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Abstract—Objective evaluation of physiological responses using
non-invasive methods has attracted great interest regarding the
assessment of vocal performance and disorders. This paper, for
the first time, demonstrates that the topographical features of
the cervical-cranial intermuscular coherence network generated
using surface electromyography (sEMG) have a strong potential
for detecting subtle changes in vocal performance. For this
purpose, in this paper, 12 sEMG signals were collected from six
cervical and cranial muscles bilaterally. Data were collected from
four subjects without a history of a voice disorder performing a
series of vocal tasks. The vocal tasks were varied phonation (an
/a/ sustained for the maximal duration with combinations of two
levels of loudness and two levels of pitch), a pitch glide from low
to high, singing a familiar song, spontaneous speech, and reading
with different loudness levels. The varied phonation tasks showed
the median degree, and weighted clustering coefficient of the
coherence-based intermuscular network ascends monotonically,
with a high effect size (|rrb| = 0.52). The set of tasks, including
pitch glide, singing, and speech, was significantly distinguishable
using the network features as both degree and weighted clustering
coefficient had a very high effect size (|rrb| > 0.83) across these
tasks. Also, pitch glide has the highest degree and weighted
clustering coefficient among all tasks (degree > 0.6, weighted
clustering coefficient > 0.6). Spectrotemporal features performed
far less effective than the proposed functional muscle network
metrics to differentiate the vocal tasks. The highest effect size
for spectrotemporal features was only |rrb| = 0.19. In this paper,
for the first time, the power of a cervical-cranial muscle network
has been demonstrated as a neurophysiological window to vocal
performance. The results also shed light on the tasks with the
highest network involvement, which may be potentially used in
monitoring vocal disorders and tracking rehabilitation progress.

Index Terms—voice disorder, intermuscular coherence, muscle
network, surface electromyography, neurophysiology

I. INTRODUCTION

MORE than 17 million people in the United States are
estimated to suffer from dysphonia (a voice disorder)

each year [1], [2]. Excessive voice use and maladaptive
compensatory muscle tension in response to underlying neu-
rological or physiological laryngeal disease are considered to
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be potential roots for voice disorders such as muscle tension
dysphonia (MTD) [3]. The laryngeal muscles are internal to
the neck and require invasive access for direct examination.
However, it is suggested that the perilaryngeal cervical and
cranial muscles may show activity alterations in subjects with
dysphonia [4], which can help with the diagnosis using surface
electromyography (sEMG).

The current methods for monitoring the function of laryn-
geal muscles include intramuscular EMG, external laryngeal
palpation, and laryngeal endoscopy [5], [6], [7], [8], [9], [10],
[11]. Although these methods have provided much information
about muscle activation and function during voicing, they are
invasive, uncomfortable, and subjective. Intramuscular EMG
requires inserting small wires into the muscle using a needle to
measure relative neuromuscular activity. Laryngeal endoscopy
involves placing a flexible endoscope through the nose or
a rigid endoscope through the mouth to visualize the gross
anatomy and movements of the vocal folds. It requires a
trained specialist to perform and subjectively interpret the
findings. Manual palpation of the larynx and perilaryngeal
musculature is easy to perform but does not provide any
quantitative or standardized measure of muscle tension. Ad-
ditionally, these evaluation methods can disturb the normal
function of the muscle during the examination (for example,
due to the pain), which can affect the accurate assessment.

Recording sEMG is a non-invasive technique that can
potentially provide objective information about perilaryngeal
muscle activity during voicing based on temporal and spectral
characteristics of the muscle signal measured at the skin
surface. Previous sEMG studies of the external muscles have
shown inconsistent outcomes using spectrotemporal features,
such as root mean square (RMS) and power spectral density
(PSD). In this regard, although a recent study suggested some
evidence about differences in RMS values of cervical sEMG
activations between patients with muscle tension dysphonia
and the control group [9], another comprehensive study did
not find such differences for different types of dysphonia,
including MTD [12].

In neuroscience literature, coherence analysis has been used
in the context of brain connectivity to detect how different
regions of the brain are synchronized (or functionally coupled)
during different tasks, and this measure has been used for
detecting the degrees of several central nervous system condi-
tions, such as Parkinson’s Disease [13], [14]. More recently,
using coherence analysis, the fluency of corticomuscular con-
nectivity has also been investigated to understand how the
central nervous system communicates with the peripheral
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nervous system [15], [16]. Similarly, the functional muscle
network is an emerging concept that uses simultaneous multi-
channel sEMG to decode how various muscle groups are
synergistically synchronized during various motor tasks [17],
[18]. Intermuscular coherence networks have been recently
used to holistically investigate the muscular system during
various gait tasks and uniquely discriminate subtle differences
in lower limb functions in non-disabled adults [19], [20].

To the best knowledge of the authors, the concept of
functional muscle networks has not been used at the cervical
and cranial levels. Some efforts have been conducted to assess
beta-band (15-35 Hz) coherence between two anterior neck
muscles during voicing, which showed some discriminative
power to indicate hyperfunction and differences between con-
trol subjects and patients with vocal nodules [21], [22]. Ex-
panding from a single coherence measurement in specific fre-
quency bands to a wideband intermuscular coherence network
increases the possibility for monitoring motor functions or
impairments due to the wider spectral and spatial distribution
of the analysis. Thus, it is imperative to understand the power
of the cervical-cranial muscle network and the corresponding
relationship with various vocal functions.

The purpose of this study is to quantify the cervical-cranial
muscle network characteristics of a series of vocal tasks for
healthy subjects. We hypothesize that in non-disabled subjects
increasing the loudness and pitch (i.e., vocal frequency) will
change the network connectivity in a manner that can be
registered using topographical characteristics of the network,
such as degree and clustering coefficient. In this study, to
conduct a comparative analysis, the classical spectrotemporal
features are also quantified to determine if the tasks with
stronger muscle networks also consistently elicit statistically
distinguishable spectrotemporal muscle activity. We show that
the muscle network provides robust and statistically consistent
discrimination for increasing loudness and pitch, suggesting
that the cervical-cranial muscle network can indeed be used to
detect subtle differences in vocal tasks, while the conventional
spectrotemporal features fail to function accordingly.

II. METHODS

Four healthy subjects (all males, 39.5 ± 7 years) participated
in the study. The institutional review board of the New York
University Grossman School of Medicine approved the study,
and subjects provided their written consent after they received
the study description. Subjects denied any history of dysphonia
or neck and cervical-related injuries.

A. Experimental Procedure

Subjects performed a series of vocal tasks, each of a
different type or while varying tonal parameters (Fig. 1b). The
first group of tasks involved making a maximally sustained
/a/ sound at a constant pitch and volume. With two levels
of loudness and two levels of pitch, in total, there were
four varied phonation (/a/ sound) tasks: 1) habitual loudness,
habitual pitch, 2) elevated loudness, habitual pitch, 3) habitual
loudness, high pitch and 4) elevated loudness, high pitch.
Subjects were instructed to sustain the /a/ sound for as long

as was comfortable. Subjects performed three trials of each
of loudness and pitch combinations before moving to the next
tasks. The second group of tasks included single repetition
vocal exercises, namely (i) pitch glide, (ii) spontaneous speech,
and (iii) singing. Pitch glide involved starting to intone at a low
pitch and smoothly increasing to a final high pitch [23]. The
spontaneous speech task involved responding to the prompt,
”tell me how to make a peanut butter and jelly sandwich,” in
a typical conversational voice, while the singing task involved
singing ‘Happy Birthday’ in a comfortable key chosen by
the participant. The third group of tasks involved reading the
first full paragraph of The Rainbow Passage [24], a standard
reading passage used to evaluate the voice, at three levels of
loudness: habitual, elevated, and whispering.

sEMG signals were recorded from twelve sensors, using
the wireless Trigno sEMG system (Delsys Inc., Natick, MA),
with a sampling frequency of 1259 Hz (Fig. 1a). Four bipo-
lar Trigno Mini sensors were used for the inner cervical
muscles (inferior and superior infrahyoid, bilaterally), while
eight bipolar Trigno Avanti sensors were used for Masseter,
Superior Sternocleidomastoid, Inferior Sternocleidomastoid,
and Trapezius. With regard to palpation, subjects were in-
structed to (i) clench their teeth to identify masseter, (ii)
look left and right to identify lower and upper sternocleido-
mastoid, (iii) look up and down to identify the infra-hyoid
muscles, (iv) move shoulders forwards and backward before
staying a neutral position to identify trapezius muscles. The
skin surface was thoroughly wiped prior to sensor placement.
Sensors were placed parallel to the direction of the muscles.
In order to minimize the noise content of the recorded signals,
subjects were instructed not to move their head during the task.
Following the recording, signals were pre-processed using
MATLAB R2020b (MathWorks Inc. Natick MA). The first
and last 1s of all trials were clipped out, and other trials
were clipped further in the case of a head movement at the
beginning or at the end. Afterward, a zero-phase Butterworth
high pass filter at 1 Hz, a zero-phase Butterworth bandstop
filter between 57.5-62.5 Hz, and a zero-phase Butterworth
low pass filter at 110 Hz were all applied. An example of
a cervical-cranial muscle signal (from left superior infrahyoid
during pitch glide) is shown in Fig. 1c.

B. Muscle Signal Analysis

Muscle networks were constructed for all tasks, using
coherence. Magnitude squared coherence, Cxy between two
signals x(t) and y(t) is:

Cxy =
|Pxy(f)|2

PxxPyy
(1)

where Pxx and Pyy are the power spectral densities (PSDs)
and Pxy is the cross power spectral density (CPSD). To com-
pute the coherence, Welch’s overlapped averaged periodogram
method [25] was utilized with a Hamming window of 2048
samples (1.63 ms) and 50% overlap. The maximum coherence
component in the 5-100 Hz range was selected for each sensor
pair. Using this maximum coherence value, muscle networks
were constructed for each trial. Each node in the network
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Fig. 1. a. Six sensors were placed on each side of the neck at Masseter, Superior Sternoclediomastoid (Superior SCM), Superior Infrahyoid, Inferior
Infrahyoid, Inferior Sternocleidomastoid (Inferior SCM) and Trapezius. b. Subjects performed vocal tasks, classified as varied phonation, single repetition, or
reading. Varied phonation tasks involved intoning /a/ at defined loudness and pitch levels. Single repetition tasks included pitch glide, singing, and speech.
Reading tasks involved reading a passage at different loudness levels. c. An example of a neck sEMG signal trace, taken from left superior infrahyoid for
Subject 4 during pitch glide. Note how the amplitude level increases as the task develop.

represents a muscle, and the width of each line illustrates
the pairwise muscle coherence. In the case of tasks that had
multiple trials, the median network across trials was computed.
The degree of each node, Di, is the average of all edges
connected to the node. If the muscle network is represented
by adjacency matrix A, Di is defined as:

Di =

(
1

N − 1

) N∑
j=1,j 6=i

Aij , (2)

where N is the number of nodes. A node’s weighted clustering
coefficient (WCCi) gives the measure of how well that node is
connected to its neighbors. The weighted clustering coefficient
is defined as:

WCCi =

∑
j 6=i,

∑
k 6=i,j 6=k AijAikAjk∑

j 6=i,
∑

k 6=i,j 6=k AijAik
(3)

A node that is not connected to its neighbors will have a
weighted clustering coefficient, WCCi = 0, while a node that
is very well connected to its neighbors has WCCi = 1.

In order to provide a comparison between the muscle co-
herence network and the conventional spectrotemporal metrics,
muscle activations were quantified in the time and frequency
domains. The time-domain activation was quantified by finding
the RMS value across the trial duration. With regard to the
spectral domain, PSD was computed using Welch’s method
[25] and the median PSD across 5-100 Hz was computed.
Furthermore, the median frequency was computed for each
task. The median frequency is defined as the frequency at
which the area under the PSD graph is divided in two.
The median value across trials was used for PSD, median
frequency, and RMS when there were multiple trials.

C. Statistical Analysis

In order to evaluate the statistical trends observed in co-
herence muscle networks, a coherence distribution was con-
structed for each task (Fig. 4). Each distribution consisted
of degree and weighted clustering coefficient for all nodes
across all subjects’ muscle networks, giving n = #subjects×
#nodes = 4 × 12 = 48. Similarly, distributions were
constructed for RMS, PSD, and median frequency (n = 48 for
all). The Kolmogorov-Smirnov test for normality rejected the
normal distribution hypothesis for the coherence, RMS, PSD,
and median frequency distributions. Therefore, nonparametric
statistical tests were used in our analysis. The Friedman
test was used to compare tasks in each group (i.e., varied
phonation, single-repetition, reading). The Wilcoxon signed-
rank test was used as a posthoc test if the Friedman test
revealed significance. The significance level, α, for all tests
was initially set at 0.05. To adjust for multiple comparisons,
the Bonferroni correction was applied, dividing α by the
number of comparisons.

Finally, by using the rank-biserial correlation, the effect
size of the non-normal distributions was quantified [26]. In
this regard, |rrb| was used for measuring the rank-biserial
correlation. A higher value means that the effect size is
larger. For example, as can be seen in Fig. 4b, the coherence
degree for single repetition tasks has a very high effect size
(|rrb| = 0.85), and the difference between tasks is even
visually clear. On the other hand, the coherence degree for
reading tasks has a low effect size (|rrb| = 0.08), as there is
not a clear relationship between coherence and reading task
loudness.
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Fig. 2. Coherence muscle networks for each vocal task were created from twelve sEMG sensors placed bilaterally on the neck area. The width of each line
denotes the pairwise coherence between the two connected muscles, which is equal to the maximum coherence component in the 5-100 Hz range. In the case
of tasks that had multiple trials, the median network across trials is shown. Each node radius is equal to the degree (mean of coherences involving that node).
The line widths and node radii seem largest for /a/ with elevated loudness, high pitch, and pitch glide tasks.

III. RESULTS

A. Coherence Networks

The median network across subjects displays a visible
difference between vocal tasks, e.g., between pitch glide and
speech (Fig. 2, middle row left vs. middle row right). Similarly,
Fig. 3 shows that the mean degree of the network changed
by the task for all subjects. Interestingly, the mean degree
showed a monotonic increasing trend in response to both
raised loudness and pitch for the varied phonation tasks,
and pitch glide appears to have the highest coherence of
all 10 tasks (Fig. 3). Mean degree showed a monotonically
decreasing trend from pitch glide to singing to speech. There
appears to have been little to no difference in mean degree
observed for reading tasks with different loudnesses (Fig. 3).

In order to support the initial observations of the coher-
ence network differences between the vocal tasks, coherence
distributions were constructed by including all nodes in the
subjects’ intermuscular network, measured using degree and
weighted clustering coefficient (Fig. 4). For the varied phona-
tion tasks, the task-wise network degree and weighted clus-
tering coefficient median were monotonically ascending with
increasing pitch and loudness, and all tasks were statistically
different from each other (Friedman Chi2(3,141) > 44.73, p
< 0.05, posthoc Wilcoxon signed-rank test: all six pairwise
comparisons p < 0.001 ). The network’s global efficiency
showed a trend of monotonically increasing coherence with
pitch and loudness for 3 out of 4 subjects. Moreover, the

Fig. 3. network mean degree for each task. The bar depicts the median
value across subjects. Individual subject values are denoted by dots. For the
subject median, the mean degree shows an increasing trend starting from the
first task (habitual loudness, habitual pitch) and continuing incrementally until
pitch glide. Network connectivity then shows a decreasing trend from pitch
glide to singing to speech. Finally, reading tasks seem to have little difference
between each other.

degree’s effect size indicated a high value of |rrb| = 0.52. For
the single repetition tasks, the median of network degree and
weighted clustering coefficient was decreasing monotonically,
with the pitch-glide having the highest network degree and
weighted clustering coefficient at both greater than 0.6 (Fried-
man Chi2(2,94) > 94.04, p < 0.05, post-hoc Wilcoxon signed-
rank test for all three pairwise comparisons, p < 0.001).
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Furthermore, the global efficiency trend was consistent and
decreasing across all four subjects. The degree’s rank biserial
correlation also indicated a very high effect size (|rrb| = 0.84).
For the reading tasks, the Friedman test did not show a signif-
icant difference for the network degree but was significant for
the weighted clustering coefficient (network degree: Friedman
Chi2(2,94) > 0.9529, weighted clustering coefficient: Friedman
Chi2(2,94) > 8.2917. The post-hoc Wilcoxon signed-rank test
indicated that only the whispering and loud reading were
significantly different (p < 0.001). Global efficiency did not
indicate a consistent trend amongst subjects for the reading
tasks. Moreover, for the reading task set, the effect size was
low for the network degree (|rrb| = 0.08) and weighted
clustering coefficient |rrb| = 0.2

Since one of the secondary aims of this study is to sug-
gest a suitable candidate task(s) for monitoring the effect of
therapy, the tasks which had produced the highest network
metrics were identified. For this, three tasks were selected,
which had resulted in the highest response in Fig. 4, when
compared within their categories. The selected three tasks
are (i) the varied phonation task with elevated loudness,
and high pitch, (ii) pitch glide, and (iii) loud reading, and
results are given in Fig. 5. Both network degree and weighted
clustering coefficient were significantly different from each
other for all comparisons (Friedman Chi2(2,94) > 69.79, p <
0.05, post-hoc Wilcoxon signed-rank test: all three pairwise
comparisons p < 0.001). Moreover, pitch glide had the highest
network degree (median value ∼ 0.65) and weighted clustering
coefficient (median value ∼ 0.7), even higher than the varied
phonation task with elevated loudness and high pitch (degree:
median value ∼ 0.55, weighted clustering coefficient: ∼ 0.6).
Reading at elevated loudness had a lower degree (median value
∼ 0.17) and weighted clustering coefficient (median value
∼ 0.19) than the other two tasks. This suggests that pitch
glide generates the maximum response of the network, which
can be considered potentially the most responsive and suitable
task for identifying abnormalities.

B. Spectrotemporal Metrics

To compare the ability of spectrotemporal metrics to distin-
guish different tasks, statistical analyses on RMS, PSD, and
median frequency of sEMG were conducted. Distributions for
each of the three aforementioned quantities were constructed
by considering all nodes across all subjects (n=#subjects x
#nodes = 48). For the varied phonation tasks, the median
RMS of louder tasks is higher than habitual loudness tasks
(p < 0.001). In this regard, PSD shows the same trend as
RMS (p < 0.036). However, the overall effect size of varied
phonation tasks (RMS: |rrb| = 0.13, PSD: |rrb| = 0.12,
median frequency: |rrb| = 0.13) is quite small. For single
repetition tasks, RMS and PSD did not show a clear trend (Fig.
6b). However, median frequency of pitch glide was higher
than other tasks (p < 0.001), |rrb| = 0.16. For reading
tasks, PSD and RMS are weakly correlated with loudness
(Fig. 6c). All distributions are different from each other (RMS:
p < 0.026, PSD: p < 0.006) and the rank biserial correlation,
|rrb| = 0.19, suggests a weak effect size.

Fig. 4. Statistical results for network metrics of the three groups of tasks.
The coherence muscle network was constructed for each task, and produces
12 node values for each of degree and weighted clustering coefficient (WCC).
For each distribution of degree and weighted clustering coefficient, all node
values for all subjects are included. For global efficiency, a singular value was
obtained for each subject’s muscle network. The columns are organized as
follows, from left to right: (i) the degree distribution (n = 48), (ii) weighted
clustering coefficient distribution (n = 48) and (iii) bar plots comparing
subjects’ trends for taskwise global efficiency.
(a) For varied phonation tasks, intermuscular network degree and weighted
clustering coefficient increase monotonically with raised loudness and pitch,
with statistical significance (all six taskwise comparisons: p < 0.001). The
effect size (|rrb|) is quite high for both degree (|rrb| = 0.51) and weighted
clustering coefficient (|rrb| = 0.52).
(b) For single repetition tasks, intermuscular network degree and weighted
clustering coefficient decrease monotonically from pitch glide, to singing,
to speech, with statistical signficance (all three taskwise comparisons: p <
0.001). The effect size (|rrb|) is very high for both degree (|rrb| = 0.84) and
weighted clustering coefficient (|rrb| = 0.87). All subjects’ global efficiency
bar plots follow the monotonically decreasing pattern from pitch glide to
singing to speech.
(c) For reading tasks, there are no visible trends in degree, weighted clus-
tering coefficient or subject-wise global efficiency. There are no statistically
significant differences between network degree of reading tasks. For weighted
clustering coefficient, there is a significant difference (p < 0.001) between
whispering and loud reading. Effect size for degree (|rrb| = 0.08) and
weighted clustering coefficient (|rrb| = 0.2) is low.
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Fig. 5. Comparison of tasks with highest network metrics from each group:
1) Pitch glide has both the highest degree and weighted clustering coefficient
(WCC), followed by 2) varied phonation task with elevated loudness, high
pitch, followed by 3) loud reading, and all tasks are different from one
another (for both degree and weighted clustering coefficient, all three taskwise
comparisons: p < 0.001). Reading has ∼ 1/3 the median degree and
weighted clustering coefficient of the varied phonation task and pitch glide.

IV. DISCUSSION

The results show that the cervical-cranial intermuscular
coherence network can distinguish both changes in vocal
parameters (i.e., loudness and pitch) and different vocal tasks.
The muscle network quantifies the spectral synchrony and
can capture subtle changes associated with vocal output. This
is demonstrated initially by the network visualization, and
then statistical analysis using the network metrics (degree and
weighted clustering coefficient) confirmed the observed trends.
With regard to the vocal tasks, two important statistically
robust trends are identified as follows: (i) network degree and
weighted clustering coefficient increase monotonically with
loudness and pitch in the varied phonation tasks and (ii) net-
work degree and weighted clustering coefficient are both the
highest for the pitch glide task. The ability of the intermuscular
coherence network to distinguish vocal parameters and tasks
was far superior to the conventional node-wise metrics for
sEMG, such as RMS and PSD. These results suggest that both
the varied phonation and single repetition tasks in combination
with the cervical-cranial myographic network are sensitive to
various vocal features and thus can be potentially considered
as candidates for measuring the efficacy of therapy for vocal
disorders. The current study showed very strong statistics
supporting the use of the proposed network measures while
the conventional spectrotemporal metrics fail to provide the
needed sensitivity to the vocal features.

Intermuscular cervical-cranial coherence ascends monoton-
ically with loudness and pitch in the varied phonation tasks
(Figs. 2, 3 and 4a). The high differentiation of the varied
phonation and single repetition group tasks with high to
very high effect size (varied phonation: |rrb| = 0.52, single
repetition: |rrb| = 0.84) robustly supports the hypothesis
that cervical-cranial intermuscular coherence is generally pro-
portional to loudness and pitch. To the best of the authors’
knowledge, this is the first study that shows cervical-cranial
intermuscular coherence is conclusively correlated to loudness
and pitch.

Fig. 6. Statistical results for RMS, PSD and median frequency of the three
groups of tasks. Quantifying the muscle activity with RMS, PSD (median
across 5-100 Hz) and median frequency produces 12 node values for each
metric. All node values for all subjects are included in each distribution.
The columns are organized as follows, from left to right: (i) sEMG RMS
distribution (n = 48), (ii) the power spectral density (PSD) distribution (n =
48), (iii) median frequency distribution (n = 48).
(a) For varied phonation tasks, RMS and PSD show increases in response to
raised loudness. Louder tasks have higher RMS (p < 0.001) and PSD (p <
0.036) than habitual loudness tasks. However, overall effect size of varied
phonation tasks was still quite low (RMS: |rrb| = 0.13, PSD: |rrb| = 0.12).
No consistent patterns were observed for median frequency.
(b) For single repetition tasks, pitch glide had a significantly higher median
frequency than the two other tasks (p < 0.001). No substantial trends were
observed for RMS or PSD.
(c) For reading tasks, there is an apparent pattern of increasing RMS and
PSD in response to raised reading loudness. However, the effect size is weak
(RMS and PSD: |rrb| = 0.19).

In contrast to the coherence network, conventional node-
wise metrics such as RMS, PSD, and median frequency
failed to efficiently discriminate varied phonation tasks (Fig.
6a). Although there were some differences between louder
and habitual loudness tasks, the effect size (|rrb|) was much
smaller for these metrics than for coherence (RMS: 0.13,
PSD: 0.12, versus network degree and weighted clustering
coefficient: 0.52), i.e., the average difference between the
task pairs was less pronounced compared to the median of
the tasks. The superior performance of coherence over node-
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wise metrics may arise from the fact that network analysis
allows us to conduct a holistic neurophysiological analysis of
the functional synchrony and synergistic co-modulation of the
muscles needed for successful conduction of the tasks. Thus, in
the context of voice, the authors believe that the synchronous
behavior of the muscles has higher discriminative power (for
separating vocal features) and potentially higher diagnostic
value than isolated individual muscle recordings.

Overall, the single repetition tasks provided the most dif-
ferentiable network degree and weighted clustering coefficient,
which both decrease monotonically from pitch glide to singing
to speech with very high effect size (degree: |rrb| = 0.82,
weighted clustering coefficient: |rrb| = 0.87) (Fig. 5). The
effect is even greater for the single repetition than varied
phonation tasks. Moreover, it should be highlighted that all
subjects followed the group trend for network global-efficiency
of the single repetition tasks, emphasizing robust separability.
This suggests that vocal tasks of different nature (pitch glide,
singing, and speech) provide the greatest diversity and ob-
jectivity of muscle network performance which can be easily
differentiated by the network metrics. The fact that pitch glide
has the highest degree and weighted clustering coefficient
among all tasks (Fig. 6) suggests that the smooth transition
of the voice through octaves is assisted by very synchronous
cervical-cranial muscle activity. Indeed, it is notable that
singing had higher network coherence than regular speech.
Using the results that (i) higher pitch led to increased network
coherence for /a/ tasks and (ii) pitch glide has the maximum
network coherence of all tasks, both the higher average pitch
and the larger number of pitch changes for singing versus
speech are consistent with singing having higher network
coherence. This result is in contrast to a previous result with
beta-band coherence between two muscles [21], which found
that speech had higher beta-band coherence than singing. This
difference might be due to benefiting from an intermuscular
coherence network with 12 nodes and 66 edges in this study
versus only two nodes and one edge coherence in the previous
study. This work also considers a much wider frequency
range (5-100 Hz) than the previous beta-band coherence [21].
Despite the higher expected pitch for singing vs. speech,
neither median frequency nor PSD succeeded in detecting a
difference here, highlighting the superiority of muscle network
coherence over node-wise methods in responding to subtle
physiological changes of external muscles related to vocal
output.

Tasks with a higher pitch component produced a more
synchronous network, and varying the pitch led to clearer
network responses. Both the varied phonation (/a/) high pitch
and pitch glide tasks were shown to have at least 3 × the
network degree or weighted clustering coefficient of a reading
task (Fig. 5), highlighting the ability of tasks with a high
pitch component to produce the most pronounced network
output. Moreover, the pitch-varying task sets showed clear
responses to vocal parameter changes. The varied phonation
tasks showed a gradually increasing response (Fig. 4a) from a
median network degree ∼ 0.2 for habitual loudness, habitual
pitch to ∼ 0.6 for elevated loudness, high pitch. The single
repetition tasks showed a sharper decrease from pitch glide to

singing than from singing to speech. For both varied phonation
and single repetition tasks, the network response to each task
was distinctive; the effect size was large (|rrb| > 0.52), and
the null hypothesis was rejected with the highest significance
level (p < 0.001) for all task-wise comparisons. Tasks that
produce the most responsive network behavior would be
the most appropriate candidates in vocal therapy assessment,
as the responsiveness of the cervical-cranial intermuscular
coherence network should be high to maximize the sensitivity
of detecting signs of dysphonia or improvements made by the
therapy. Since the muscle network was most responsive to
tasks with a higher pitch component and pitch-varying task
sets, such tasks promise the best chance of success when
monitoring patient progress during vocal therapy.

Our results demonstrate the efficacy and sensitivity of the
intermuscular coherence network analysis in reflecting subtle
modulations in vocal output, such as detecting changes in
vocal parameters and discriminating single repetition tasks,
with a robustly high effect size. Taking inspiration from brain
connectivity networks that can detect functional changes, this
is the first work that shows topographical features of the in-
termuscular coherence network can detect changes to indicate
functional vocal characteristics. This will be particularly ben-
eficial to detect unhealthy differences in vocal activity caused
by physiological damage. Our study showed that the high func-
tional synchronicity of the cervical-cranial muscles produced a
strong network response during pitch glide, suggesting that the
laryngeal performance can be measured by the cervical-cranial
network, which needs to function in synchrony to conduct
the corresponding tasks. With such a high sensitivity, other
vocal disorders could be potentially detected and monitored by
our suggested configuration. Given the high range of muscles
recorded, in addition to the wide frequency range covered,
the cervical-cranial muscle network is a great candidate for
an objective, digital method of detecting and monitoring a
wide range of vocal disorders, using smart wearable clinical
technologies, such as a smart EMG necklace. A further clinical
application of the strong correlation between cervical-cranial
muscle network features and vocal output lies in an EMG-
based electrolarynx device [27], [28]. Regarding patients who
have lost their vocal cords due to cancer, the muscle network
features of healthy cervical muscle activity could be used to
drive a laryngeal prosthesis, capable of distinct levels of output
pitch and loudness.

Limitations of this study were that we didn’t control for
the effect of vocal fatigue and the order of the tasks was not
randomized; therefore, tasks later in the session could have
been influenced by fatigue more than earlier ones. However,
it should be noted that the vocal experiment procedure for
each subject required ∼ 9 minutes of vocal effort, which
is significantly lower than the effort needed for fatiguing
a subject (which is ∼ 60 minutes for vocal fatigue with
comfortable reading loudness or intermittent loud reading
tasks for several hours [29], [30].

In conclusion, this work for the first time shows that the
cervical-cranial intermuscular coherence network can detect
subtle changes distinguishing vocal tasks. The network showed
a robust effect size for changes in loudness and pitch in a
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set of varied phonation tasks and an even more robust effect
size amongst single repetition tasks, which included a pitch
glide, singing, and a short speech. The network out-performed
conventional spectrotemporal node-wise metrics (RMS, PSD,
and median frequency) regarding sensitivity to changes in
vocal output. The responsiveness of the proposed network to
either varied phonation or single repetition tasks, as well as
its high range of muscles recorded, suggests that monitoring
cervical-cranial intermuscular coherence shows promise as a
method to also differentiate physiological abnormalities in
patients with a wide range of vocal disorders, and optimize
their therapeutic regimen.
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