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Université Paris-Saclay, CEA, List,

F-91120, Palaiseau, France
franck.geffard@cea.fr

Frederic Marin
Biomecanique et Bioingenierie UMR CNRS 7338,

Universite de Technologie de Compiegne,
Compiegne, France
frederic.marin@utc.fr

Nicolas Vignais
CIAMS

Univ. Paris-sud, Univ. Paris Saclay and Univ. d’ Orleans
France

nicolas.vignais@universite-paris-saclay.fr

Abstract—Implementing an intuitive control law for an upper-
limb exoskeleton dedicated to force augmentation is a challenging
issue in the field of human-robot collaboration. The goal of
this study is to adapt an EMG-based control system to a user
based on individual caracteristics. To this aim, a method has
been designed to tune the parameters of control using objective
criteria, improving user’s feedback. The user’s response time is
used as an objective value to adapt the gain of the controller.
The proposed approach was tested on 10 participants during a
lifting task. Two different conditions have been used to control
the exoskeleton: with a generic gain and with a personalized gain.
EMG signals was captured on five muscles to evaluate the effi-
ciency of the conditions and the user’s adaptation. Results showed
a statistically significant reduction of mean muscle activity of
the deltoid between the beginning and the end of each situation
(28.6±13.5% to 17.2±7.3% of Relative Maximal Contraction for
the generic gain and from 24.9±8.5% to 18.0±6.8% of Relative
Maximal Contraction for the personalized gain). When focusing
on the first assisted movements, the personalized gain induced
a mean activity of the deltoı̈d significantly lower (29.0 ± 8.0%
of Relative Maximal Contraction and 37.4 ± 9.5% of Relative
Maximal Contraction, respectively). Subjective evaluation showed
that the system with a personalized gain was perceived as more
intuitive, and required less concentration when compared to the
system with a generic gain.

I. INTRODUCTION

A. Context

Musculoskeletal disorders (MSDs) are conditions that can
affect muscles, bones, and joints. The appearance of MSDs
is favoured by straining or repetitive tasks, making indus-
trial workers particularly exposed [1]. MSDs have become a
major health issue, impacting worker’s integrity as well as
economics, by being responsible of a loss of porductivity and
high healthcare costs. It was estimated that, in 2012, in France,
the average cost per case of MSD was 21 ke [2]. In 2017
MSD represented 87% of the occupational diseases [3]. MSDs
could be prevented by relieving physically the workers during
straining tasks like load carrying.

In this context, exoskeletons could become a promising
solution for industrial load carrying. Various designs of ex-

oskeleton have been proposed, for a wide range of applica-
tions. Good transparency is defined as a minimum loss of
ernegy in friction when transmitting an effort from the end
effector of a robot to the actuator. Transparency is a key points
for exoskeleton applications. It can be achieved mechanically
[4], or with a control system [5]. However, in the case of
direct manipulation (where the human is the one handling the
load), the exoskeleton needs to apply relevant forces on the
segment of the human in order to relieve his physical strain.
In that case, transparency is not enough, since it only ensures
minimal interaction forces between the robot and the human.
The critical point is thus being able to determine what are
these ”relevant forces”.

In order to augment body capabilities, user’s intentions have
to be estimated. This process can be performed by using
force/torque measurements [6], but it can prevent direct manip-
ulation, as the measurement unit usually needs to be between
the load and the user’s hand. Muscle activity measurements
are a common solution that enables direct manipulation. It is
usually done with electromyography (EMG) sensors placed
over the skin. This method does not affect the handling of
the load. Different approaches to process and exploit the
EMG signals have been developped in order to control a
robotic system. It can be based on biomechanical models [7],
proportional mapping [8], or machine learning algorithms [9].

A critical point in augmenting body capabilities is to ensure
stable and safe interactions between human and robot. It is all
the more critical in the case of exoskeletons because of the
tight kinematic link between robotic and human bodies. In the
current study, the objective is to tune and test personalized
parameters that enable an intuitive interaction for a specific
control system [10].

B. Previous Works

EMG signals have already been used to control robotic
devices [11] ,[12]. EMG signals processing can be performed
into two different manners: discretely or continuously. Discrete
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methods consist in pattern recognition based on handcrafted
features and a classifier trained with them [13] or some end-
to-end neural networks [14]. There is a trade-off between the
panel of available actions on one hand and the extense of the
training and precision of the classification, which can depend
on the number of classes, on the other hand.

The second type of approaches of EMG processing are
continuous methods. These methods are more flexible but they
also present disadvantages. The relations between the features
of the EMG signals and the movement are highly non-linear
[15]. In [16], a continuous 3D estimation of the position of
the hand is performed with the use of 9 electrodes targeting
specific muscles. Such precise requirements in the placement
of the electrodes are laborious and examiner-dependent. These
methods are particularly suited to teleoperation or prosthe-
sis assistance. However, their use to control an exoskeleton
appears difficult given that the assistance provided by the
exoskeleton and the EMG activity of the user influences one
another.

Some works have focused on the combination of the two
types of approaches in order to benefit from the advantages of
both sides. In [17], a system was designed where the discrete
component was used to recruit the most pertinent continuous
subpart. This allowed to design continuous subparts more
limited but simpler to calibrate which brings flexibility to the
system. And a higher-level discrete component that can have
a limited number of available classes, making it more reliable.

In a previous study, a system that permits to carry an un-
known load has been presented [10]. The assistance was based
on EMG signals, measured with an armband placed around the
arm (biceps and triceps recordings). The system was based on
an integral corrector, aiming to reduce muscle activity of arm
muscles obtained from EMG specific processing [18].

The system presented and tested in [10] consists of an
intention detection block feeding an integral corrector as
shown on Fig. 1. The intention detection module is composed
of two processes : (i) the estimation of the direction intended
and (ii) and the estimation of the intensity of the movement in-
tended. The intensity’s estimation uses a model based approach
[19], [20]. The direction’s estimation exploits a convolutionnal
neural network inspired from computer vision architectures
[21], [14](cf. Fig. 2). A key difference with computer vision
architectures is the use of 1D convolutions instead of 2D
convolutions and they are shared over the eight sensors of the
EMG armband in order to extract the same type of features.
The method in [18] can be compared to [17] as it is a mixture
of continuous and discrete components used to process the
EMG signal.

The system needed to be calibrated, as the EMG signals
vary greatly from one person to another. The calibration data
is required for both the calibration of the model based intensity
estimation and the training of the network. In this study [18]
the system is calibrated from scratch for each user, using about
2min30sec of recordings.

In the original study [10], the gain of the integrator is fixed.
The system is compared to a classic gravity compensation

(CG) and a situation without assistance (No-Exo). With a
limited number of repetitions, results show (i) an EMG activity
similar between the two types of assisted situations (CG and
integral corrector) and (ii) a significant reduction of activity for
the biceps, anterior deltoid and erector spinae when compared
to the situation without assistance (integral corrector and No-
Exo).

Our objective is to explore the possibilities of personaliza-
tion regarding the tuning of the integrator’s gain, during a long
duration, thus permitting to investigate user’s adaptation to the
assistance conditions.

II. METHODOLOGY

In the current study, the gain of the integratal corrector has
been personalized using the user’s response time. Response
time is defined here as the lapse of time between a stimulation
and the response on the EMG signal. It is different from
what is usually referred to as reaction time and reflex time
[22] Reaction time is the delay between a stimulus and a
reaction (ex: time to push the brake after spotting a pedestrian).
A reflex time is the time for movement to occur after a
stimulus on the muscle fibers (myotatic reflex). In our case
the stimulation would be the increase of assistance from the
system. Our hypothesis is that the user’s response time can
influence the stability of the human/exoskeleton interaction
(HEI). Personalizing the gain of the integrator would thus
ensure a safe and intuitive interaction.

Our work is divided as follow :

1) Simulation to investigate the link between response time
and gain of the integrator

2) Measuring response time on participants
3) Testing two control conditions through an experimental

protocol: generic and personalized

The link between these different parts is described in Fig.
3. The first step of this process is to implement a simulation
of the HEI loop. It enables to define the limiting values
of the gain based on theoretical user’s response times. The
results of the simulation give the relation between the gain
of the corrector K and the user’s response time Tpsrep.
The second step consists in measuring actual user’s response
times. Knowing that, and with the result of the first step a
personalized gain Kconf,new can be estimated. The last step
is the experimental protocol, its objective is to evaluate the
impact of the personalized gain Kconf,new compared to a
generic one KGEN .

As mentionned in section I-B, the system needs to be
calibrated. In this study a shorter calibration procedure is used
than in [18]. This version is based on a dataset created with the
data of around 20 people recorded by following the procedure
presented in [18]. This dataset is used to pretrain the neural
network. A short step (15 secondes) of voluntary contractions
is recorded in order to calibrate the system to a new user. The
data of this step is used to calibrate the intensity’s model and
fine-tune the network.
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Fig. 1: Intention Detection block and integral corrector from [10], K - the gain of the corrector.
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Fig. 2: Architecture of the neural network

A. Simulation

1) Implementation: The interaction loop implemented is
represented in Fig. 4 and the software used is Simulink®.
The simulation is about a lifting task. In the beginning of a
simulation, the load is at rest on a table and the user raises it up
to a target. The system simulated has one degree of freedom,
and is assimilated to a pendulum composed of a rigid arm and
a load at the extremity. The real-life corresponding situation
is a lifting task during which the elbow is kept straight. The
objective of the simulation is to assess the relationship between
a user’s response time and the gain of the integral corrector.
This would enable to personalize the tuning of the gain and
hopefully offer a more adapted behavior from the system of
assistance.

a) User behavior Model: The implementation of the
simulation of the user is divided into three parts. The first
one is the response time. It is implemented as a pure delay,
representing the time it takes for the user to perceive the
changes of force from the robot. The second one represents
the Central Nervous System (CNS), responsible of generating

Simulation Response time
measurement

Relationship Measure

Estimation

Experiment: comparing

Fig. 3: Flowchart of the study (variables are explained in table
III)

the setpoint signal to perform the lifting task.
The trajectory is defined using the minimum jerk theory

[23], and studies have shown that it still holds while wearing
an exoskeleton [24]. This theory enable to calculate a position
Θref (t) and velocity Θ̇ref (t) profile depending on the time.
The total time for the movement was chosen according to the
results of [10]. The output (cf. eq. (1) is given by the sum of
a proportional-derivative (PD) controller, used to follow the
trajectory, and the compensation of the weight of the load
τweight.

The perceived assistance provided by the robot is sub-
stracted from the setpoint given by the CNS. That is how the
setpoint for muscle activation is calculated. It was considered
that the user naturally adapts its effort according to the
perceived assistance.

outputCNS =KP ∗ (Θref (t)−Θ(t))

+KD ∗ (Θ̇ref (t)− Θ̇(t)) + τweight

(1)

The force deployed by the user is modeled with the work
presented by [25], that extends the Hill model with a Serial
Damping Element in addition to the usual Contractive El-
ement, Parallel Elastic Element and Serial Elastic Element.
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Fig. 4: Interaction loop

The parameters are tuned using the data from the experiment
of lifting task without assistance in [10], where there is an
average activation of the anterior deltoı̈d 40% of Relative
Maximal Contraction (RMC) for a load of 5kg.

b) Kinematics: During the interaction, human and
robotic forearm dynamics are coupled, which can be modeled
as follows in eq. (2) [24] :

{
MrΘ̈r + brΘ̇r + τFNL

+Qr(Θr) = τr − τi

MhΘ̈h + J t
hFe + bhΘ̇h +Qh(Θh) = τh + τi

(2)

Where τi is the equivalent interaction torque between human
and robot limbs, τr - the robot torque, τh - the human joint
torque and M - the matrix of inertia, b - the viscosity, τFNL

- the non-linear friction and Q the gravity torque. Fe are the
external forces applied to the human and J t

h - the jacobian of
the human. The subscripts r and h denote similar quantities
related to robot and human systems, respectively.

Because only one degree of freedom is considered, we have
Qr(Θr) = mrglrcos(Θr), where mr is the mass of the robot
arm, lr - the length to its center of mass and g the gravitational
constant. The same is true for the human. The arm of the robot
and the human are considered superimposed so Θr = Θh. By
combining that with the equation eq. (2), we have eq. (3):

(Mr +Mh)Θ̈+(br + bh)Θ̇ + τFNL
+ J t

hFe+

(mrglr +mhglh)cos(Θ) = τr + τh
(3)

τr is divided as shown in eq. (4) :

τr = τrc + τcompFNL
+ τbrΘ + τmr (4)

with τbrΘ, τmr, and τcompFNL
that can compensate brΘ̇r,

mrglrcos(Θr) and τFNL
, respectively, with classic control

strategies, eventhough they can be very low due to the back-
drivable mechanical design [26][4]. Taking this into account,

Variable Value
Tpsrep [110 210] ms
K [4.5 8.2]
Ttot 10s

TABLE I: Range of Numerical values used in simulation

and that the external forces come from the load M to be
carried, the final equation eq. (5) is :

(Mr +Mh+MM )Θ̈ + bhΘ̇+

(mhglh +mMglM )cos(Θ) = τrc + τh
(5)

2) Results: The simulation was exploited by making a
search grid with the response time and the gain as parameters.
The criterium to evaluate the simulation for a given pair of
Response time and Gain (Tpsrep,K) is the index presented
in eq. (6). K varies from 4.5 to 8.2 with a step of 0.05 and
Tpsrep - from 110ms to 210ms with a step of 5ms, these
ranges are summarized in table ??.

Indexstab =

∫ Ttot

Ttot/2

|τmuscles(t)|dt (6)

Ttot/2 is set so that the system has enough time to stabilize
if it is able. By design, if the system is stable the value
of τmuscles is close to zero. Indexstab is then an indicator
of whether the system is able to stabilize. This index has
been plotted on the Fig. 5. The yellow part corresponds to
unstable simulations and the cliff is the limit between stable
and unstable values of the parameters. The intersection of this
surface with the plane z = 1000N.m.s gives the limit gain
before instability Klim as a function of Tpsrep.

On Fig. 6 the intersection is plotted with a 2nd order poly-
nomial extrapolation. This extrapolation is used to estimate the
Klim of a new user based on their measured Tpsrep. Except
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the Klim is not the most practical to use, it tends to overshoot
and cause slight oscillations before the system stabilizes.
Instead, an expert tunes the gain Kconf,ref , a comfort gain
which oes not overshoot, and gets its Tpsrep,ref measured.
The gain for a new user is calculated with eq. (7) :

Kconf,new = Kconf,ref ∗ Klim,new

Klim,ref
(7)

The simulation enables to estimate a range of possible gains
that ensure the stability of the system, K ∈ [0,Klim]. The eq.
(7) gives the possibility to take advantage of the experience
of an advanced user and transfer it to a new user while taking
into account their differences.

B. Preliminary tests

Preliminary tests are conducted with a limited number of
participants (5) in order to develop an automated way to
measure the user’s response time. Participants are aksed to stay
relaxed while jolts of torque are made with the exoskeleton
(see Fig. 7). The jolts are triggered randomnly to avoid
anticipation. For the preliminary tests, the jolts are applied
in two different positions, high and low, and 10 times in
each direction, for a total of 40 torque jolts. The objective
is to find an indicator of the response time that does not
vary greatly between the different conditions (direction and
position) but still enables to discriminate between participants.
The variables involved in this section are described at the end,
in table III.

As a result of these tests, the user’s response time is
measured with the following method. The maximum EMG
while resting Urest,max,i is recorded between t = 0 and ttrig,
where i denotes the EMG channel. treac,i is found with eq.
(8) :

treac,i = argmint>ttrig (Ui(t) > Rrest ∗ Urest,max,i) (8)

Where Rrest was set experimentally to 1.15. The user’s
response time according to channel i is defined as : Tpsrep,i =

Fig. 5: Value of the Indexstab for each pair (Tpsrep,K) of
the search grid

treac,i − ttrig. Finally, to reduce the variance, the result is
averaged over the 3 channels placed over the biceps (as shown
in eq. (9)) :

Tpsrep =
1

3

∑
Tpsrep,i (9)

For the adaptation of the gain six jolts are applied in
one position (3 upward, 3 downward) in order to keep the
calibration step convenient.

C. Experimental protocol

1) Participants and equipement: The tests are conducted
with 10 participants (height : 177, 2±8, 4cm , weight : 77, 8±
20, 2kg, age : 24, 1±1, 4). Each participant signed an informed
consent before beginning the experiment. This protocol has
been evaluated and validated through an ethical committee
from Université Paris-Saclay (n◦ 212).

The exoskeleton used in this study is an under-actuated
upper-body type (Fig. 8). Each side consists of two segments
(upper-arm and forearm) and four joints. Two of the joints are
passive (θ1 and θ4) and the other two are proportionally linked
and powered by the same actuator (θ3 = 1.5∗θ2) [27](cf. Table
II). The interface with the user consists in a rigid structure that
is attached to the forearm, close to the wrist. It is attached
with two pivot joints to end effector of the exoskeleton’s arm.
In addition, the exoskeleton is backdriveable, which means
that efforts applied to the end effector are transmitted to the
actuator with minimum loss of energy [26].

Two different types of EMG sensors are used in this
study. The first one is the Myo-Armband (Thalmic Labs, ON,
Canada), and is used to control the exoskeleton based on the
work presented in [18] and [10]. The armband was positioned
around the arm to capture biceps and triceps muscle activities,
rather than on the foreman as it was originally designed. The

Fig. 6: Graph of Klim as a function of
1

Tpsrep
, and a

polynomial extrapolation of degree 2
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tmin trand
t (s)

0

TauStep

Taucons (N.m)

t = 0 ttrig

Fig. 7: One jolt of torque

Fig. 8: Upper-limb exoskeleton BHV2, Myo armband and
Datalite EMG sensors

Armband is composed of eight pairs of dry electrodes, with a
sampling frequency of 200Hz. The raw output of the armband
is a zero-mean signal coded over 8 bit, it has no unit and
is comprised between -126 and +127. The second one are the
sensors DataLite, Biometrics Ltd, Newport, UK. They are used
to analyze muscles relevant during load carrying and have a
sampling frequency of 1000Hz. The goal of this second type of
measurement is to have an objective evaluation of the muscle

αi di ri θi
Frame 1 0 0 rshoulder θ1

Frame 2 +
π

2
dshoulder 0 θ2

Frame 3 0 Larm 0 θ3 = 1.5 ∗ θ2
Frame 4 −π

2
Lelbow 0 θ4

Frame 5 0 Lforearm 0 0

TABLE II: Table of the Denavit-Hartenberg parameters of the
exoskeleton

Fig. 9: One repetition of the task

activity during experimental conditions.
2) Procedure: The participants are explained how to put on

the EMG armband on the right arm. Then the EMG sensors are
placed according the SENIAM recommendations [28] over the
biceps, triceps, trapezius, anterior deltoid and erector spinae,
on their left side.

Once equipped with the exoskeleton, the participants per-
form a lifting task in different situations. They start by doing
20 repetitions without assistance and with a load of 2kg, this
is a reference situation. Then, they perform 50 repetitons with
one of the two assistances in a randomized order and a 7-
kilogram load. After this the participants are asked general
questions about the assistance. They continue by doing the
reference situation and the repetitions with the second as-
sistance. Finally, they are asked general questions about the
second assistance and questions of comparison between the
two situations.

One repetition of the task is to lift a load up to a high mark,
bring it down to a middle mark, high up again and finally
put the load down (Fig.9). The reference repetitions enable to
start the recordings of both situations in the same conditions.
The targets are displayed on a screen as well as the current
angular position (Fig.10). On this figure, the bottom and top
black lines represent the exoskeleton’s joint limit. The blue
and purple lines represent respectively the high and middle
marks. The red line represents the angular position followed
by the arm of the exoskeleton for one repetition of the task.

The difference between the two situations is the gain of
the corrector, in one case it is generic (GEN), which means
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Fig. 10: Display of the targets and current position

the same for each participant, in the other - it is personalized
(PERSO), which means tuned following the method proposed
in Methodology. The order was randomized, so 5 people
started with GEN and 5 started with PERSO. When asking the
question, the situations are referred to as ” Situation 1” and
”Situation 2”, depending on the order and not the gain used,
in order to avoid influencing the participants. Questionnaires
are standard and the same for each situation. They have been
designed according to the work of [29].

3) Data Analysis: Three evaluation criteria are used dur-
ing this study. The EMG signals and the precision are two
objective criteria and the questionnaire is a subjective one.

Following the recommandations of [30] and [31], the EMG
is first treated with a band pass Butterworth filter of order 7,
with cutting frequencies [30Hz, 200Hz]. Then the signal is
low-passed with a 7th order Butterworth with a 2Hz cutting
frequency [30]. In both cases the filter is double passed and the
signals are normalized using the relative maximale contraction
(RMC). The RMC is the maximum EMG value that occured
for one muscle during the whole experiment (both tasks). The
signal is then averaged over all repetitions and over series of
10 repetitions. The two situations and the evolution through
the repetitions is evaluated with paired Student tests, with a
threshold for significance of 0.05.

The precision is evaluated with the angular information
of the exoskeleton’s shoulder. The participants are aksed to
briefly stop at each target so the sequences where the velocity
is near zero during the task are extracted. The error is calculted
with the Root Mean Square (RMS) of the difference between
the extracted positions and the targets positions. Similarly to
the EMG signal, the averages for the whole 50 repetitions
and series of 10 repetitions are calculated and compared with
paired Student tests.

The questionnaire is divided in three parts : general ques-
tions about GEN, general questions about PERSO and ques-
tions about the comparison of the two. The answers take the
form of a 11 point Likert scale (0 to 10) where 5 is the neutral
value when it is releveant. The answers are averaged and the

first two parts are compared through a Wilcoxon ranksign test.
The same test is used to assess the shift from the neutral (5)
of the comparison questions (last part).

III. RESULTS

A. EMG

Fig. 11 shows the average muscle activity as a percentage
of RMC during the task for the fifty repetitions. It is worth
noting that there is a peak of biceps activity at the beginning of
the task, engaging the assistance and a peak of triceps activity
at the end, decreasing the assistance through the integrator.

Then, the averages per series of 10 repetitions are calculated,
in order to observe an evolution through time. It is represented
on Fig. 12 for the anterior deltoid. A statistically significant
reduction in mean activity is observed for both GEN and
PERSO for the anterior deltoid between the first and the
last series, p < 0.05. The activity goes from 28.6 ± 13.5%
RMC to 17.2 ± 7.3% RMC for GEN and from 24.9 ± 8.5%
RMC to 18.0 ± 6.8% RMC for PERSO. A similar evolution
is observed for the trapezius but only significant for GEN,
going from 22.1±9.0% RMC to 14.7±6.6% RMC. The other
muscles (Biceps, Triceps and Erector Spinae) do not feature a
significant change through the repetitions.

The average activity of the anterior deltoid for the first series
is displayed on Fig. 13. For 5 participants it is GEN and for
the other 5 it is PERSO. The activity in the case of PERSO
is significantly inferior (p < 0.05) to the one in the case of
GEN (29.0±8.0% RMC and 37.4±9.5% RMC, respectively).
However, this difference vanishes over the repetitions.

B. Precision

The precision achieved while aiming at the targets is aver-
aged over the fifty repetitions in Fig. 14. Like with the EMG
signal, both PERSO and GEN yield similar precision overall.

Similarly than with the EMG signal, the average precision
per series of 10 repetitions for each key position (first high
mark, middle mark and second high mark) is calculated. The
results for the second reach of the high mark are represented
on Fig. 15. There is an improvement of the precision for
reaching the high target (both the first and second time), with
an important reduction of the standard deviation. It goes from
2.02±0.74 cm to 1.59±0.33 cm for GEN and 2.29±0.71 cm
to 1.59 ± 0.29 cm for PERSO for the first reach of the high
target. And it goes from 1.97±1.14 cm to 1.27±0.28 cm for
GEN and 1.71 ± 0.87 cm to 1.26 ± 0.47 cm for PERSO for
the second reach of the high target (cf. Fig. 15).

C. Questionnaire

The answers to the general questions are moslty similar for
the two situations as we can see on Fig. 16. The questions are
divided in three categories : general, emotionnal affect and
improvement over time (comparing the beginning and the end
of a set). The ”+” and ”-” above the graph separate the positive
key points from the negative ones. For example, a positive
question is ”I find it pleasant to work with the assistance”
and a negative one is ”Working with the assistance makes
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Fig. 11: Average muscle activity and shoulder angle during
one repetition (GEN in blue and PERSO in red)

Fig. 12: Average activity of the Deltoid per series of 10
repetitions (GEN in blue and PERSO in red)

Fig. 13: Average activity of the anterior deltoid for the first
series (GEN in blue and PERSO in red)

me anxious”. Overall, both assistances are well accepted,
positive questions are above neutral on average and negative
questions are around neutral or below. Only the first question
about intuitiveness yields a statistically significant difference,
according to the Wilcoxon test (p < 0.05). PERSO (7.5±1.0)
is perceived to be more intuitive than GEN (7.1± 0.7).

The averaged answers to the comparison questions are
displayed on Fig. 17. After a Wilcoxon test, a statistically
significant shift of the results from the neutral value 5 is ob-
served for 2 questions. The first one is about the intuitiveness
and the second one is about the concentration required while
performing the task. In both cases the shift advantages PERSO
: it is judged more intuitive (5.8 ± 1.1) and requiring less
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Fig. 14: Average precision for each position

Fig. 15: Precision for each series, for the high mark’s 2nd

reach

concentration (4.5± 0.8).

IV. DISCUSSION

The objectives of this study are to evaluate two points :
(i) the impact of a proposed personalization of the control
system of an exoskeleton and (ii) the adaptation of the user to
the control system over several repetitions.

There are two main interpretations that can be made from
the results presented in the previous section. The first one is
that the proposed method of personalizing the gain improves
the intuitiveness of the control system. Indeed, the post-
processing of the EMG signals shows that the case of first
contact presents a reduced activity of the anterior deltoid for
PERSO (29.0 ± 8.0% RMC compared to 37.4 ± 9.5% RMC
for GEN). These results align with the work of Yang et al.
(2017), where the authors showed improved performances
in teleoperation [32]. The approach designed by Yang and
collaborators is a two step process : (i) user’s tremor at-
tenuation based on a SVM and (ii) a real-time adaptation

of the gain based on muscle activity. Authors show that
their proposed method improve performances compared to
conventional approaches. The improvement is caracterized
by a reduced effort feedback and a reduced RMS error. In
an other study Zhang and collaborators (2017) demonstrated
the interest of human-in-the-loop optimization with an ankle
exoskeleton [33]. These authors highlighted reduced metabolic
energy cosumption with an optimized assistance compared
to no assistance. This reduction is more important with an
optimized assistance than with a generic one. Other related
studies focused on the personalization of control systems.
When considering gait rehabilitation, taking into account in-
dividual specificities is critical in order to provide relevant
assistance [34], [35], [36]. The work of Chinimilli et al.
(2019) showed a reduced muscular activity (vastus medialis)
with a personalized walking assistance compared to baseline
conditions. In addition to objective criteria our work also
offered a subjective evaluation. The only general question that
features a significant difference is about the intuiveness and
the result is in favor of PERSO. Finally, when looking at the
questions of comparison the same conclusion appears. Of the
two questions that significantly shift from the neutral, one is
about compared intuitiveness, favoring PERSO. The other one
shows that the participants judged that PERSO requires less
concentration. This further reinforces the point that PERSO
is more intuitive since an intuitive system should not require
more concentration to be used.

The second interpretation is that it is not necessary to
personalize the system to ensure a safe and efficient inter-
action. The results obtained from the EMG signal show that
both situations feature a reduction of activity of the anterior
deltoid along the repetitions. In the end, the activation levels
are similar for both situations. The same type of reduction
occurs for the trapezius for GEN as well. However, this
decrease does not occur for the trapezius muscle in the PERSO
condition. This may be due to the fact that initial muscle
activity of trapezius in this condition is lower than in the
GEN condition. In addition, precision in reaching the targets
improves in a similar way for both situations. The results of
the general questions show that both situations performed well
concerning the acceptance of the user. These positive elements,
i.e. precision and acceptance, support the idea of a generic gain
that might be deduced from simulation. Indeed, modelling the
human behavior permits to define a range of values for the
gain with boundary conditions (see Fig. 6). The shorter the
response time, the greater can be the gain. On the contrary, if
we consider a maximum response time that we expect to see
in a given population, we can pick a value for the gain that
would ensure the stability for every member of this group. The
gain would not be the most suitable for everyone but results
mentionned earlier suggest that users would adapt anyway.
This interpretation also align with the work of Zhang et al.
where they show that a generic assistance is also beneficial
(albeit not as efficient as a personalized one) [33].
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Fig. 16: Average answers for the general questions (blue for GEN, red for PERSO)

Fig. 17: Average answers for the comparison questions

V. CONCLUSION

In this study a method to adapt the gain of an integral-
based control system of an exoskeleton to improve user’s
intuitiveness was presented. The adaptation was based on an
objective criteria, and simulations were used to determine the
relation between gain and response time. An experiment was
conducted with the help of 10 participants in order to compare
the personalized gain to a generic one.

The main contribution of this study was the evaluation of

the impact of the proposed personalization method rather than
only the personalization itself. Indeed, a system of assistance
that was shown to work in a generic way was chosen [10]
and an automated approach was proposed to personalize the
main parameter of control, which was the gain of the integral
corrector.

Results showed that personalizing the gain improved the
intuiteveness of the system, but also that with some training
both gains yielded similar results. A complementary study
might be conducted in order to let participants select the gain
they prefer, while still measuring their response time. This
alternative approach could potentially confirm the proposed
method of adaptation, or offer an empirical relation between
gain and response time.
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