tracts and led to the consideration of the human brain as a network of cortical and 
subcortical areas connected via those tracts. Via these techniques, alterations in the brain of 
AD patients and of people at risk of developing AD have been identified. AD patients exhibit 
WM loss in tracts associated with certain default mode network (DMN) nodes (Mito et al., 2018). 
They also exhibit increased characteristic path length and decreased intramodular connections 
in functional and structural brain networks compared to healthy controls (Dai et al., 2018). The 
DMN is altered in the presence of AD pathology (Dai et al., 2018) where a decrease in its 
connectivity has been observed (Mohan et al., 2016; Badhwar et al., 2017). The diffusion tensor 
fractional anisotropy of the cingulum and of the splenium of the corpus callosum is reduced in 
AD patients compared to controls (Zhang et al., 2007). Structural brain networks in which the 
edges are calculated as the correlations between the node volumes show decreased small-
worldness in AD (John et al, 2017). Increased shortest path length and clustering coefficient, as 
well as decreased global and local efficiency have been observed in the structural brain 
networks of AD patients (He et al., 2008; Lo et al., 2010). These results suggests that, despite 
the AD pathology preferentially affecting specific brain areas, AD is a disconnection syndrome. 
 
Cognitively healthy middle-aged and older carriers of AD risk (genetic or otherwise) also exhibit 
alterations in brain structure. Decreased hippocampal volume and cortical thickness have been 
associated with high AD PRS (Mormino et al., 2016; Corlier et al., 2017; Li et al., 2017). Ageing 
APOE4 carriers have reduced local connectivity at the precuneus, medial orbitofrontal cortex 
and lateral parietal cortex (Brown et al., 2011). APOE4 status also affects the clustering 
coefficient and the local efficiency of structural brain networks (Ma et al., 2017). Middle-aged 
adults with genetic, family and lifestyle risks of developing AD have a hub in their structural 
connectome that is not present in the structural connectome of people with no such risks of 
developing AD (Clarke et al., 2020). Significant functional connectivity differences in the brain 
networks implicated in cognition were seen in middle-aged individuals with a genetic risk for AD 
(Goveas et al., 2013). The DMN also exhibits changes in mature (Fleisher et al., 2009) and 
young APOE4 carriers (Filippini et al., 2009). A PRS composed of immune risk SNPs is 
associated with a thinner regional cortex in healthy older adults at risk of developing AD (Corlier 
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et al., 2017). Other studies have also investigated the effect of AD PRS on brain structure 
(Lupton et al., 2016; Hayes et al., 2017; Harrison et al., 2016; Sabuncu et al., 2012), finding 
alterations associated with increased genetic burden. Some of the studies have also used 
disease pathways to inform the PRS (Caspers et al., 2020; Ahmad et al., 2018). A few studies 
have also identified alterations in the brain of young AD-risk carriers. The hippocampal volume 
and the fractional anisotropy of the right cingulum are altered in young adults with increased 
risk of developing AD (Foley et al. 2017), and their precuneal volume is reduced (Li et al., 2018). 
Increased functional connectivity and hippocampal activation in a memory task was observed 
in the DMN of young, cognitively normal APOE4 carriers (Filippini et al., 2009). Young APOE4 
carriers also showed increased activation (measured via fMRI) in the medial temporal lobe 
compared to non-carriers, while performing a memory task (Dennis et al., 2010).  
 
Despite the evidence that a) there are alterations in the brain networks of AD patients, and b) 
there are functional and structural changes in the brains of young adults at risk of developing 
AD, the structural brain networks of young adults at risk of AD have not been studied. Our work 
fills that gap, by investigating structural brain networks of young adults at different risks of 
developing AD, where the risk is evaluated both via GWAS and via specific risk pathways. We 
hypothesise that the localized alterations in the structure of the brain of young adults at risk of 
AD would present themselves as changes in their structural brain networks. We investigate the 
network corresponding to the whole-brain connectome, as well as the DMN, the limbic and 
visual subnetworks, because those subnetworks are known to be affected in AD (Power et al., 
2011; Deng et al. 2016; Hansson et al., 2017; Badhwar et al., 2017; Wang et al. 2019). We also 
investigate the hubs of the whole-brain connectome and their interconnectivity. We hypothesise 
that increased risk of AD would lead to reduced global efficiency and increased characteristic 
path length for those networks, and an increased mean clustering coefficient, in agreement with 
the alterations these measures present in AD. We also hypothesize that the interconnectivity of 
the hubs would be reduced for increased risk of AD. Given the young age of the participants, 
we expect any observed alterations to be small. Any identified changes could be followed up in 
a longitudinal study of the same cohort, and possibly lead to important biomarkers that indicate 
disease onset or progression, or inform early preventative interventions in adults at risk of AD. 
 
 
2. Materials and Methods 
 
2.1 Participants 
 
The Avon Longitudinal Study of Parents and Children (ALSPAC) is a pregnancy and birth cohort 
established to identify the factors influencing child health and developmental outcomes. 
Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st 
December 1992 were invited to take part in the study. The initial number of pregnancies enrolled 
is 14,541 (for these at least one questionnaire has been returned or a “Children in Focus” clinic 
had been attended by 19/07/99). Of these initial pregnancies, there was a total of 14,676 
foetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 year of age. 
 
Between the ages of 18 to 24 years, a subset of ALSPAC offspring were invited to participate 
in three different neuroimaging studies; the ALSPAC Testosterone study (n= 513, mean age at 
attendance 19.62 years, range 18.00 to 21.50 years), the ALSPAC Psychotic Experiences (PE) 
study (n=252, mean age at attendance 20.03 years, range 19.08 to 21.52 years), and the 
ALSPAC Schizophrenia Recall-by-Genotype (SCZ-RbG) study (n=196, mean age at 
attendance 22.75 years, range 21.12 to 24.55 years). Scanning protocols were harmonised 
across sub-studies where possible, and all data were acquired at Cardiff University Brain 
Research Imaging Centre (CUBRIC). 
 
We analysed data from 564 individuals (19 years of age; 62% male) from those ALSPAC 
neuroimaging studies (Boyd et al., 2013; Fraser et al., 2013; Sharp et al., 2020). Please note 
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that the study website contains details of all the data that is available through a fully searchable 
data dictionary and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data). 
Written informed conscent was collected for all participants in line with the Declaration of 
Helsinki. Ethical approval for the neuroimaging studies was received from the ALSPAC Ethics 
and Law Committee and the local NHS Research Ethics Committees. Informed consent for the 
use of data collected via questionnaires and clinics was obtained from participants following the 
recommendations of the ALSPAC Ethics and Law Committee at the time. 
 
2.2 MRI acquisition 
 
MRI data were acquired using a GE HDx 3T system (GE Healthcare, Milwaukee W1) at 
CUBRIC. Axial T1-weighted images were acquired using a 3D fast spoiled gradient recalled 
sequence (TR = 8ms, TE = 3ms, TI = 450ms, flip angle = 20°, matrix size = 256 x 192 x 159) to 
aid co-registration. Diffusion-weighted images were acquired with a twice refocused spin-echo 
echo-planar imaging sequence parallel to the anterior-posterior commissure and the acquisition 
was peripherally gated to the cardiac cycle. Data were collected from 60 slices of 2.4 mm 
thickness (FOV=230 mm, matrix size 96 x 96, TE = 87 ms, b-values 0 and 1200 s/mm2) using 
parallel imaging (ASSET factor = 2) encoding along 30 isotopically distributed directions 
according to vectors taken from the International Consortium for Brain Mapping protocol (Jones 
et al., 1999). For 219 of those participants, the diffusion-weighted images were acquired using 
60 directions. For those participants, a subsample of the optimal 30 directions were used, 
alongside the first three images with b-value equal to 0 (see Foley et al., 2018, for further details; 
Afzali et al., 2021; Jones et al., 1999). 
 
2.3 Data processing and tractography 
 
Data pre-processing was performed as described by Foley et al. (2018). To summarise, T1 
structural data were down-sampled to 1.5 x 1.5 x 1.5 mm3 resolution. Eddy-current and 
participant motion correction were performed with an affine registration to the non-diffusion-
weighted images (Leemans and Jones, 2009). Echo-planar imaging of the diffusion-weighted 
data was performed, warping the data to the down-sampled T1-weighted images (Irfanoglu et 
al., 2012). RESTORE (Chang et al., 2005), RESDORE (Parker et al., 2013a) and free water 
correction (Pasternak et al., 2009) algorithms were run. Whole-brain tractography was 
performed for each data set using the damped Richardson-Lucy pipeline (Dell’Acqua et al., 
2010) and in-house MATLAB code (Parker et al., 2013b). The criteria used for termination of 
the tracts were: angle threshold of >45°, fibre orientation density function peak < 0.05 and 
fractional anisotropy <0.2. 
 
2.4 Network construction 
 
We used the Automated Anatomical Labelling (AAL) (Tzourio-Mazoyer et al., 2002) to define 
the 90 cortical and subcortical areas of the cerebrum that correspond to the nodes of the 
structural networks. The WM tracts linking those areas are the connections, or edges, of the 
networks. The network generation was performed in ExploreDTI-4.8.6 (Leemans et al., 2009). 
We generated two connectivity matrices for each participant, one in which the edges are 
weighted by the number of streamlines (NS) and one in which they are weighted by the mean 
fractional anisotropy of the diffusion tensor along the streamlines (FA). Both these metrics have 
been shown to result in measures of connectivity that exhibit heritability (Arnatkeviciute et al., 
2020), repeatability (Yuan et al., 2018; Roine et al., 2019; Messaritaki et al., 2019, and 
references therein) and functional relevance (Honey et al., 2009; Goni et al., 2014; Messaritaki 
et al., 2021). Structural connections reconstructed with 5 or fewer streamlines were discarded 
from the analysis. A graphical representation of this part of the analysis is shown in Fig. 1. 
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Figure 1: Analysis that leads from the MR images to the structural brain networks - repeated for each participant 
individually. 
 
In addition to the whole-brain connectome, we derived the DMN, the limbic subnetwork and the 
visual subnetwork, by selecting the edges that connect only the nodes in those subnetworks. 
The AAL atlas regions for the subnetworks are listed in Table 1 (Power et al., 2011). 
 
 

DMN LIMBIC VISUAL 
Middle Orbitofrontal Gyr Middle Frontal Gyr Hippocampus Inferior Temporal Gyr 
Medial Orbitofrontal Gyr Inferior Orbitofrontal Gyr Amygdala Fusiform Gyr 
Superior Frontal Gyr (Medial) Superior Frontal Gyr Anterior Cingulate Gyr Lingual Gyr 
Superior Orbitofrontal Gyr Inferior Frontal Gyr (Triangular) Middle Cingulate Gyr Calcarine Fissure 
Anterior Cingulate Gyr Inferior Frontal Gyr (Opercula) Posterior Cingulate Gyr Cuneus 
Middle Cingulate Gyr Middle Temporal Pole Parahippocampal Gyr Middle Occipital Gyr 
Posterior Cingulate Gyr Inferior Temporal Gyr Olfactory Superior Occipital Gyr 
Gyrus Rectus Middle Temporal Gyr Insula Inferior Occipital Gyr 
Fusiform Gyr Angular Gyr   
Inferior Parietal Lobule Hippocampus   
Precuneus Parahippocampal Gyr   

 

Table 1: Nodes of the AAL atlas included in the DMN, limbic and visual subnetworks. The nodes from both the left 
and right hemispheres are included. 
 
 
2.5 Graph theory and network analysis 
 
The Brain Connectivity Toolbox (BCT, Rubinov and Sporns, 2010) was used to calculate graph 
theoretical metrics for the structural brain networks of all participants. A detailed description of 
graph theoretical metrics is provided by Rubinov and Sporns, 2010, but we provide here a brief 
explanation of the ones we use, for completeness.  
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Figure 2: Diagram showing the sub/networks used in our analysis and the graph theoretical and connectivity metrics 
that are correlated with the PRSs. 
 
 
The clustering coefficient of a node is equal to the number of existing edges among the 
neighbours of the node divided by the number of all possible edges, and is a measure of how 
interconnected the node’s neighbours are. The degree of a node is the number of edges that 
stem from that node. The betweenness centrality of a node is the number of shortest paths 
connecting pairs of nodes, that the node belongs to in the network. The nodal strength is the 
sum of the weights of the edges stemming from a node. These four graph theoretical metrics 
are node-specific. To derive network-specific measures, their mean values are used. The 
characteristic path length of a network is the mean value of the steps along the shortest paths 
that connect all possible pairs of nodes in the network. The global efficiency of the network is 
proportional to the sum of the inverse shortest path lengths over all pairs of nodes in the network 
and is related to how efficiently the nodes of the network can exchange information. In contrast 
to the previous measures mentioned, the characteristic path length and the global efficiency are 
network-specific, rather than node-specific, measures. Finally, the local efficiency of a node is 
calculated the same way as the global efficiency of the subnetwork that consists of the node’s 
neighbours. 
 
For our analysis, we calculated the mean clustering coefficient, mean betweenness centrality, 
characteristic path length, global efficiency and mean nodal strength. The expectation is that, if 
changes to the topological organisation are a result of increased risk of developing AD, then the 
mean clustering coefficient, global efficiency and mean nodal strength will decrease, and the 
characteristic path length will increase, for increased risk. 
 
In order to investigate the hubs of the networks, we also calculated the local efficiency and the 
degree of each node. This allowed us to calculate the hub-score, or hubness, of each node for 
the whole-brain network. Instead of using a single measure for identifying hubs (for example 
only the node degree or only the betweenness centrality as is sometimes done), we used a 
composite measure as proposed by Betzel et al. (2014). Specifically, we normalized the node 
degree, nodal strength, betweenness centrality and local efficiency for each participant and 
averaged the normalized values for each node. That average was the hubness of the node. 
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The hubness of each node was averaged over all participants, which resulted in the average 
hubness of the node. Hub nodes were defined as the nodes with a hubness that was greater or 
equal to the average hubness plus one standard deviation of the hubness, according to van den 
Heuvel and Sporns (2011). The hub nodes comprise a “rich club” of nodes. The rich-club 
connectivity was calculated for each participant by summing the strength of the edges that 
connect the hub nodes only. The “feeder” connections, i.e., the connections that link one hub 
node and one non-hub node, were also identified. The feeder connectivity was also calculated 
for each participant, as the sum of the strength of the feeder connections. Finally, the “local” 
connections were identified as the connections that link non-hub nodes only. The local 
connectivity was the sum of the strength of the local connections. We stress that the rich-club, 
feeder and local connectivities are defined for the whole-brain network. 
 
2.6 Polygenic risk score calculation 
 
Genome data were provided by the University of Bristol. ALSPAC participants were genotyped 
using the Illumina HumanHap550 quad genome-wide SNP genotyping platform by 23andMe 
subcontracting the Wellcome Trust Sanger Institute (WTSI, Cambridge, UK) and the Laboratory 
Corporation of America (Burlington, North Carolina, USA). Participants were excluded from 
analysis if they had minimal or excessive heterozygosity, genotyping completeness < 97%, or 
if they were of non-European ethnicity. Quality control parameters were as follows: Minor allele 
frequency (MAF) > 0.01; Individual call rate > 95%, Hardy Weinberg Equilibrium (HWE) (P > 
5x10-7). Polygenic risk scores were calculated according to the International Schizophrenia 
Consortium method (Purcell et al., 2009). Training data were taken from the latest genetic meta-
analysis of Alzheimer’s disease (Kunkle et al, 2019) comprising of 94,437 cases and controls. 
In our sample, SNPs with low MAF < 0.1 and imputation quality <0.9 were removed. Data were 
then pruned for SNPs in linkage disequilibrium (LD) using genetic data analysis tool PLINK 
(Chang et al., 2015) using the clumping function (--clump). This aimed to remove SNPs in LD 
within a 500 kilobase window, retaining only the most significantly associated SNPs. Scores 
were generated in PLINK using the –score command. 
 
To compute pathway-specific PRSs, nine pathway groups were taken from Kunkle et al. (2019), 
who matched lists of SNPs to genes and tested them for enrichment within gene functional 
categories.  The pathway groups were as follows: protein-lipid complex assembly, regulation of 
beta-amyloid formation, protein-lipid complex, regulation of amyloid precursor protein catabolic 
process, tau protein binding, reverse cholesterol transport, protein-lipid complex subunit 
organisation, plasma lipoprotein particle assembly and activation of the immune response. The 
lists of SNPs were matched to SNPs in our target dataset. Then the data was clumped and 
scored as described above. 
 
A previous study found that an AD PRS computed with p-value threshold (PT) of 0.001 explained 
the most variance in structural (non-network) neuroimaging phenotypes of healthy young adults 
(Foley et al. 2017). Therefore, our primary analysis used PT=0.001 to select relevant SNPs from 
the discovery sample. For our secondary analysis, 7 different progressive training PTs were 
computed (0.00001; 0.0001; 0.01; 0.05; 0.1; 0.3; and 0.5). Lower PT indicates that SNPs are 
more significantly associated with AD case status in the training dataset. Two versions of each 
score were calculated, including and excluding the APOE locus. This was done to assess the 
effect of PRS without APOE and the effect of APOE within the PRS. 
 
Through this method, we ended up with 20 different PRSs: genome-wide with and without 
APOE, and each of the nine pathway-specific PRSs with and without APOE. Each of these 
PRSs further corresponds to 8 values for the PTs, as described above. 
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2.7 Statistical analyses 
 
Correlations between graph theoretical metrics and the genome-wide PRS (APOE included) 
and the nine pathway-specific PRS (APOE included) were calculated in MATLAB (MATLAB and 
Statistics Toolbox Release, 2015b and 2021a; The MathWorks, Inc, Massachusetts, United 
States). Similarly, correlations were calculated between the rich-club, feeder and local 
connectivity versus the 10 PRS scores. Our primary analysis used PT = 0.001. We also looked 
at the rest of the PT thresholds, as is standard practice (de Leeuw et al., 2015). Resulting p-
values were corrected for multiple comparisons using false-discovery-rate (FDR) correction 
(Benjamini and Yekutieli, 2005), which was applied over the 5 graph theoretical metrics for each 
(sub)network, plus the rich-club, feeder and local connectivities in the case of the whole-brain 
network, and over the 10 PRSs (i.e., the genome-wide plus the 9 pathway-specific ones) for 
each PT. If a significant association was observed between a PRS and the graph theoretical 
metrics or connectivities, correlations were also calculated with the PRSs excluding the APOE 
locus, to assess whether the correlations were purely due to that locus. To exclude the 
possibility that our results are confounded by population stratification, we repeated our analyses 
using the first ten principal components derived from common alleles as covariates. 
 
 
3. Results 
 
3.1 Networks 
 
The whole-brain, default mode, limbic and visual subnetworks for one participant are shown in 
Fig. 3 (NS-weighted networks) and Fig. 4 (FA-weighted networks). The relative strength of the 
connections depends on the edge-weighting and has an impact on the graph theoretical metrics 
of the networks. Given the differences observed between NS- and FA-weighted networks, 
performing the analysis for both these edge-weightings is warranted. 
 
 
 

 
 

Figure 3: Whole-brain, DMN, limbic and visual subnetworks, for NS-weighted networks, from the data of one 
participant. The lines represent the edges (connections) between brain areas. Panels A1 and A2: Whole-brain, B1 
and B2: DMN, C1 and C2: limbic, D1 and D2: visual. For the whole-brain and default-mode networks, only the 
strongest connections are shown. 
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Figure 4: Whole-brain, DMN, limbic and visual subnetworks, for FA-weighted networks, from the data of one 
participant. The lines represent the edges (connections) between brain areas. Panels A1 and A2: Whole-brain, B1 
and B2: DMN, C1 and C2: limbic, D1 and D2: visual. For the whole-brain and default-mode networks, only the 
strongest connections are shown. 
 
3.2 Whole-brain connectome 
 
Our primary analysis (PT = 0.001) showed no statistically significant correlations between the 
PRSs and the graph theoretical metrics of the whole-brain connectome. This was the case for 
both the NS-weighted and the FA-weighted networks. 
 
The analyses that pertained to the remaining 7 thresholds showed some statistically significant 
correlations (p < 0.05), but none that survived multiple-comparison correction. In Table 2, we 
show the correlation coefficients and p-values for the genome-wide PRS including APOE, for 
the PTs for which some of the p-values are less than 0.01, for the NS-weighted networks. The 
same results are shown graphically in Fig. 5. No p-values were smaller than 0.01 for the FA-
weighted networks.  
 

 Genome-wide + APOE 

PT 
mean 

clust coeff  
r (p-value) 

mean bet. 
centrality 

r (p-value) 

char. path 
length 

r (p-value) 

global 
efficiency 
r (p-value) 

mean nod 
strength 

r (p-value) 

0.3 0.037 
(0.380) 

0.038 
(0.364) 

0.109 
(0.0097) 

-0.112 
(0.0077) 

-0.115 
(0.0061) 

0.5 0.037 
(0.378) 

0.041 
(0.328) 

0.108 
(0.0105) 

-0.112 
(0.008) 

-0.116 
(0.0057) 

 

Table 2: Metrics of the NS-weighted whole-brain networks that correlate with the PRSs. Entries in bold indicate 
correlations with p<0.01. 
 
3.3 Default-mode network 
 
Our primary analysis (PT = 0.001) showed no statistically significant correlations between the 
PRSs and the graph theoretical metrics of the DMN; this was the case for both the NS-weighted 
and the FA-weighted networks. 
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Figure 5: Correlation coefficients between the graph theoretical metrics of the whole-brain network and the genome-
wide PRS including APOE for the 8 different values of PT. The asterisk indicates the instances in which the p-value 
was smaller than 0.01 but did not survive multiple comparison correction. 
 
 
The analyses that pertained to the remaining 7 thresholds showed some statistically significant 
correlations (p< 0.05), but none survived multiple-comparison correction. In fact, none of the p-
values was smaller than 0.01. This was the case for both the NS- and the FA-weighted networks. 
 
3.4 Limbic subnetwork 
 
Our primary analysis (PT = 0.001) showed no statistically significant correlations between the 
PRSs and the graph theoretical metrics of the limbic subnetwork; this was true for both the NS-
weighted and the FA-weighted networks. 
 
The analysis that pertains to the remaining 7 thresholds showed some statistically significant 
correlations (p<0.05), however none of them survived multiple-comparison correction. There 
was one p-value that was smaller than 0.01, for the mean clustering coefficient for the genome-
wide PRS, for the FA-weighted networks (shown in Table 3 and in Fig. 6). 
 

 Genome-Wide + APOE 

PT 
mean 

clust coeff  
r (p-value) 

mean bet. 
centrality 

r (p-value) 

char. path 
length 

r (p-value) 

global 
efficiency 
r (p-value) 

mean nod 
strength 

r (p-value) 

0.01 0.109 
(0.0094) 

-0.016 
(0.702) 

<0.01 
(0.949) 

<0.01 
(0.990) 

0.016 
(0.714) 

 

Table 3: Metrics of the FA-weighted limbic subnetworks that correlate with the PRSs. Entries in bold indicate 
correlations with p<0.01, while the entry that is also underlined indicates correlations that survive multiple comparison 
correction. 
 
3.5 Visual subnetwork 
 
Our primary analysis (PT = 0.001) showed no statistically significant correlations surviving 
multiple-comparison correction between the PRSs and the graph theoretical metrics of the 
visual subnetwork, for the NS-weighted and the FA-weighted networks. There were, however, 
some statistically significant correlations that survived multiple-comparison correction for PT = 
0.3 and PT =0.5, which we now describe. 
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Figure 6: Correlation coefficients between the graph theoretical metrics of the limbic subnetwork and the genome-
wide PRS including APOE for the 8 different values of PT. The asterisk indicates the instances in which the p-value 
was smaller than 0.01 but did not survive multiple comparison correction. 
 
For PT = 0.3, the mean nodal strength correlated with the genome-wide PRS including APOE (r 
= -0.13, p = 0.0019) and the mean betweenness centrality correlated with the pathway PRS for 
plasma lipoprotein particle assembly including APOE (r = 0.131, p=0.0019). When the APOE 
locus was excluded from the PRS, the correlations remained, with the correlation coefficient 
between the mean nodal strength and the genome-wide PRS being equal to -0.123 with 
p=0.0035, and the correlation between the mean betweenness centrality and the PRS for 
plasma lipoprotein particle assembly being equal to 0.107 with p=0.011.  
 
Additionally, for PT = 0.5, the mean nodal strength correlated with the genome-wide PRS 
including APOE (r = -0.132, p = 0.0016) and the mean betweenness centrality correlated with 
the pathway PRS for plasma lipoprotein particle assembly including APOE (r = 0.134, 
p=0.0014). When the APOE locus was excluded from the PRS, the correlations persisted. 
Specifically, the correlation between the mean nodal strength and the genome-wide PRS was 
equal to -0.125 with p = 0.0029, while the correlation coefficient between the mean betweenness 
centrality and the pathway PRS for plasma lipoprotein particle assembly was 0.113 with 
p=0.0073. These results are shown in Tables 4a and 4b and in Fig. 7. The scatter plots for the 
statistically significant correlations that survive multiple comparison are also shown in Fig. 8. 
 
For the FA-weighted networks, no statistically significant correlations (p<0.05) survived multiple-
comparison correction. The only p-value that was smaller than 0.01 is shown in Table 5 (PT = 
0.00001, mean betweenness centrality, for the PRS relating to the activation of the immune 
response, including APOE). 
 
As mentioned earlier, to exclude the possibility that our results are confounded by population 
stratification, we repeated our main analyses including the first ten principal components derived 
from common alleles as covariates, obtaining the same results as before. 
 

 Genome-wide + APOE 

PT 
mean 

clust coeff 
r (p-value) 

mean bet. 
Centrality 
r (p-value) 

char. path 
length 

r (p-value) 

global 
efficiency 
r (p-value) 

mean nod 
strength 

r (p-value) 

0.1 -0.042 
(0.325) 

0.076 
(0.070) 

0.079 
(0.060) 

-0.091 
(0.030) 

-0.110 
(0.009) 

0.3 -0.028 
(0.509) 

0.068 
(0.107) 

0.105 
(0.013) 

-0.118 
(0.0051) 

-0.130 
(0.0019) 

0.5 -0.028 
(0.504) 

0.071 
(0.091) 

0.108 
(0.011) 

-0.119 
(0.0046) 

-0.132 
(0.0016) 

 

Table 4a: Correlation coefficients and p-values for the PTs thresholds for which statistically significant correlations 
survive multiple comparison correction, for the visual subnetwork, for the NS-weighted networks. 
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 Protein-lipid complex subunit organisation + APOE Plasma lipoprotein particle assembly + APOE 

PT 
mean 

clust coeff  
r (p-value) 

mean bet. 
centrality 

r (p-value) 

char. path 
length 

r (p-value) 

global 
efficiency 
r (p-value) 

mean nod 
strength 

r (p-value) 

mean 
clust coeff 
r (p-value) 

mean bet. 
centrality 

r (p-value) 

char. path 
length 

r (p-value) 

global 
efficiency 
r (p-value) 

mean nod 
strength 

r (p-value) 

0.01 -0.104 
(0.013) 

0.111 
(0.0082) 

0.040 
(0.344) 

-0.055 
(0.195) 

-0.076 
(0.071) 

-0.099 
(0.019) 

0.118 
(0.0049) 

0.045 
(0.283) 

-0.064 
(0.128) 

-0.086 
(0.042) 

0.05 -0.102 
(0.015) 

0.110 
(0.0088) 

0.042 
(0.322) 

-0.058 
(0.167) 

-0.080 
(0.059) 

-0.100 
(0.017) 

0.121 
(0.004) 

0.044 
(0.296) 

-0.062 
(0.143) 

-0.083 
(0.048) 

0.1 -0.102 
(0.016) 

0.112 
(0.0076) 

0.046 
(0.275) 

-0.063 
(0.135) 

-0.085 
(0.045) 

-0.101 
(0.017) 

0.121 
(0.0039) 

0.044 
(0.298) 

-0.061 
(0.146) 

-0.083 
(0.049) 

0.3 -0.101 
(0.017) 

0.116 
(0.0060) 

0.049 
(0.242) 

-0.070 
(0.097) 

-0.092 
(0.028) 

-0.107 
(0.011) 

0.131 
(0.0019) 

0.050 
(0.238) 

-0.065 
(0.125) 

-0.087 
(0.040) 

0.5 -0.100 
(0.018) 

0.116 
(0.0060) 

0.051 
(0.232) 

-0.071 
(0.091) 

-0.094 
(0.027) 

-0.108 
(0.010) 

0.134 
(0.0014) 

0.049 
(0.248) 

-0.062 
(0.143) 

-0.084 
(0.047) 

 

Table 4b: Correlation coefficients and p-values for the PTs thresholds for which statistically significant correlations 
survive multiple comparison correction, for the visual subnetwork, for the NS-weighted networks. 
 

 Activation of the immune response + APOE 

PT 
mean 

clust coeff 
r (p-value) 

mean bet. 
centrality 

r (p-value) 

char. path 
length 

r (p-value) 

global 
efficiency 
r (p-value) 

mean nod 
strength 

r (p-value) 

0.00001 0.028 
(0.510) 

-0.114 
(0.0068) 

-0.093 
(0.028) 

0.090 
(0.033) 

0.103 
(0.015) 

 

Table 5: Correlation coefficients for the p-values that are less than 0.01, for the visual subnetwork, for the FA-
weighted networks. 
 
 

 
 

Figure 7: Correlation coefficients between the graph theoretical metrics of the visual subnetwork and the 3 PRSs, for 
which the correlations had a p-value smaller than 0.01, for the 8 different values of PT. A single asterisk indicates the 
instances in which the p-value was smaller than 0.01 but did not survive multiple comparison correction, while a 
double asterisk indicates p-values that survived multiple comparison correction. We note that the bottom right panel 
is for FA-weighted networks, while the other three are for NS-weighted networks. 
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3.6 Rich-club, feeder and local connectivity of the whole-brain network 
 
Fig. 9 shows the nodes that are hubs for the NS-weighted and the FA-weighted networks. For 
the NS-weighted networks, the hubs were the left and right putamen, left and right precuneus, 
left and right hippocampus, left and right superior frontal gyrus, left middle occipital gyrus, left 
and right superior occipital gyrus, right calcarine sulcus and right caudate. For the FA-weighted 
networks, the hubs were the left and right putamen, left and right precuneus, left and right 
hippocampus, left and right superior frontal gyrus, left middle occipital gyrus, left calcarine 
sulcus, right superior parietal gyrus, left superior orbitofrontal gyrus and left thalamus. We note 
that nine out of the 13 hubs were the same in the NS- and FA-weighted networks, while 4 
differed. 
 
For the NS-weighted networks, there was a statistically significant relationship between the rich-
club connectivity strength and the genome-wide PRS including APOE for PT = 0.3 and 0.5, 
which survived multiple comparison correction. The correlation coefficients and p-values were: 
-0.149, -0.148, and 0.0004, 0.0004, for the two PTs respectively. For PT = 0.1, the correlation 
coefficient was -0.118 and the p-value was 0.0052, but that did not survive multiple comparison 
correction; it is, however, mentioned here since we list all correlations with p-value less than 
0.01. When the APOE locus was excluded from the analysis, the p-values were 0.0073, 0.0005 
and 0.0006, and the correlation coefficients were -0.113, -0.145 and -0.144, for PT = 0.1, 0.3 
and 0.5 respectively. Therefore, the relationships still hold. 
 
 

 
 

Figure 8: Correlations between the genome-wide PRS including APOE and graph theoretical metrics for the visual 
subnetwork. The figure shows the correlations that survive multiple comparison correction. 
 
 
There was also a correlation between the feeder-connection connectivity strength and the 
genome-wide PRS including APOE for PT= 0.3 and 0.5, with a p-value smaller than 0.01, but it 
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did not survive multiple comparison correction. The correlation coefficients and p-values were: 
-0.130, -0.131, and 0.0019, 0.0019, for the 2 PT thresholds respectively. 
 
These results are shown in Fig. 10. The scatter plots for both these rich-club connectivity is 
shown in Fig. 11, for PT = 0.3, which is the thresholds that resulted in the stronger correlations. 
 
No statistically significant correlations were found to survive multiple comparison correction for 
the FA-weighted networks. 
 

 
Figure 9: Hubness scores for the network nodes for the NS-weighted (top) and FA-weighted (bottom) networks. The 
purple circles indicate nodes that are hubs for the respective networks. 
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Figure 10: Correlation coefficients between the rich-club, feeder and local connectivities and the genome-wide PRS 
including APOE, for the 8 different values of PT. A single asterisk indicates the instances in which the p-value was 
smaller than 0.01 but did not survive multiple comparison correction, while a double asterisk indicates p-values that 
survived multiple comparison correction. 
 
 

 
 

Figure 11: Correlations between the genome-wide PRS (including APOE) and the rich-club connectivity. 
 
 
4. Discussion 
 
To the best of our knowledge, this is the first study to examine the relationship between AD PRS 
and network-based measures for the whole-brain structural connectome and subnetworks. We 
used a cohort of young participants to assess any potential early changes in the structural 
connectome. From a clinical perspective, using pathway-specific polygenic risk scores in 
addition to genome-wide ones is important, because it can pave the way for more targeted 
interventions based on the predicted pathway involvement and potentially allows clinical trials 
to stratify patients using their specific risk profiles. 
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Compared to the FA-weighted networks, using NS-weighted networks resulted in more 
statistically significant relationships between the PRSs and structural network metrics, such as 
the graph theoretical metrics we employed and the connectivity strength between the rich-club, 
feeder and local connections. Even though both the NS and the FA are routinely used to assign 
significance to the edges of structural networks, it has been argued (Huang and Ding, 2016) 
and proven experimentally (Messaritaki et al., 2021) that the NS is more relevant from a 
functional perspective to the network organization of the human brain compared to the FA. This 
may be contributing to the increased sensitivity of the NS in the differences observed in our 
study. From a methodological point of view, this demonstrates that the selection of the metric 
for the edge weights can impact the results and, if not done properly, it can fail to reveal certain 
statistically significant relationships. 
 
4.1 PRS and graph theoretical metrics 
 
Our analysis identified statistically significant (after correction for multiple comparisons) 
correlations between graph theoretical metrics and PRSs, present in the visual subnetwork. The 
negative correlation between the mean nodal strength and the genome-wide PRS (including 
APOE) implies weaker connectivity in the visual subnetwork of participants at higher risk of 
developing AD. The positive correlation between the mean betweenness centrality and the 
pathway-specific PRS for plasma lipoprotein particle assembly (including APOE) implies that, 
in participants at higher risk of developing AD, each node participates in more shortest paths 
and therefore the organisation of the visual subnetwork is less central compared to participants 
at low risk. The fact that those correlations persisted when the APOE locus was excluded from 
the genetic risk calculation indicates that they are a result of multiple genetic factors, and not 
exclusively due to the APOE gene. 
 
As mentioned earlier, alterations in the visual subnetwork of AD patients have been recently 
reported in the literature. For example, Deng et al. (2016) observed increased characteristic 
path length and clustering coefficient in the visual subnetwork (measured with BOLD fMRI) of 
AD patients. Badhwar et al. (2017) also observed decreased connectivity in the primary visual 
cortex of AD patients. Wang et al. (2019) observed impairments in the visual subnetwork of AD 
patients, as well as in patients with subjective cognitive decline, which is considered a prodromal 
stage of AD. This last result further supports the idea that alterations in the visual subnetwork 
can appear many years before AD diagnosis. 
 
The rest of the (sub)networks we investigated showed no statistically significant correlations 
after multiple comparison correction was applied. Recently, Foley et al. (2017) showed that 
there is a reduction in the fractional anisotropy of the right cingulum and a decrease in the left 
hippocampal volume of young adults at genetic risk of developing AD. In this context, our results 
imply that those alterations do not translate into changes in the structural brain networks and 
subnetworks of those young adults. We note, however, that the participants in that study 
included, in addition to participants of the age of those in our study, participants that were a few 
years older. 
 
We note that, for the whole-brain network, we observed a negative correlation between the 
global efficiency and the genome-wide PRS including APOE, which did not survive multiple-
comparison correction. Despite that, this result is in concurrence with the reduction in global 
efficiency that has been reported in the structural brain networks of AD patients (He et al., 2008; 
Lo et al., 2010). 
 
We note that the correlations observed in our analysis are small. This is to be expected, given 
that the cohort of our study consisted of young adults with normal brain function. 
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4.2 PRS and rich-club, feeder, local connectivity 
 
Our analysis revealed a statistically significant reduction in the connectivity among edges of the 
rich club for participants with a higher risk of developing AD based on the genome-wide PRS 
that includes the APOE locus. The relationships held when the APOE locus was excluded from 
the analysis, which indicates that the effect comes from genetic influences above and beyond 
APOE. Our analysis also identified a reduction in the feeder-edge connectivity for participant at 
higher risk of developing AD based on the genome-wide PRS with a p-value less than 0.01, but 
which did not survive multiple comparison correction. 
 
A few studies have reported altered connectivity of the rich-club and feeder edges in the 
structural brain networks of participants with Alzheimer’s disease and with mild cognitive 
impairment. Xue et al. (2020) recently observed reduced rich-club connectivity in patients with 
amnestic MCI compared to healthy age-matched controls, and reduced feeder and local 
connectivity in patients with amnestic MCI compared to participants with subjective cognitive 
decline. Cai et al. (2019) reported decreased feeder (and local) connection strength in the 
structural networks of AD patients compared to healthy controls. Our results are in line with 
these alterations in connectivity strength observed in AD and MCI patients. 
 
4.3 Critical assessment of our analysis 
 
The summary statistics used in PRS analysis were taken from a large discovery sample 
reported in the latest GWAS meta-analysis (Kunkle et al., 2019). Therefore, our risk estimates 
for AD loci are the best available. Our study employed a relatively large sample size comprising 
participants of the same age, therefore avoiding the confound of brain changes that are age 
related, and which are known to exist in young adults up to the age of at least 25 years. 
Furthermore, our study is the first to use disease pathway PRSs to explore associations 
between biological pathways and underlying differences in structural brain connectivity. 
Regarding the pathway-specific PRS, the accuracy of our results is limited by the current 
knowledge of pathway variants. We note that our study involved a geographically limited sample 
in which men are slightly over-represented. Therefore, our results may not be representative of 
the general population. 
 
 
5. Conclusion 
 
Early phenotypes associated with PRSs can be important biomarkers for AD. Our results 
demonstrate that genetic burden is linked to some changes in structural brain networks, both 
for the whole-brain connectome and the visual subnetwork, in young adults. 
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