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Abstract: 
Many factors determine whether an individual responding to vaccination will generate an 
immune response that can lead to protection. Several studies have shown that the pre-
vaccination immune state associate with the antibody response to vaccines. However, 
the generalizability and mechanisms that underlie this association remain poorly defined. 
Here, we sought to identify a common pre-vaccination signature and mechanisms that 
could predict the immune response across a wide variety of vaccines. We leveraged the 
“Immune Signatures Data Resource” created by the NIH Human Immunology Project 
Consortium (HIPC) to integrate data from 28 studies involving 13 different vaccines and 
associate the blood transcriptional status of 820 healthy young adults with their 
responses. An unsupervised analysis of blood transcriptional profiles across studies 
revealed three distinct pre-vaccination states, characterized by the differential expression 
of genes associated with a pro-inflammatory response, cell proliferation, and metabolism 
alterations downstream of NFκB and IRF7. Innate and adaptive immune cell subset-
specific genes were also associated with the three pre-vaccination states. Importantly, 
individuals whose pre-vaccination state was enriched in pro-inflammatory response 
genes known to be downstream of NFκB tended to have higher serum antibody 
responses one month after vaccination. A supervised analysis of the same data resulted 
in a single classifier, also enriched for NFκB regulated genes, that predicted the antibody 
response across most of the vaccines. Projection into single-cell RNA-sequencing data 
suggested that this pre-vaccination state was attributable to the signature of activation of 
non-classical monocytes and myeloid dendritic cells. Transcriptional signatures of recent 
exposure to bacterial and not viral infections were enriched in the high pro-inflammatory 
pre-vaccination state and also included NFκB regulated genes. The pro-inflammatory pre-
vaccination state was highly reminiscent of the innate activation state triggered by TLR 
ligands or adjuvants. These results demonstrate that wide variations in the transcriptional 
state of the immune system in humans can be a key determinant of responsiveness to 
vaccination. They also define a transcriptional signature NFκB activation at baseline, that 
is associated with a greater magnitude of antibody response to 13 different vaccines, and 
suggest that modulation of the innate immune system by next-generation adjuvants 
targeting NFκB before vaccine administration may improve vaccine responsiveness. 
 

Introduction: 
Prophylactic vaccination is a cost-effective strategy to prevent or reduce the effect of viral 
and bacterial infections. Vaccine efficacy often varies significantly by age1, sex2, ethnicity3 
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and genetics4. Human immune responses are also shaped by the environment, including 
previous pathogenic perturbation of the immune system. Indeed, pre-vaccination markers 
of response to specific vaccines such as influenza, yellow fever and hepatitis B vaccines 
have been identified5-7. However, whether pre-vaccination markers exist for all vaccine 
platforms or if common/universal pre-vaccination markers of vaccine response can be 
identified have not been answered for a large number of vaccines. 
 
To define the biological mechanisms responsible for the induction of protective immune 
responses induced by vaccination, high-throughput transcriptomic technologies 
(microarray and RNA sequencing) have been used to profile the blood of vaccine 
recipients. Paired with the use of machine-learning techniques, previous studies have 
identified signatures (i.e. set of genes) of vaccine conferred protection and/or of protective 
antibody-response to immunization. For example, pre-vaccination expression of genes 
related to B cell receptor signaling and antigen processing predicted protective immune 
response to influenza, yellow fever and hepatitis B vaccinations5,8,9. In contrast, pre-
vaccination expression of genes related to granulocytes and interferon (IFN)-stimulated 
genes have been associated with a poor response to hepatitis B vaccination5,10, and 
genes related to proliferation and inflammatory response were more expressed by 
participants who showed a poorer response to the influenza vaccine6,11 and the malaria 
vaccine12. However, no single gene is shared by all previously identified pre-vaccination 
signatures. Moreover, some of the biological pathways identified showed opposite 
associations with response between vaccines (e.g., IFN signaling for hepatitis B10 versus 
influenza and yellow fever vaccination9) or between studies for the same vaccine (e.g., B 
cell signaling for influenza vaccination8,11). As different vaccines include different antigens 
and adjuvants that signal through various innate sensors, the level of expression and 
activation of those innate sensors by previous exposure to bacteria, viruses, or other 
pathogens prior to vaccination may modulate the immune response to vaccines. 
 
Identifying a universal signature predictive of protective vaccine responses and 
understanding the biological pathways required to mount a protective humoral response 
following vaccination in healthy adults may lead to more effective strategies (e.g., 
administration of immunomodulators) to enhance vaccine response. Those new 
strategies may particularly benefit the most vulnerable populations, including infants, the 
elderly, and immunosuppressed individuals. 
 
Here, we show that a common pre-vaccination peripheral blood transcriptional signature 
is predictive of antibody responses across 13 different vaccines. Functional annotation of 
this signature shows enrichment of effector genes of pro-inflammatory responses and 
pre-exposure sensing of ligands associated with bacterial infections. Single-cell 
transcriptomic analysis identified non-classical monocytes and myeloid dendritic cells as 
the likely source of this pre-vaccination signature. The overlap between this predictive 
signature and the transcriptomic signature following Toll-like receptor (TLR) stimulation 
or adjuvant treatment suggests that a state of natural adjuvantation is associated with 
better responses to vaccination.  
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Results: 
 
Heterogeneity of transcriptional profiles pre-vaccination 
Transcriptomic profiles of whole blood and peripheral blood mononuclear cells of 820 
healthy adults aged 18 to 55 before and after vaccination were collected from publicly 
available databases (refer to as the “Immune Signatures Data Resource”13). Several 
vaccine platforms ranging from live-attenuated viruses (i.e. yellow fever, smallpox and 
influenza vaccines), inactivated viruses (i.e. influenza vaccine) and glycoconjugate 
vaccines (i.e. pneumococcal and meningococcal vaccines) were included in this dataset 
(Figure 1A-B). We assessed the contribution of different socio-demographic (age, 
biological sex, ethnicity) and experimental (vaccine platform, time after vaccination) 
variables on the variance in the transcriptomic data (Figure 1C). Age (14%), timepoints 
(9%) and vaccine (9%) explained only a small fraction of the variance observed in the 
transcriptomic data; over 62% of the variance between samples could not be explained 
by any of the recorded clinical and experimental variables. To understand the source of 
the variance between participants, we restricted our analysis to the pre-vaccination 
timepoints (Figure S1). We used hierarchical clustering to identify subgroups of 
participants with similar transcriptomic profiles pre-vaccination. 
 
Pre-vaccination states of the immune system modulate the transcriptional response to 
vaccines 
Hierarchical clustering (an unsupervised method) followed by identification of the number 
of clusters by the Gap statistic identified three groups of participants (i.e. states) based 
on their pre-vaccination expression of genesets included in the MSigDB hallmark 
genesets 14 and blood transcriptomic modules 15 (Figure 2 and Figure S2A). Neither age, 
sex, nor pre-existing antibody levels to the immunogen were associated with the 
differences in gene expression observed in these three states (Figure S2B). Using 
samples collected 7 days before vaccination and those just before vaccination (Day 0) 
from the same participants (n=74), we confirmed the stability over time of these 
transcriptomic profiles (Figure S2C). 
 
One state showed heightened expression of transcriptomic markers of monocytes and 
dendritic cells, IFN-stimulated genes (ISGs) and pro-inflammatory genes and thus was 
designated a high inflammatory (inflam.hi) state. Transcriptomic markers of monocytes 
and dendritic cells induced in the inflam.hi state included several innate immune sensors 
(TLR1, TLR2, TLR4) and concomitantly genes of the TLR4 signaling cascade (TLR4, 
LY96, DNM3, PLCG2) (Figure S2D). The type I IFN signaling cascade was also an 
important feature of the inflam.hi state. Receptors upstream of the IFN pathways (IFNA2, 
IFNAR1, IFNAR2, TYK2), nucleic acid sensors that trigger this pathway (DDX58, TRIM25, 
MAVS, TRAF6, TANK), and transcription factors that regulate the expression of ISGs 
(STAT1, STAT2, IRF1, IRF7) were all upregulated in the inflam.hi state compared to the 
other two states. The NFκB pathway, a hallmark of inflammation, and its target genes, 
including pro-inflammatory cytokines (TNF, IL6, IL1B) and their receptors (TNFRSF1A) 
or effector molecules regulated by NFκB, including the metalloprotease ADAM17 that 
cleaves the ectodomain of TNF-𝛼, were all induced in the inflam.hi stat. Likewise, the IL-
6 signaling pathway (IL6R, JAK2, STAT3), a pathway that triggers the proliferation of 
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activated B cells, was induced in the inflam.hi state. Moreover, several genes of the 
inflammasome complex and IL-1 signaling, also downstream of NFκB, were also 
upregulated in this state of subjects, including IL1A, IL1B, IL1R1 and IL1RAP. Altogether, 
this state was characterized by genes and pathways involved in pro-inflammatory 
processes common to nucleic acid-sensing, which could promote the development of an 
immune response to vaccines. 
 

A second state showed lower expression of the above-listed pro-inflammatory genes and 
pathways (i.e. NFκB and ISGs) when compared to the first state (Table S1). This state 
was designated as the low inflammatory (inflam.lo) state. Heightened expression of 
transcriptomic markers of natural killer cells, T cells, B cells and target genes of the 
transcription factors E2F and MYC both involved in the upregulation of cell proliferation 
and cell metabolism were features specific to the inflam.lo state. Transcriptomic markers 
of natural killer (NK) cells induced in the inflam.lo state included cell surface markers of 
NK cells (KLRD1, KLRB1), effector molecules of cytotoxic function (GZMB, FASLG, 
CASP3), and genes of the IL12 signaling cascade (IL12RB1, STAT4). Transcriptomic 
markers of T cells expressed in the inflam.lo state included members of the IL2 signaling 
cascade (IL2RA, IL2RB, LCK), CD28 dependent PI3K/AKT signaling cascade (CD28, 
CD80, PIK3CA, PIK3R1, PIK3R3, AKT3) and IL7 signaling cascade (IL7, IL7R); the latter 
two pathways being involved in the maintenance of the naïve T cell pool. Transcriptomic 
markers expressed by B cells of the inflam.lo state included cell surface receptors 
(CD79A, CD79B, CD22, CD19) and kinases (FYN, BTK) of the BCR signaling complex. 
Known target genes of E2F and MYC induced in the inflam.lo state include cell cycle and 
proliferation regulators (MYC, CDKN2A, AURKA) and cell metabolism (LDHA, MTHFD2, 
TYMS). Altogether, this state was characterized by the lack of expression of genes 
downstream of innate sensing (i.e. IFNs and NFκB target genes), while their 
transcriptomic profiles showed that cells of the adaptive immune system were activated 
and engaged in an ongoing immune response 16. 
 
Finally, a third state showed a mixed transcriptomic profile between low and inflam.hi 
states and was designated as the mid inflammatory (inflam.mid) state. T cells, NK cells 
and B cell-specific genes were upregulated in these participants compared to the inflam.hi 
state and higher levels of pro-inflammatory genes are found in this state compared to the 
inflam.lo state (Table S1). 
 
Immune cell frequencies vary between the pre-vaccination states  
Flow cytometry (n=164) and immune cell deconvolution 17,18 were used to determine if 
the three pre-vaccination inflammatory states were driven the frequency of different innate 
and adaptive immune cell subsets (Figure S2E). The inflam.lo state showed an increased 
frequency of naive B cells (CD19+CD27-IgG-IgA- cells with heightened expression of 
ABCB4, ADAM28 and BACH2), which is in line with the above-described gene expression 
profiles. CD8+ T cells (CD3+CD8+CD45RA+ cells with heightened expression of 
CRTAM, PIK3IP1, TRAV12-2) were also more prevalent in this state. In contrast, the 
inflam.hi states showed an increase in Monocyte frequencies (19% of immune cells in 
inflam.hi versus 16% in inflam.lo), in line with the results from the transcriptomic profiling 
(Figure 2). To assess whether the change in gene expression between the three states 
could be explained solely by the difference in immune cell frequency, differential 
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expression analysis was performed, adjusting for the immune cell frequency, and re-
identified inflammatory genes as markers of three states (Table S2). This analysis 
suggests that the difference in inflammatory gene expression between the three states 
could not be explained by differences in cell frequencies alone and confirmed the 
differential transcriptomic activity of those inflammatory genes between states.  
 
The pre-vaccination states define the early gene expression response to vaccines 
Next, we evaluated the impact of the pre-vaccination inflammatory states on the 
magnitude and kinetics of post-vaccination transcriptional responses. The pre-
vaccination inflammatory states explained 12.5% of the variance in gene expression 
observed pre- and post-vaccination (Figure S3A). Participants from the inflam.hi state 
showed reduced vaccine-induced expression of pro-inflammatory pathways (e.g., 
complement pathway, IL6 signaling pathway) at Days 1 and 3 post-vaccination when 
compared to the participants from the inflam.low (log2 fold-change (log2FC) < -1.46; 
Wilcoxon-rank sum test: p<0.0106) and inflam.mid (log2FC < -0.643; Wilcoxon rank-sum 
test: p<0.0996; Figure 3A and Figure S3B) states. By day 7, levels of the pro-
inflammatory pathways returned to pre-vaccination levels in all three states. Similarly, 
participants from the inflam.hi state showed reduced expression of ISGs at day 1 post-
vaccination when compared to the inflam.low (log2FC=-2.81; Wilcoxon rank-sum test: 
p=8.08x10-4) and inflam.mid (log2FC=-1.54; Wilcoxon rank-sum test: p=0.0996; Figure 
3B and Figure S3C) states. The inflam.hi state participants also had a dampened B cell 
signature on day 7 and beyond compared to the inflam.low state (log2FC=-0.866; 
Wilcoxon rank-sum test: p=1.87x10-4; Figure 3C and Figure S3D). The levels of B cell 
markers returned to pre-vaccination levels by day 7 in the inflam.lo group contrary to the 
inflam.hi where B cell markers were sustainably induced compared to pre-vaccination 
levels (Figure S3E). Similarly, T helper 2 cell markers, necessary to mount an humoral 
response, were induced at day 7 post-vaccination in the inflam.hi group but not in the 
inflam.lo (Figure S3F). The inflammatory states affected the magnitude of the 
transcriptomic changes triggered by the vaccines, specifically at the earliest time points. 
However, we did not observe kinetic differences (i.e. delays in gene expression) between 
the three states. 
 
Identification of universal predictive signatures of antibody responses to vaccination 
We then assessed the association between the pre-vaccination states and antibody 
responses triggered by all 13 vaccines and measured 1 month (Day 28) after 
immunization. Participants from the inflam.hi state showed significantly higher antibody 
responses across all vaccines compared to participants of the inflam.lo state 
(log2FC=1.58, Wilcoxon rank-sum test: p=0.0161, Figure 4A). The association between 
the inflammatory states and antibody response was stronger for influenza inactivated 
vaccines but remained significant for the remaining vaccines (Figure S4A). The 
inflammatory states tended to be associated with antibody response measured beyond 
Day 28 but did not reach significance (Figure S4B). Taken together, there is an 
association between pre-vaccination immunological states and vaccine-induced antibody 
response. 
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To complement the unsupervised approach, we used a supervised approach to identify 
genes that are predictive of high (top 30%) versus low (bottom 30%) antibody response 
to vaccination. We trained a random forest classifier that predicts vaccine-specific 
antibody responses based on pre-vaccination gene-expression profiles. This classifier 
achieved an area under the ROC curve of 60% as estimated by 10-fold cross-validation 
(Figure 4B). The accuracy of the classifier was significant for the vaccines with the 
greatest number of samples (Influenza inactivated: n=476; p<2.95x10-33; Yellow fever: 
n=96; p=1.32x10-3) and deteriorated for vaccines with smaller sample sizes (Figure S4B, 
n<30; p>0.322). We did not observe any significant association between misclassification 
and the sex, age, ethnicities or geographical locations of the participants, suggesting that 
the classifier accuracy is not affected by those parameters. For example, the yellow fever 
vaccine recipients included in the immune signature dataset originated from five cohorts 
recruited in the United States, Canada, Switzerland, Uganda and China. The supervised 
classifier was significantly associated with high vaccine response in all cohorts except the 
one from the United States. The immune signature datasets also include vaccines that 
were administered intramuscularly, intravenously or intranasally (e.g., FluMIST), and the 
inflammatory signatures were predictive independently of the route of vaccination. 
 
The top 200 predictive genes selected by their importance in the classifier were enriched 
for inflammatory markers (Fisher’s exact test: p=4.25x10-6; Figure 4C). Inflammation 
markers (identified in Figure 2) that contributed to the classifier predictions included 
several pro-inflammatory cytokines and chemokines (CCL20/MIP3a, CXCL10/IP-10, 
IL1B), receptors involved in innate immune signaling (TLR2, TLR3, CD70/TNFSF7), 
mediators of complement activation (C3AR1, ICAM1) and pro-apoptotic effector 
molecules (CASP7, CASP10). The classifier was compared to six previously identified 
pre-vaccination signatures of vaccine responses5,6,9,10,19,20. There was no significant 
overlap in gene content between the supervised classifier and the six previously identified 
pre-vaccination gene signatures (Figure S4C). Notably, the classifier developed here was 
the only one to predict antibody response across the majority of the vaccines tested. In 
contrast, most of the previously identified signatures, including the pro-inflammatory 
signature we previously identified that predicted influenza vaccination response, were 
only predictive for the vaccines they have been trained on and not on the remaining 
vaccines (Figure 4D). Altogether, the signature identified here provides evidence that a 
specific inflammation pre-vaccination helps to mount a good antibody response across 
multiple vaccines.  
 
Etiology of the pre-vaccination inflammatory states 
To identify the cells that express the inflammatory genes included in the classifier of 
vaccine-induced antibody responses, we utilized CITE-seq data from PBMCs collected 
from 20 healthy participants prior to vaccination with an inactivated influenza vaccine 9. 
We tested if the inflammatory genes were elevated in a specific cell subset or if their 
expression reflected a heightened global state of immune cell activation pre-vaccination 
common to all subsets. We analyzed the expression of the inflammatory genes of the 
classifier of vaccine-induced antibody responses within clusters of single cells defined by 
the expression of 65 specific cell surface proteins (Figure 5A and Figure S5). The 
inflammatory genes identified by the unsupervised and supervised analysis were highly 
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enriched within the innate immune cell subsets, in particular within CD14+ CD16- classical 
monocytes, CD14- CD16+ non-classical monocytes, CD1c+ CD11c+ mDCs, and CD123+ 
CD303+ pDCs (Figure 5B). These results suggested that the cellular source of the pre-
vaccination activated state found through orthogonal supervised and unsupervised 
analysis was derived from innate immune myeloid cells (as suggested from Figure 2).  
 
Pre-vaccination inflammation in seemingly healthy participants can result from a non-
infectious etiology or from bacterial- or viral-induced proinflammatory responses. To 
identify the possible upstream signals associated with the inflammation described above, 
we used the 7-gene classifier described in Sweeney et al.21 to discriminate between 
inflammation caused by bacterial (classifier score above 0) or viral infections (classifier 
score below 0). Applying this classifier to our cohort of vaccinees showed that participants 
within the inflam-high state and the highest Ab response expressed genes associated 
with exposure to bacterial infections (Figure 6A). 
 
We further observed that one of the bacterial markers in this 7-gene classifier, TNIP1, is 
a known NFκB target and that the classifier score was positively correlated with an 
induction of NFκB target genes. This contrasts with IFI27, a ISG used as a viral marker 
in the 7-gene classifier, and that IFN targets negatively correlated with the bacterial/viral 
classifier score. Interestingly, vaccines that were correctly predicted by the classifier show 
a stronger induction of NFκB targets in high-responders than low-responders (Figure 
S6A; ex: Influenza inactivated: log2FC=2.48; Yellow fever: log2FC=0.743; Hepatitis B: 
log2FC=1.12). ISGs, downstream of IRF7, were also associated with a robust humoral 
response to most of the vaccines except vaccines using poxvirus vectors such as the 
Smallpox or Yellow fever vaccines; for which strong expression of ISGs were associated 
with hyporesponses (Figure S6A). 
 
To confirm those results, we queried publicly available transcriptomic datasets related to 
bacterial inflammation22, viral inflammation22, PRR activation23 and antibiotic treatment24. 
Again, counter-intuitively, our inflammatory signature generated on healthy participants 
showed significantly overlapping with gene signatures from participants infected by S. 
aureus and S. pneumoniae compared to healthy participants and to peripheral 
mononuclear cells stimulated in vitro with the TLR2/6 ligand PAM2 (Figure S6B). Gene 
expression of dendritic cells stimulated with pattern recognition ligands (several of them 
used as vaccine adjuvants)25 showed strong induction of the inflammatory genes that 
were part of our classifier, suggesting that the heightened expression of those genes is a 
hallmark of a naturally adjuvanted immune system (Figure 6B).  
 

Discussion 
In this manuscript, we characterize the inter-individual heterogeneity in the inflammatory 
state of the peripheral immune system pre-vaccination associated with vaccine response. 
We show that this heterogeneity is characterized by different transcriptional signatures, 
which are associated with a distinct distribution of cell subsets pre-vaccination. Our 
results show that this heterogeneity drives the magnitude of the antibody response to 13 
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different vaccines. Our work highlights the impact of the role of the pre-vaccination 
immune system and pre-sensitization of the innate immune system to pathogen-
associated molecular patterns in priming the B cell response to vaccination. Previous 
results have shown that signatures of inflammatory markers, that do not overlap with the 
signature presented herein, were associated with response to influenza vaccines among 
young adults6. The results presented here extend this observation to other vaccines; more 
importantly, they provide a mechanistic framework that can lead to the selection of 
adjuvants most efficient at stimulating vaccine-induced protective immune responses. 
 
The inflammatory signature identified in this work predicts antibody response with a 
significant accuracy across the 13 vaccines tested (Accuracy=0.605, p=1.21x10-5). 
Compared to previously identified signatures of vaccine response, ours was the closest 
to a universal signature of vaccine response. This suggests that a set of genes and 
pathways are shared between vaccines and are associated with protective antibody 
responses following immunization. This is noteworthy as our analysis included a broad 
range of vaccines that engage several innate immune system cells and molecules. For 
example, live attenuated yellow fever vaccine will engage TLR2 and TLR8 on mDCs, 
TLR7 and TLR9 in pDCs, and RIG-I/MDA5 26, Smallpox virus will engage STING, 
whereas inactivated influenza vaccine will engage TLR7/TLR8 (Table S3). 
 
The approach undertaken herein that consisted of training on all 13 vaccines 
distinguishes this work from previously published reports. This strategy is most likely the 
main factor contributing to the identification of this cross-vaccines classifier. Training this 
classifier on one vaccine did not confer predictive power on distinct vaccines irrespective 
of whether this was a live attenuated, inactivated, or subunit vaccine (data not shown). In 
contrast, the global classifier of vaccine responses identified herein performed as well as 
a classifier trained on a given vaccine and tested on that same vaccine. Our classifier 
performed better on vaccines with a greater sample size suggesting that the accuracy of 
our classifier could be improved by performing transcriptomic analysis of future studies 
for those vaccines where we were able to obtain a limited set of samples. 
 
Our results show that qualitative and quantitative features, including transcriptional 
programs (MYC and E2F versus IFNs and NFκB target genes), can identify a pre-
vaccination environment that will lead to heightened antibody response to vaccines. 
Expression of NFκB, the prototypic transcriptomic factor that controls the development of 
inflammatory responses, and its target genes are induced in the inflam.high state. NFκB 
is essential for driving the transcription of cytokines (e.g., TNF) and chemokines (e.g., 
CXCL10) that trigger cells of the innate and adaptive immune responses to migrate to 
sites of vaccination and differentiate into effector cells. Upregulation of ISGs is also a 
feature of this state of participants, including the master transcriptomic factor of the type 
I/type II IFNs cascades IRF-7. Type I and type II IFNs regulate genes involved in antigen 
processing and presentation. In contrast, inflam.lo participants demonstrated 
upregulation of transcriptional networks that highlight genes and pathways of T and B cell 
activation, proliferation while these same participants showed low NFκB and IRF7 
expression.  
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These two pathways seem to be driven by recent exposure to bacteria (NFκB) or to 
viruses (interferons). Both signatures show synergy (additivity) with vaccines that trigger 
MyD88 and IRFs, suggesting that the activation of these pathways in innate immune cells 
will lead to more efficient priming of innate immune responses. Indeed, both TNF and the 
inflammasome are potent inducers of adaptive immune responses and are triggered by 
several adjuvants including Alum and MF59. Of note, presence of the IFN signature prior 
to vaccination was negatively associated with the antibody responses in live attenuated 
viral vaccines (yellow fever, Smallpox, dengue vaccine [Pelletier and Sekaly , 
unpublished]). This inhibitory effect of IFNs may be due to their antiviral activity, which 
could limit viral replication and antigen production by vaccines.  
 
The heightened transcriptional signature of inflammation-related genes pre-vaccination, 
confirmed to be stable over a week-long period could result from (i) host genetics; (ii) the 
environment, which includes diet, prior infection etc, and (iii) the microbiome. To the latter 
point, our previous work on ”TLR5-mediated sensing of gut microbiota is necessary for 
antibody responses to seasonal influenza vaccination”, is relevant27. In that paper we 
showed that TLR5-mediated sensing of flagellin in the gut microbiota promoted influenza 
vaccine specific antibody response by stimulating lymph node macrophages to produce 
plasma cell growth factors.  
 
The inflammatory response has been linked to aging; a process that has been termed 
inflammaging. Compared to young adults, increased inflammation in the elderly has been 
reported to be associated with hyporesponse to vaccines. The inflammatory signature 
identified here was not associated with the humoral response to influenza, hepatitis B and 
varicella zoster vaccines in the elderly, suggesting that age-associated inflammation5 is 
different (i.e. lacking intercepting gene signature) from the inflammatory signals 
associated with vaccination-response in adults (18 to 55 years) (Figures S4D and S7). 
This suggests that different types of inflammation can lead to different responses to 
vaccination. Indeed, we provide direct evidence that inflammation is heterogeneous and 
drives vaccine responses. Importantly, we show that this inflammatory signature that was 
associated with response to vaccination overlapped with the inflammation triggered by 
exposure to bacterial byproducts including or by translocation of bacteria from the gut; 
the latter signature is different from the inflammation caused by non-infectious diseases, 
viral infection or antibiotic therapy. The inflammatory signature described in this work 
contains several TLR genes and appears to be concentrated in mDCs and non-classical 
monocytes. Those leukocytes are different from those mediating other types of 
inflammation listed above, suggesting that the inflammation associated with vaccine 
response may result from different biological drivers than other types of inflammation. The 
prevalence of different types of inflammation is also suggested by the lack of overlapping 
genes with inflammation signatures in the elderly (inflammaging) which have been 
associated with poor vaccine response (Figure S4D). In addition to a distinct relationship 
of inflammatory states to vaccine responses, additional factors contribute to age-specific 
immune responses to adjuvants and vaccines, including distinct PRR function with age28. 
 
Our data show that higher frequencies of monocytes are observed in participants with 
high inflammatory responses (14% to 26% of immune cells in blood). In contrast, 
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participants of the low inflammatory state demonstrated high frequencies of naive B cells 
and CD8 T cells. Although we observed differences in immune subset frequencies 
between the pre-vaccination states, those frequencies could not solely explain the 
differences in gene-expression observed between the pre-vaccination states, highlighting 
that in addition to differences in cellular composition of blood, pre-vaccination states also 
reflect differential transcriptomic activities associated with the state of the immune system 
pre-vaccination. 
 
Participants from the inflam.lo states showed several marks of a distinctly activated 
immune system prior to vaccination, including a heightened expression of E2F and MYC 
transcriptomic program and heightened frequency of CD8+ T cells. In addition, the 
inferred frequency of CD8+ T cells from the deconvolution was negatively correlated with 
Day 28 antibody response suggesting that participants of the inflam.lo states may have 
an activated/committed immune system prior to vaccination (Figure S2E).  
 
Strategies that directly impact pre-vaccination inflammation or modulate the pre-
vaccination commensal bacterial flora impact the immune response to vaccination 24. In 
this study, we observed similarities between the pro-inflammatory signature associated 
with vaccine response and the pro-inflammatory signatures induced by bacterial infection. 
Bacterial infections activate pattern recognition receptor signaling cascades, which will 
trigger the activation of the NFκB transcription factor complex and the induction of pro-
inflammatory transcriptomic programs. The overlap between the pro-inflammatory 
signatures associated with vaccine response and following bacterial signaling was not 
specific to one bacterial species but was shared by different bacteria such as S. aureus 
and S. pneumoniae. The signature overlapped with that of the activation of PRRs by 
bacterial immunogens such as TLR1, TLR2 and TLR4. Interestingly, the expression of 
TLR1, TLR2 and TLR4 were identified in the pro-inflammatory signature that was 
associated with enhanced responses to vaccines. Moreover, engagement of other 
adjuvants, such as polyIC enhances the expression of PRRs and the induction of the 
same pro-inflammatory genes as those associated with robust vaccine responses. 
Among the 13 vaccines part of the immune signature dataset, only the hepatitis B vaccine 
was adjuvanted with aluminum hydroxide. For the other vaccines that did not use an 
adjuvant, having a pro-inflammatory signature pre-vaccination originating from dendritic 
cells and non-classical monocytes appeared to reflect an activated innate immune state 
and was associated with an enhanced humoral response post-vaccination. 
 
In conclusion, the inflammatory signature identified herein predicts humoral response 
across diverse vaccines and provides a mechanistic framework that can lead to the 
selection of adjuvants most efficient at stimulating vaccine-induced protective immune 
responses. Whether the heightened inflammatory response is also associated with 
humoral response to current or future vaccines platforms (mRNA, nanoparticle, 
adenoviruses) not included in the meta-analysis, including vaccines against SARS-CoV-
2, still remains to be determined. 
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Material and Methods 
Gene-expression Preprocessing 
They included 2,949 samples from published studies and 228 samples not included in 
previously published studies. All these samples were assembled into a single resource 
(referred to as the immune signature dataset).  
An extensive description of the preprocessing of microarray and RNA-Sequencing (RNA-
Seq) datasets included in the immune signature dataset can be found at 13. Briefly, raw 
probe intensity data for Affymetrix studies were background corrected and summarized 
using the RMA algorithm. For studies using the Illumina array platform, background 
correct raw probe intensities were used. For RNA-Seq studies, count data was voom-
transformed to mimic gene array expression intensities distribution. Expression data 
within each study is quantile normalized and log-transformed separately for each study. 
 
Batch correction 
An extensive description of the across studies normalization used to correct for batch 
effect can be found at 13. Briefly, a linear model was fit using the pre-vaccination 
normalized gene-expression as a dependent variable and platform, study and cell types 
as independent variables. The estimated effect of the platform, study and cell types was 
then subtracted to the entire gene expression (pre- and post-vaccination) to obtain the 
batch corrected gene expression used for the analysis presented in this article. Principal 
variance component analysis (PVCA) was used to assess the effect of other phenotypic 
variables on the batch corrected gene expression. All the phenotypic variables were 
coded as categorical variables before the PVCA analysis; this includes the age imputed 
coded as 10-years intervals and the timepoints before and after vaccination left-censored 
at 20 days and coded as days from vaccination.  
 
Clustering of the samples 
For functional characterization of the genes, we made use of known genesets from two 
sources: Hallmark collection from MSigDB (version 7.2) 14 and the blood transcriptomic 
modules (BTM)15. Overall activity on each geneset/pathway was estimated for each 
sample using Sample-Level Enrichment Analysis (SLEA)29. Hierarchical clustering using 
Euclidean distance and complete linkage was used to cluster samples. The resulting 
dendrogram was cut to generate three clusters of samples. The three clusters were 
designated as low-, mid-, high-inflammatory clusters based on the average SLEA z-score 
of four hallmark inflammatory genesets (HALLMARK_INFLAMMATORY_RESPONSE, 
HALLMARK_COMPLEMENT, HALLMARK_IL6_JAK_STAT3_SIGNALING and 
HALLMARK_TNFA_SIGNALING_VIA_NFKB). Hallmark and BTM genesets were 
grouped based on their name and description into markers of seven cell subsets or 
canonical pathways (T cells, NK cells, B cells, Monocytes/DC, Inflammation, E2F/MYC 
and ISGs). Canonical genes of those seven cell subsets or canonical pathways were 
identified by looking at the genes part of the genesets annotated to those cell subsets or 
canonical pathways and ranking them based on the number of GeneRIF entries 
associating them to cell subsets or canonical pathways. The expression of the top 10 
genes annotated to those seven cell subsets and canonical pathways are presented in 
the gene-level heatmap. 
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Antibody response 
Maximum fold-change was calculated for all participants with neutralizing antibody 
response, HAI, or IgG levels measured by ELISA.  
 
Identification of high and low responders 
The maximum fold-change (MFC) between day 28 (+/-2 days) and pre-vaccination tiers 
was used to quantify the antibody response to vaccination. To minimize the difference in 
antibody response between studies (due to differents vaccines, different techniques used 
for antibody concentration assessment), the high and low responders were identified for 
each study separately by selecting the participants with MFC above the 70th percentile 
as high responders and participants with MFC below the 30th percentile as low 
responders. 
 
Strategy for identifying a gene signature predictive of vaccine response using pre-
vaccination transcriptomic profiles 
In order to evaluate if participant-specific transcriptomic profiles taken pre-vaccination 
were predictive of antibody response 28 days post-vaccine, we set out to develop 
predictive models using the random forest algorithm. The training set included 
participants achieving a high or low antibody response (n=522) based on the 
discretization of maximum fold-change (MFC_p30) and top 500 varying genes as input. 
Models were trained to minimize the Brier score and tuning parameters were estimated 
based on 10-fold cross-validation. In this final model, the performance was assessed 
using 10-fold cross-validation using standard performance metrics including auROC, 
Accuracy, PPV, NPV, Sens, Spec, as well as Brier score. 
 
CITE-Seq analysis 
CITE-seq data consisting of pre-vaccination PBMC samples from participants in SDY80 
were downloaded from 9. Cell type annotations used in this analysis are the ‘high 
resolution’ annotations from Kotliarov et. al, these clusters were derived from graph-
based clustering using Seurat30 directly on a Euclidean distance matrix of surface protein 
expression. CITE-seq surface protein data was normalized and denoised using dsb31. 
UMAP embeddings were calculated using the umap python package32. A Wilcoxon Rank 
Sum test with a minimum proportion of expressing cells of 0.2 and a log fold-change 
threshold of 0.3 was used to test genes from the high inflammatory state between different 
clusters using Seurat (all genes shown in the heatmap in Figure 5).  
 
Comparison with other pre-vaccination signatures 
The bacterial/viral classifier was applied to the immune signature dataset by averaging 
the expression of the bacterial infection markers (HK3, TNIP1, GPAA1, and CTSB) and 
subtracting the average expression of the viral infection markers (IFI27, JUP, and LAX1); 
a resulting score above or equal 0 was considered more similar to bacterial infection while 
a score below 0 more similar to viral infection. 
  
 
Data availability 
All data used in this study are available in ImmuneSpace (www.immunespace.org/is2.url).  
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Code availability 
R code used to generate the figures presented in the paper can be found at 
(www.immunespace.org/is2.url). 

Figures 
 

 
Figure 1. Creation of a combined dataset of transcriptional responses to vaccination 
across diverse pathogens and vaccine types (A) Flowchart describing the collection, 
curation, standardization and preprocessing steps leading to the creation of the vaccine 
transcriptomics compendium. (B) Histogram of the timepoints pre- (days -7 and 0) and 
post-vaccination (days > 0) available in the immune signature data resource. In the plot, 
each vaccine is represented by a different color, while the size of the bar is proportional 
to the number of samples with available transcriptomic data. Only healthy adults, aged 
18 to 50 years old, with available pre-vaccination data were included in the resource. (C) 
Principal variance component analysis was used to estimate the proportion of the 
variance observed in the transcriptomic data that can be attributed to clinical (age, sex, 
ethnicity) and experimental variables (time after vaccination, vaccine). The proportion of 
the variance that could not be explained by those variables is depicted by the residuals 
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(resid). Confidence intervals (95%, percentile method) and bar height (mean) were 
computed from 4000 bootstrap replicates. 
 

 
Figure 2. Participants have distinct pre-vaccination transcriptomic profiles. Hierarchical 
clustering (Euclidean distance metric and complete linkage agglomeration method) of 
pre-vaccination samples (day -7 and day 0) based on the expression of the blood 
transcriptomic modules (BTM) and hallmark genesets. The overall transcriptomic activity 
of genesets/modules were estimated using the SLEA method29. Three groups of 
participants/states can be identified by cutting the dendrogram. Average SLEA score of 
the four hallmark inflammatory genesets (bold row labels; inflam.gs), discretized in 
tertiles, is shown as sample annotation. One state with heightened pre-vaccination 
inflammatory pathways (i.e. high), one with low levels of inflammatory pathways (i.e. low) 
and one intermediary state (i.e. mid). Expression of genes part of the hallmark and BTM 
genesets are presented in a heatmap (right side). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.26.461847doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.26.461847
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 
 

Figure 
3. Kinetic of response dictated by pre-vaccination profiles. Line plot showing the 
expression of inflammatory pathways (A), ISGs (B) and B cells (C) as a function time, 
separately for participants with low, mid or high pre-vaccination inflammation. Each 
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colored line corresponds to one participant, LOESS regression was used to determine 
the average expression per pre-vaccination state (black lines).  
 

 
Figure 4. Prediction of antibody response by pre-vaccination profiles. (A) Boxplot of the 
maximum fold-change (MFC) between antibody responses at day 28 over pre-vax as a 
function of the pre-vaccination inflammation states. The MFC was scaled to a mean of 0 
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and a standard-deviation of 1 across vaccines (sMFC). A Kruskal-Wallis test was used to 
assess differences in antibody response between states and resulted in a p-value of 
0.0323. (B) A supervised approach consisting in building an random-forest classifier was 
adopted to distinguish high vaccine responders (3rd tercile) from low vaccine responders 
(1st tercile) at day 28. The accuracy of the ensemble model was assessed by 10-fold 
cross-validation (10-fold CV). The receiver operating characteristic (ROC) curve is 
presented along with the area under the ROC curve (AUC) with 95% CI estimated from 
the 10-fold CV. (C) Top predictive genes/features included in the ensemble overlap 
inflammatory genes identified in the unsupervised approach (Fisher’s exact test: p < 
3.93e-4). Heatmap showing the expression of the overlapping genes pre-vaccination. 
Samples columns are ordered by increasing levels of expression of the inflammatory 
genes. A Wilcoxon-rank sum test was used to assess association between the 
inflammatory signatures and high/low antibody response and resulted in a p-value of 
4.25e-6. (D) Comparison of the gene signature in this work compared to previously 
identified pre-vaccination signature of vaccine response. 
 

 
Figure 5. Pre-vaccination states in scRNAseq (A) UMAP of PBMCs from 10 high and 10 
low responders profiled by CITE-seq9; subsets were identified based on surface protein 
expression (average dsb normalized protein expression within each cluster). (B) Single 
cell CITE-seq deconvolution of inflammatory genes identified by the unsupervised and 
supervised approaches as being associated with antibody response in the blood cells 
subsets. The color represents average log normalized expression within each cluster with 
scales clipped at a maximum of 0.25, and the dot size represents the percent of cells 
within that cluster with non-zero expression of the gene. 
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Figure 6. (A) Boxplot showing the Bacterial/Viral metascore21 as a function of the pre-
vaccination inflammatory states. A Kruskal-Wallis test was used to assess the difference 
in bacterial/viral metascore between states and resulted in a p-value of 3.76e-21. (B) 
Gene expression of dendritic cells from three independents donors stimulated for 6 hours 
with five PRR ligands.  
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