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Supplementary Figures 
Supplementary Fig. 1 | Reduced dimensions for single-cell multiomic datasets. a-c, UMAP1 

embedding of single cells for the 10X Genomics PBMC, 10X Genomics mouse embryonic brain, and 

SHARE-seq2 mouse skin. The three columns show UMAP embedding based on RNA, ATAC, and 

WNN3, respectively, with colors corresponding to transferred/inferred cell types. The last column shows 

the UMAP embedding overlaid with metacell assignments. 
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Supplementary Fig. 2 | Reduced dimensions and RNA prediction for SNARE-seq adult mouse 
brain data4. a, UMAP embedding of single cells based on RNA, ATAC, and WNN, respectively. b, Box 

plots showing distributions of Pearson correlations between observed and predicted RNA expression 

levels across top 1000 highly variable genes. The horizontal axis represents the sizes of the windows 

centered at TSSs. 
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Supplementary Fig. 3 | RNA prediction using independent training and testing datasets of PBMC. 
We trained the supervised prediction model using the dataset of 10k PBMCs, adopted an independent 

single-cell multiomic dataset of 3k PBMCs as a testing dataset. We merged the two datasets to align 

genes, peaks, and TFs, and showed that the peak-TF LASSO model significantly increases the 

prediction accuracy. Distributions of Pearson correlations between observed and predicted RNA 

expression levels from the testing dataset are shown. 
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Supplementary Fig. 4 | RNA and ATAC coverage across different single-cell multiomic 
sequencing protocols. TRIPOD was applied to the 10X PBMC, 10X mouse embryonic brain, and 

SHARE-seq mouse skin data to detect regulatory trios. Data from SNARE-seq4 and PAIRED-seq5 

suffer from low sequencing depth. 
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Supplementary Fig. 5 | Summary statistics of peaks, genes, and motifs in the PBMC data. a, 

Histograms of the number of peaks within regions of 100kb/200kb up and downstream of genes’ TSSs. 

b, Histograms of the number of genes within regions of 100kb/200kb up and downstream of genes’ 

TSSs. c, Histogram of the number of motifs per peak. Of the many possible and biologically meaningful 

peak-TF-gene combinations, TRIPOD proceeds to scan for trios with significant conditional 

associations. 
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Supplementary Fig. 6 | Regulatory relationships identified by LinkPeaks, marginal association, 
and TRIPOD in the PBMC data. a, Venn diagrams of the number of peak-gene pairs captured by 

LinkPeaks6, marginal association between gene expression and peak accessibility, and TRIPOD for 

representative target genes (CCR7, GNLY, FCGR3A, and MS4A1). For TRIPOD, the union set 

between level 1 and level 2 testing matching by TF expression is shown. b, Venn diagrams of the 

number of TF-gene pairs captured by marginal association between gene expression and TF 

expression and TRIPOD. For TRIPOD, the union set between level 1 and level 2 testing matching by 

peak accessibility is shown. TRIPOD complements and contrasts with existing methods based on 

marginal associations. 

 

 
 

  



8 
 

Supplementary Fig. 7 | Identification of putative cell-type-specific trio regulatory relationships 
in PBMC. Results from cell-type-specific influence analyses are shown for the same example trios as 

in Fig. 3a,b. a, Metacell-specific Cook's distance. b, Metacell-specific DFFITS. c, Cell-type-specific 

influential 𝑝-values. d, Cell-type hierarchies constructed from the RNA domain using highly variable 

genes. Red/gray circles indicate whether removal of the corresponding branches of metacells 

significantly changes the model fitting; crosses indicate that removal of the groups of metacells resulted 

in inestimable coefficients. e, Cell-type-specific DNA footprinting signatures of the TF binding motifs. 

The enrichment results supported the key regulatory cell types identified from the influence analyses. 
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Supplementary Fig. 8 | Trio regulatory relationships identified by LinkPeaks, marginal 
association, and TRIPOD, and validation thereof using PLAC-seq data. a, Bar plots of the numbers 

of significant regulatory links detected by TRIPOD and marginal associations. The numbers of peak-

gene pairs and TF-gene pairs were obtained by collapsing trios by TFs and peaks, respectively. b, 

Heatmap showing the degree of enrichment of ATAC peaks in enhancer-promoter contacts by PLAC-

seq5. c, Venn diagrams of the number of peak-gene pairs captured by PLAC-seq, marginal association 

between gene expression and peak accessibility, and various models as indicated on the top of each 

diagram. 

 



10 
 

 

Supplementary Fig. 9 | Visualization of regulatory links representing possible crosstalks 
between neurogenesis- and gliogenesis-specific TF cascades. a, Putative regulation of Nfia by 

Neurog2, Eomes, and Tbr1. b, Putative regulation of Sox9 by Neurog2. ChIP-seq peaks for the 

indicated TFs are included; arcs represent significant regulatory links inferred by TRIPOD. 
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Supplementary Fig. 10 | Identification of putative cell-type- and cell-state-specific regulation in 
mouse embryonic brain. a-h, Visualization of eight example trios from the neurogenesis and 

gliogenesis TF cascades. The scatter plots (left) show TRIPOD’s modeling fitting; the points represent 

metacells and are colored based on cell types. The middle panels show cell-type-specific 𝑝-values from 

the sampling-based influence analyses. The colors on the UMAP embedding (right) correspond to the 

smoothed 𝑝-values from the sampling-based influence analyses along the differentiation trajectory. 

Genomic coordinates for the peaks are from mm10. 
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Supplementary Fig. 11 | Assessing linear models for detecting conditional associations. Scatter 

plots comparing fittings from linear models and TRIPOD’s level 1 and level 2 testing for example trios 

in a, PBMC and b, mouse skin. Genomic coordinates for the peaks are from hg38 for human and mm10 

for mouse. 
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Supplementary Fig. 12 | Comparison of estimated coefficients from linear model and TRIPOD’S 
nonparametric model. a-d, Pairwise scatter plots comparing transformed coefficients from linear 

model and TRIPOD’s nonparametric model for representative target genes, CCR7, GNLY, FCGR3A, 

and MS4A1 from the PBMC data. 𝛾 denotes the coefficient for the interaction between TF expression 

and peak accessibility; 𝛼  and 𝛽  denote the coefficients for the partial gene-peak and gene-TF 

correlations, respectively. The three coefficients are fit using the linear model and TRIPOD’s level 1 

and level 2 testing, and their estimates are correlated on the global scale. However, the actual call sets 

are different, and the underlying models and assumptions are different. 
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Supplementary Fig. 13 | Comparison of the trio regulatory relationships identified by linear 
model and TRIPOD’s nonparametric model. a-d, Venn diagrams of the number of significant trios 

detected by linear and TRIPOD models for representative target genes, CCR7, GNLY, FCGR3A, and 

MS4A1. The left, middle, and right panels contain results from the interaction models, the models 

conditional on TF expression 𝑌! , and the models conditional on peak accessibility 𝑋" . L.int., 

TRIPOD.Int.Y, TRIPOD.Int.X, L.Cond.Y, TRIPOD.Cond.Y, L.Cond.X, and TRIPOD.Cond.X represent 

linear interaction model, nonparametric interaction model matching by TF expression (TRIPOD level 2 

test), nonparametric interaction model matching by peak accessibility (TRIPOD level 2 test), linear 

model conditional on TF expression, nonparametric conditional model matching by TF expression 

(TRIPOD level 1 test), linear model conditional on peak accessibility, and nonparametric conditional 

model matching by peak accessibility (TRIPOD level 1 test), respectively. 
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Supplementary Tables 
Supplementary Table 1 | Single-cell RNA and ATAC multiomic datasets. Data adopted in this study 

from different tissues, organisms, and cell types using different protocols are summarized. The number 

of cells, peaks, and genes, as well as RNA read counts and ATAC read counts a, before and b, after 

quality control (QC) are summarized. Sources of data are also provided. 
 

(A) 

 
 
(B) 
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Supplementary Table 2 | ChIP-seq data of human blood (B lymphocyte, T lymphocyte, and 
monocyte). Non-cancerous and cell-type-specific ChIP-seq data of human blood were downloaded 

from the Cistrome7 portal to validate the peak-TF links in the PBMC single-cell multiomic data. PCR 

bottleneck coefficient (PBC) is used to estimate the rate of read duplication through PCR amplification; 

a good PBC score is ≥ 80%. PeaksFoldChangeAbove10 contains the number of peaks called by 

MACS28 with a fold change above 10. FRiP is used for evaluating the signal-to-noise ratio; a good FRiP 

score is ≥ 1%. PeaksUnionDHSRatio is the percentage of the merged top 5000 peaks (ordered by 

MACS2 𝑞-value) that overlap with union DHS regions; this is expected to be ≥ 70%. 

 

 
  

DCid Species GSMID Factor Cell_line Cell_type Tissue_type FastQC UniquelyMappedRatio PBC PeaksFoldChangeAbove10 FRiP PeaksUnionDHSRatio
40022 Homo sapiens GSM1121094 BRD4 None B Lymphocyte Blood 38 0.8193 0.955 1615 0.1565535 0.9436
40053 Homo sapiens GSM1121098 CDK7 None B Lymphocyte Blood 38 0.7267 0.962 1230 0.05939275 0.9608
40226 Homo sapiens GSM1195559 CDK9 None B Lymphocyte Blood 38 0.7745 0.937 4517 0.09261 0.9696
45178 Homo sapiens GSM1003474 CTCF None B Lymphocyte Blood 38 0.7908 0.904 27265 0.305596 0.9758
45179 Homo sapiens GSM1003476 H2AZ None B Lymphocyte Blood 37 0.7298 0.94 2524 0.1956965 0.975
40215 Homo sapiens GSM1195560 IRF4 None B Lymphocyte Blood 38 0.8383 0.948 8535 0.13387325 0.9422
40216 Homo sapiens GSM1195557 MED1 None B Lymphocyte Blood 38 0.5248 0.844 4058 0.14310625 0.9664
40233 Homo sapiens GSM1195555 MED1 None B Lymphocyte Blood 38 0.6613 0.911 9273 0.2180545 0.954
40234 Homo sapiens GSM1195556 MED1 None B Lymphocyte Blood 38 0.8217 0.963 4479 0.1278495 0.9472
5967 Homo sapiens GSM762709 MYC None B Lymphocyte Blood 29 0.7391 0.988 1211 0.048873002 0.9576
33439 Homo sapiens GSM971344 POLR2A None B Lymphocyte Blood 30 0.7135 0.922 4948 0.1402875 0.9746
33434 Homo sapiens GSM971343 SMARCA4 None B Lymphocyte Blood 30 0.6431 0.909 2353 0.0451365 0.964
45444 Homo sapiens GSM1003508 CTCF None Monocyte Blood 37 0.7086 0.948 23384 0.243658 0.9718
45441 Homo sapiens GSM1003548 H2AZ None Monocyte Blood 37 0.8274 0.898 1674 0.11932275 0.975
41301 Homo sapiens GSM1057025 IRF1 None Monocyte Blood 38 0.8155 0.932 11224 0.07846625 0.9264
41302 Homo sapiens GSM1057026 IRF1 None Monocyte Blood 38 0.8212 0.943 3018 0.028401 0.945
41303 Homo sapiens GSM1057027 IRF1 None Monocyte Blood 38 0.8198 0.877 5920 0.04798775 0.9316
81223 Homo sapiens GSM2687534 RUNX1 None Monocyte Blood 38 0.7012 0.919 9496 0.31398225 0.9418
85986 Homo sapiens GSM2804465 SPI1 None Monocyte Blood 39 0.7064 0.944 1283 0.038436584 0.9426
41287 Homo sapiens GSM1057011 STAT1 None Monocyte Blood 39 0.8088 0.993 6006 0.11584575 0.976
41288 Homo sapiens GSM1057012 STAT1 None Monocyte Blood 39 0.7591 0.995 1501 0.0587395 0.9728
41289 Homo sapiens GSM1057013 STAT1 None Monocyte Blood 39 0.8118 0.993 11395 0.15686975 0.9774
82662 Homo sapiens GSM2679938 T None Monocyte Blood 39 0.8392 0.992 11428 0.14325775 0.9586
81224 Homo sapiens GSM2687535 TET2 None Monocyte Blood 38 0.6452 0.79 2851 0.22890725 0.7862
36301 Homo sapiens GSM823379 BRD4 None T Lymphocyte Blood 39 0.6184 0.803 1025 0.02953575 0.9652
38389 Homo sapiens GSM1022944 BRD4 None T Lymphocyte Blood 38 0.7591 0.968 1092 0.04322775 0.9644
3060 Homo sapiens GSM325895 CTCF None T Lymphocyte Blood 29 0.5214 0.902 15633 0.253560996 0.9716
44090 Homo sapiens GSM1056928 ETS1 None T Lymphocyte Blood 37 0.5843 0.965 1319 0.0132305 0.96
44092 Homo sapiens GSM1056930 ETS1 None T Lymphocyte Blood 39 0.803 0.909 3052 0.0402015 0.9594
44093 Homo sapiens GSM1056931 ETS1 None T Lymphocyte Blood 38 0.7048 0.905 1559 0.02145925 0.956
44094 Homo sapiens GSM1056932 ETS1 None T Lymphocyte Blood 39 0.7582 0.903 2587 0.039202 0.9608
4459 Homo sapiens GSM393968 POLR2A None T Lymphocyte Blood 27 0.5922 0.982 3068 0.04810575 0.972
36302 Homo sapiens GSM823380 POLR2A None T Lymphocyte Blood 39 0.7371 0.8 10180 0.2364385 0.9728
38342 Homo sapiens GSM1022949 POLR2A None T Lymphocyte Blood 39 0.736 0.968 5581 0.08956125 0.973
38361 Homo sapiens GSM1022946 POLR2A None T Lymphocyte Blood 38 0.7341 0.964 6984 0.1400275 0.975
38431 Homo sapiens GSM1022950 POLR2A None T Lymphocyte Blood 39 0.7477 0.97 6222 0.09659675 0.971
38433 Homo sapiens GSM1022948 POLR2A None T Lymphocyte Blood 39 0.7713 0.974 1407 0.03362775 0.9644
38454 Homo sapiens GSM1022945 POLR2A None T Lymphocyte Blood 39 0.7491 0.957 5196 0.079669 0.9732
47435 Homo sapiens GSM1201946 REST None T Lymphocyte Blood 37 0.6073 0.886 1840 0.0628475 0.916
44097 Homo sapiens GSM1056935 RUNX1 None T Lymphocyte Blood 39 0.7136 0.886 1187 0.0181065 0.9504
53629 Homo sapiens GSM1577746 STAT5B None T Lymphocyte Blood 37 0.7536 0.767 8377 0.1459865 0.95
53630 Homo sapiens GSM1577747 STAT5B None T Lymphocyte Blood 37 0.7297 0.708 8462 0.1848495 0.9604
53631 Homo sapiens GSM1577748 STAT5B None T Lymphocyte Blood 38 0.6881 0.676 2727 0.07564975 0.804
5195 Homo sapiens GSM630810 YY1 None T Lymphocyte Blood 20 0.5189 0.783 3788 0.119051698 0.9708
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