
Using causality and correlation analysis to decipher 1 

microbial interactions in activated sludge  2 

 3 

Weiwei Caia, Xiangyu Hana, Hong Yaoa* 4 
a
 School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China 5 

 6 

 7 

  8 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.26.461882doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.26.461882


ABSTRACT 9 

Network theory is widely used to understand microbial interactions in activated sludge 10 

and numerous other artificial and natural environments. However, when using 11 

correlation-based methods, it is not possible to identify the directionality of interactions 12 

within microbiota. Based on the classic Granger test of sequencing-based time-series 13 

data, a new Microbial Causal Correlation Network (MCCN) was constructed with 14 

distributed ecological interaction on the directed, associated links. As a result of 15 

applying MCCN to a time series of activated sludge data, we found that the hub species 16 

OTU56, classified as belonging the genus Nitrospira, was responsible for completing 17 

nitrification in activated sludge, and mainly interacted with Proteobacteria and 18 

Bacteroidetes in the form of amensal and commensal relationships, respectively. 19 

Phylogenetic tree suggested a mutualistic relationship between Nitrospira and 20 

denitrifiers. Zoogloea displayed the highest ncf value within the classified OTUs of the 21 

MCCN, indicating that it could be a foundation for activated sludge through forming 22 

the characteristic cell aggregate matrices into which other organisms embed during floc 23 

formation. Overall, the introduction of causality analysis greatly expands the ability of 24 

a network to shed a light on understanding the interactions between members of a 25 

microbial community. 26 

 27 

  28 
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INTRODUCTION 29 

Ecological interactions, such as those involved in the exchange of resources or space, 30 

within microbial communities have been a topic of intense interest in microbial ecology, 31 

(Hibbing et al., 2010). The interactions of species are considered a driving force 32 

promoting ecological function of the microbial community, and due to its importance, 33 

the structure of communities have been described by species interaction networks for 34 

over a century (Berlow et al., 2009; Poisot et al., 2015). Although networks were 35 

initially was applied to the study of food webs, the concept has been expanded to 36 

microbial ecology to unravel ecological interactions (Ings et al., 2009; Kéfi et al., 2012). 37 

Therefore, microbial interactions within a community are more likely to be reflected by 38 

network theory, which can be established through a set of methodologies by 39 

mathematical correlation. Recently, network theory has been commonly used to explore 40 

the microbiomes of natural and artificial environments, such as soil (Barberan et al., 41 

2012), sediments (Ji et al., 2016), bioreactors (Liang et al., 2018), and wastewater 42 

treatment plants (Global Water Microbiome Consortium et al., 2019).     43 

  In wastewater treatment plants, activated sludge has served as the core unit for 44 

wastewater treatment for over a century (Jenkins and Wanner, 2014). The highly 45 

diverse microorganisms in activated sludge thrive on organic compounds that are 46 

enriched in carbon(C), nitrogen (N), sulfur (S), phosphorus (P), and various trace 47 

elements, forming a complex web of ecological interactions based the competition for 48 

resources and space (Liébana et al., 2016; Xia et al., 2018). A series of graphical 49 
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methods have been developed for constructing correlation or co-occurrence networks, 50 

to visualize and elucidate the complex microbial interactions of species in activated 51 

sludge, gut microbiome, natural environment (Weiss et al., 2016). Previous studies on 52 

co-occurrence or correlation networks have defined multiple relationships between 53 

species with a pairwise similarity matrix or sparse multiple regression analysis 54 

respectively (Faust and Raes, 2012). Generally, nodes and links in a network, 55 

respectively, represented species and interactions, yet, these interactions were only 56 

defined by positive or negative association, which limited further understanding of 57 

ecological interactions between species. As an intrinsic property of correlation analysis, 58 

previous networks were commonly undirected, demonstrating specific interactions 59 

among species, such as competition and symbiosis. Although a few studies have 60 

attempted directed networks, provided according to the time lag, to show a direction 61 

between nodes (Deng et al., 2016; Ju and Zhang, 2015), most studies rarely explore the 62 

possibility of causality analysis from time series data, which could enhance our 63 

understanding of ecological interactions. 64 

  Therefore, through a combination of correlation and causality analyses this study 65 

focused on constructing a directed network to discern the sophisticated interactions 66 

between members of an activated sludge microbiome. A previously published 259 day 67 

high-through sequencing data set was employed for correlation analysis and Granger 68 

test (Jiang et al., 2018). Coupling the correlation and causality analyses allowed 69 

construction of a microbial causal correlation network (MCCN), which demonstrated 70 
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that the microbial interactions in activated sludge could be classified as mutualism, 71 

synergism, commensalism, neutralism, predation (parasitism), amensalism, and 72 

competition (antagonism). Hub-species OTU56 belonged to Nitrospira and showed 73 

more diverse interactions with Proteobacteria as compared to Bacteroidetes. Moreover, 74 

the Zoogloea were potentially the key genus that induced changes in many of the 75 

activated sludge bacteria due to its role in scaffold construction during sludge floc 76 

formation. The application of MCCN will provide information on the ecological 77 

interactions between different species in both natural and artificial ecosystems.   78 

    79 
  80 
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RESULTS AND DISCUSSIONS 81 

Applicability of Granger causality 82 

The assembly of the microbial community is commonly recognized as the result of 83 

deterministic and stochastic processes. The role of deterministic processes is considered 84 

to be limited in stable environments, therefore stochasticity could play an important 85 

role in gradually shifting community structure (Zhou and Ning, 2017). Due to the 86 

mutual influence of both processes, the abundance of a specific species is assumed to 87 

be the sum of a baseline and random variation. The variation of species over long 88 

periods of time should appear to be random. Within a steady state microbial community, 89 

the variation in abundance of specific species could be subjected to a joint distribution 90 

over time, as the present microbial community evolves from the previous state, while 91 

time should have limited influence on the variation of the microbial community. 92 

Although past observations are important to forecast future trends, these predictions do 93 

not completely depend on them. Therefore, there could be an autocorrelation process, 94 

which produces a time lag representing only finite past values that is applied to the 95 

forecasting. Deng et al. (2016) used the time lag to construct the correlation network 96 

with time-series data unravel microbial succession within an uranium bioremediation 97 

site (Deng et al., 2016). Additionally, David et al. (2014), when analyzing the effect of 98 

host lifestyle on human microbiota, relied on the autocorrelated process of time series 99 

(David et al., 2014), which demonstrated that OTUs variation complied with the time 100 

series model. We applied the data of 98 key OTUs obtained over the course of 259 days 101 
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to fit into the ADF (augmented Dickey–Fuller test) test to verify whether microbial data 102 

is irrelevant to time or not. If the data is not stationary, which defined as the time series 103 

data is independent time, the difference between adjacent values will be applied to all 104 

data. The result of the stationary check is shown in Supplementary S2. All OTUs 105 

fulfilled the requirement of stationary after difference, 51 OTUs required difference 106 

treatment while the rest were stationary without difference treatment.             107 

Overall topological indexes of the causal network  108 

The visualized causal network is shown in Fig 1. 98 OTUs were used for Microbial 109 

Granger Causal Network (MGCN) construction, which created 1865 links between the 110 

nodes at a significant threshold of p < 0.05. Granger causality is commonly not 111 

symmetric, network building had to be directed. The bidirectional links were defined 112 

as a feedback from the source to the target OTU, indicating that either node could 113 

improve the forecasting accuracy of the other. A unidirectional link indicates the source 114 

OTU significantly improved the forecasting accuracy of the target OTU but not vice 115 

versa. The outdegree and indegree directed links, defined by the direction of links in or 116 

out of the specific node, were counted separately. As shown in Table 2, the distribution 117 

of nodes degree tended to be normal rather than following power-law, regardless of 118 

whether indegree or outdegree, implying that the causal network was not scale-free 119 

(Deng et al., 2012).  120 

  The average clustering coefficient, which reflected the clustering degree of the overall 121 

network, was defined as the average of clustering coefficient over all nodes. The 122 
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clustering coefficient of MGCN (0.449) was higher than previously described 123 

undirected networks, including grassland soils (0.1~0.22), lake sediment (0.09), and 124 

groundwater condition (0.17-0.29), and was comparable with the value of 0.466 125 

observed in a previous activated sludge study (Ju and Zhang, 2015). Watts and Strogatz 126 

(1998) introduced the random rewiring procedure to interpolate regular and random 127 

networks, in which the regular lattice is highly clustered while the random network is 128 

poorly clustered (Watts and Strogatz, 1998). Therefore, the higher relative clustering 129 

exhibited by the causality indicated that the network was defined rather than random. 130 

The average shortest average path was 2.149, which was smaller than within the 131 

undirected network. Hence, we derived a relatively clustered network connected by 132 

shorter paths, demonstrating that neighbouring nodes were closely connected. To 133 

confirm the small-world property, randomized networks with the same nodes and 134 

degrees as the original network were constructed. The average clustering coefficient 135 

and shortest paths were ~0.196 and ~1.823 respectively, whereas the ratio of Granger 136 

network to the random network of clustering coefficient and shortest path can be 137 

determined (Liao et al., 2011). As the ratio was equal to ~1.943, this indicated the 138 

network possessed small-world properties.   139 

Indexes of nodes  140 

According to the definition of cs, its magnitude represents the ability of a specific OTU 141 

to cause the variation among its neighbours. A value of 1 indicates that an OTU can 142 

affect its neighbours without being affected by them, while zero indicates the opposite. 143 
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The crecip reflected counts of reciprocating links, which exhibited feedback behaviour 144 

of each OTU, thereby higher values indicated that an OTU is likely to interact with 145 

others.  Therefore, as shown in Fig. 2, as crecip increases, the cs will tended to approach 146 

0.5, displaying an equilibrium of indegree and outdegree links.  All nodes displayed a 147 

crecip value of less than 0.5, suggesting bidirectional links were not dominant in the 148 

relationship of all nodes. However, it was interesting that more interactions could be 149 

positively related to the equilibrium trend of cs. The cs and crecip were both relatively 150 

quantified as the proportion excluded the magnitude of degrees, node size in Fig. 2 is 151 

proportional to degree of connection with neighbouring nodes. The average number of 152 

neighbours for a node was ~27.08. The majority of nodes with a large number of 153 

neighbours had higher crecip and neutral position of cs. Nodes with lower crecip and lower 154 

cs indicated that more links were indegree, with the reverse, higher crecip and cs 155 

indicating more links were outdegree. Integration of the relative proportion and 156 

neighbour number that was considered as an absolute quantity was beneficial for 157 

inferring the central output nodes in the network, which should possess lower crecip, 158 

higher cs, within fairly large size of neighbours. The average of cs was ~0.491, showing 159 

that the number of outdegree and indegree links were nearly identical. The average of 160 

crecip was 0.24, implying mutual cause is not predominant due to the lower proportion 161 

in total links. Additionally, ncf, the difference between net outdegree and net indegree, 162 

of nodes ranged from -20 to 21, as shown in fig. S3.  The average of individual 163 

outdegree was 8.14, the average net indegree was the same. Moreover, the number of 164 
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OTUs with positive ncf were greater than that of negative ncf, indicating more than 50% 165 

of the relationships in the system displayed Granger causality in the activated sludge 166 

system.                  167 

Bonferroni-correction 168 

The Bonferroni-corrected MGCN (BoMGCN) was produced from the original 169 

significant network (Fig. 3). The corrected network was sparser in comparison with the 170 

causal network, containing only 81 nodes and 730 links, and a lower clustering 171 

coefficient (0.373). The reduced network was highly conservative as the Bonferroni-172 

correction excludes all potential type I error (false link was accepted) and displayed a 173 

slightly improved stability as revealed by the R square of power-law. The value of 174 

outdegree R square was 0.064, close to zero, yet the value for indegrees was 0.468, 175 

indicating a significant increase. Although the values were too small to be wholly fitted 176 

into power law, they indicated that some nodes in the BoMGCN had a greater or lesser 177 

effect on other nodes. An improvement of scale-free property was also observed, as 178 

well as an increase in the small world index, as represented by an increase in the ratio 179 

of σ (~2.617), caused by a decrease in clustering coefficient and increase in the average 180 

shortest path, showing BOGCN is more likely to fall in the rules of a small world. 181 

Within the random network derived from BOGCN there was a clear decrease in 182 

clustering coefficient (0.119). Additionally, the properties of total nodes were slightly 183 

distinguished from the original MGCN network as a clear decline of cd value. The 184 

average cs increased from 0.491 to 0.504. Overall, the BoMGCN reduced the size of 185 
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the network while keeping its basic properties. According to the classification of OTUs 186 

in BoMGCN, Proteobacteria was the predominant nodes, the hub species was 187 

Nitrospira, indicating the nitrogen-associated species has a broader social connection 188 

with other microbes.     189 

Correlation-network supplemented to causal network 190 

The MGCN showed the casual effect within the microbial community, however, 191 

information about positive or negative correlations between nodes was missing, 192 

therefore a Bonferroni-corrected microbial correlation network (BoMCN) based on 193 

Spearman’s correlation (shown in Fig. S4) was applied to supplement the MGCN, 194 

constructing a Microbial Causal Correlation Network (MCCN). The multiple 195 

relationships between two OTUs could be revealed more explicitly according to this 196 

combination of causality and correlation. Previously, correlation analysis was generally 197 

used to discern the negative and positive relations within a microbial network, 198 

indicating the ecological interactions between members of the community (Faust and 199 

Raes, 2012). As shown in Figure 4a, a combination of correlation and Granger causality 200 

could construct a new relationship, which shows the directional connection among 201 

nodes including the positive or negative effect they have on each other. As shown in 202 

Figure 4b, the MCCN was composed of 73 nodes and 441 links. Although the causality 203 

is at a higher level compared with correlation, i.e., all nodes with causal links should 204 

show strong mutual interaction, the missing nodes and links could be ascribed to the 205 

Granger causality, that is not a real causal relationship, due to the limitations of the 206 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.26.461882doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.26.461882


method. Technically, the Granger test has been widely used for predicting the causal 207 

effect, in the context of the current study, the Granger test was utilized to forecast the 208 

relations between OTUs, which may lead to a better understanding of microbial 209 

behaviours and relationships within a community. The network can be used as an 210 

essential tool to predict microbial interaction when the real community could be too 211 

complex for accurate study, as additional efforts would be required to verify 212 

interactions between species. 213 

  The combination of correlation and Granger test allows observation of more specific 214 

interactions between two species, therefore a MCCN network could be applied to 215 

predict ecological relationships for community analysis. As shown in Figure 4a, there 216 

are seven patterns of species interactions, including mutualism, synergism, 217 

commensalism, neutralism, predation (parasitism), amensalism, and competition 218 

(antagonism) (Pepper et al., 2015). According to the results of MCCN, both mutualism 219 

and synergism should be a bidirectional edge with a positive effect on both species, as 220 

each species would derive benefits from the other, such that it would be difficult to 221 

distinguish them apart. Commensalism can be reflected by a unidirectional link with 222 

positive effect as species A can obtain a metabolite produced by species B. Although 223 

species B would be irrelevant to the growth of species A, as there is no feedback from 224 

A to B, the sequencing data of two species would be positively correlated as more 225 

species B would secret more metabolites for species A. Oppositely, a unidirectional 226 

connection with negative effect is classified as amensalism due to the general release 227 
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of inhibitors from species A to species B. Here the quantity of species A will be relevant 228 

to the production of inhibitors, such as antibiotics, which can reduce the number of 229 

species B, thereby the contrary growth of species A and B will lead to a negative 230 

correlation. Although the predation (parasitism) can be implied by the negative 231 

bidirectional edge, the sequencing data used in this study contained only information 232 

from the 16S rRNA gene of bacteria, with no information about protozoa or phages, 233 

resulting in the exclusion of predation (parasitism) from the MCCN of the microbial 234 

community (Deng et al., 2016). Finally, a negative bidirectional link could also indicate 235 

competition between species. The MCCN is a powerful tool to recognize multiple 236 

interactions of microbes by specifying the endogeneity of correlation, which has been 237 

widely used as a statistic proof of microbial interaction within a network (Weiss et al., 238 

2016).     239 

Core species in MCCN  240 

The nodes with amounts of links would be considered as “hubs” in the MCCN. OTU56 241 

was the hub species with the greatest number of indegrees (31) and second highest 242 

number of outdegrees (16). It was classified as belonging to the genus Nitrospira, a 243 

globally distributed group of nitrite oxidizers, which are capable of completing 244 

nitrification from ammonia to nitrate by one step (van Kessel et al., 2015). As shown 245 

in Figures 5, S5, and S6, OTU56 closely interacted with 24 OTUs from the phylum 246 

Proteobacteria, 8 OTUs from the phylum Bacteroidetes, and the 6 remaining OTUs 247 

interacted with 5 additional phyla. 21 OTUs displayed negative interactions with 248 

Nitrospira, 14 should be amensalism and 7 were competition relationship. Interestingly, 249 
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all competition interactions originated from Proteobacteria to Nitrospira, showing a 250 

number of Proteobacteria may depress the growth of Nitrospira. This could be ascribed 251 

to the fact that most bacteria related to nitrogen cycle were Proteobacteria (Costa et al., 252 

2006). Additionally, OTU56 unidirectionally interacted with OTUs from Bacteroidetes, 253 

for which there were only two types of interactions, commensalism and amensalism, 254 

with 3 and 5 links, respectively. According to a global diversity and biogeography study 255 

of over 300 wastewater treatment plants, only 28 out of 61448 OTUs, accounting for 256 

12.4% of the 16S rRNA gene sequences, were defined as core OTUs, and these mainly 257 

consisted of Proteobacteria, Bacteroidetes, and Nitrospira in activated sludge (Global 258 

Water Microbiome Consortium et al., 2019). Therefore, the results of MCCN in this 259 

study are consistent, as Proteobacteria and Bacteroidetes actively interacted with the 260 

core species of Nitrospira, a group which plays a crucial role of nitrification in activated 261 

sludge. At the genus level, the majority of species that interacted with OTU56 were 262 

unclassified, and of those that could be identified, Azospira, which possesses 263 

denitrification activity, exhibited a mutualistic relationship with Nitrospira, as well as 264 

with OTU176167 and OTU92689, which were most closely related to the genus 265 

Dechloromonas, members of which are capable of reducing nitrate or chloride. The 266 

above mutualistic relationships could be achieved in nitrogen cycling processes, with 267 

denitrification removing nitrate as a product inhibitor to Nitrospira, meanwhile, 268 

Nitrospira could supply nitrate as a substrate for denitrifies.    269 
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  OTU180929, which had the most outdegree links (17), was classified as 270 

Sinobacteraceae at the family level. Members of this family are known to play a role 271 

in the degradation of aliphatic, aromatic hydrocarbon compounds and small organic 272 

acids (Gutierrez et al., 2013; Zhang et al., 2018). The number of net outdegrees and net 273 

indegree indicated the trending of nodes to cause a change of others or be affected by 274 

others. OTU180929, belonging to the genus Zoogloea, possessed 13 net outdegree and 275 

13 net indegree links separately. Zoogloea has previously been demonstrated to be a 276 

bacterial genus important in the process of floc formation (Shao et al., 2009), and in 277 

this study is represented by OTU180929 and OTU178488. As shown in Figure S7, the 278 

ncf of Zoogloea was the highest value within the sum of classified OTUs, indicating 279 

that Zoogloea could enhance the growth of most species, i.e., it could be the foundation 280 

for the formation of activated sludge. However, the ncf of unclassified OTUs was still 281 

higher, reaching 18. The culture-depedent methods build the basics of microbiology 282 

research, which investigate the role of specific species (mostly are filamentous) in 283 

sludge flocculation and foaming (Nielsen et al., 2009). The unclassified nodes in 284 

MCCN showed there is still a massive microbial dark matter in activated sludge wait 285 

to be cultured. The network approach has been used to elucidate and prioritize the 286 

microbial dark matter in microbial community (Zamkovaya et al., 2021). Although 287 

activated sludge has been a widely employed strategy in wastewater treatment plants 288 

for over 100 years (Nielsen and McMahon, 2014), its microbiome still contains many 289 
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mysteries, and is abundant with unknown species that are only gradually being 290 

elucidated by recent progress in culture-dependent and independent technologies.   291 

In conclusion, the coupling of correlation and causality was crucial to understand 292 

ecological interactions within the microbial community. The Microbial Causal 293 

Correlation Network (MCCN) showed a sophisticated causal network in activated 294 

sludge and identified the fundamental species, with highest ncf value, as Zoogloea. The 295 

Microbial Causal Correlation Network (MCCN) and phylogenetic analysis together 296 

pointed out the core-species of Nitrospira (OTU56) could have mutualistic interactions 297 

with denitrifiers in activated sludge. However, most species that interacted with OTU56 298 

were still unclassified, implying a greater sequencing depth would be the key to 299 

improve the understanding of activated sludge.         300 

 301 

MATERIALS AND METHODS 302 

Sequencing data derivation 303 

The sequencing data were acquired from NCBI (accession number: PRJNA324303), 304 

which has been published previously (Jiang et al., 2018). The time-series data set 305 

included sequencing data for 259 days taken from a long-term operational wastewater 306 

treatment plant. The primers were F515 and R806, which covered mostly bacteria and 307 

archaea. The achieved fastq files were combined and processed online using a galaxy 308 

platform (Feng et al., 2017). OTUs were created with 97% cut-off through Uparse 309 

clustering method. RDP classifier assigned one representative sequence from each 310 
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OTU to bacteria or archaeal taxonomy according to the 16S rRNA Greengene Database. 311 

The final OTUs table was prepared for the subsequent process. The phylogenetic tree 312 

was created with Mega software with N-J method, the visualization was completed 313 

online (https://itol.embl.de) (Letunic and Bork, 2019).       314 

Stationarity  315 

Stationarity is an important concept to time series analysis and is a precondition to 316 

Granger Causality. The properties of stationarity were defined by the three main factors 317 

in terms of mean, variance, and covariance. The stationarity indicates that there was no 318 

change of trend in the time data, and it is known as a changeless process of the joint 319 

distribution within a specific displacement. The stationary implies that the expectation 320 

value of OTUs will fluctuate around the mean value of their neighbourhood rather than 321 

depend on time. This allows an estimation of the significant interval for the variation. 322 

Therefore, the stationarity analysis should be performed before analyzing time series 323 

data. It can be tested by detecting the presence or absence of unit root. The ADF-test 324 

was employed to verify if the time series data conformed to the stationary. If the original 325 

data is not subjected to stationarity, we used the difference, one minus another one to 326 

calculate the difference, to obtain the stationarity data. All abundance data of OTUs 327 

were filtered with the stationary test, while data that failed to go through ADF test after 328 

two rounds of using difference would be summed in the separate file as nonstationary 329 

data. Although the abundances of OTUs may vary on a large scale, even seemingly 330 

without a mean value, the difference would be stationary in most situations. The 331 
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operating reactors could be affected by many factors, which would shift the microbial 332 

community via stimulation the metabolism of specific species. 333 

Granger Causality 334 

The Granger causality test is a statistical hypothesis test that determined the role of one 335 

time series in forecasting another one (Granger, 1969). Herein, the Granger causality is 336 

limited within interpreting the interaction of two OTUs which were subjected to the 337 

ARMA (Autoregressive–moving-average model) model. To ith OTU, the ARMA 338 

model is shown as the equation:  339 

!!" = #+%!" + &#!(!%#)" + &'!(!%')" −⋯− &(!(!%()" +−)#%!" − )'%(!%#)" −⋯340 

− )(%(!%()" 341 

  We simplified the equation for OTUs to the following format. 342 

!!" = # +*&)!(!%))"

(

)*#
−*))%(!%))"

(

)*#
= # +*&)!(!%))"

(

)*#
+ +" 343 

		+" is the random variation (white-noise series). Thus, we assumed the model for ith 344 

OTU is X, the model for jth OTU is Y. Both equations are as follows: 345 

-! = # +*&)!(!%))"

(

)*#
+ +" 346 

.! = # +*&)!(!%))+

(

)*#
+ +" 347 

  To know the interaction of X and Y, we assumed X and Y are interplays in their 348 

respective model predictions. The new models are derived as: 349 

- = # +*&)-(!%))"

(

)*#
+*&).(!%))+

(

)*#
+ +"+ 350 
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. = # +*&)-(!%))"

(

)*#
+*&).(!%))+

(

)*#
+ ++" 351 

  If the time series data followed the above equation, meaning the past values of X will 352 

contribute to predict current Y, and vice versa. However, real data could be applied to 353 

the following equation: 354 

-! + /+.! = # +*&)-(!%))"

(

)*#
+*&).(!%))+

(

)*#
+ +"+ 355 

.! + 0"-! = # +*&)-(!%))"

(

)*#
+*&).(!%))+

(

)*#
+ ++" 356 

  If /+  and 0"  are not equal to 0 at the same time, this will be a model with 357 

instantaneous causality. In other words, the +"+ and ++" would be the key to determine 358 

the Granger causality, if the variation could be decreased when applying the /+ ≠ 0, 359 

representing the jth OTU can contribute to the prediction of ith OTU, otherwise, there 360 

was no improvement of predicting ith OTU with jth OTU information. Therefore, the 361 

Granger causality can be tested by the ANOVA analysis to obtain a p-value. This 362 

relation between X and Y was termed as Granger causality by which implied X or Y 363 

can cause each other. Herein, the causal effects were attributed to the property of edges 364 

in the network, while OTUs would be the nodes. 365 

Network construction 366 

All OTUs were filtered with two specific conditions such that OTUs with more than 367 

80% non-zero values would be preserved, and the residuals should comply with that of 368 

at least one abundance of individual OTU reached more than 0.01% in all samples. The 369 

total number of OTUs was 98. The ADF test was applied to verify the stationarity of 370 
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time series data and provide a proper lag for the next modelling process. The difference 371 

is calculated once OTUs fail in the ADF test, the results of difference will track the 372 

ADF test again. All OTUs were reserved by twice difference treatment. The time series 373 

matrix successfully inspected by the ADF test was used for the Granger test in pair. 374 

Before the operation of the Granger test, the order was been determined by VAR (R 375 

package) (Pfaff, 2008). Subsequently, the lag was transferred to the Granger test. The 376 

p-value threshold of Granger test was restricted by the following two methods. Due to 377 

the massively paired results, the links confirmed by the significance value could still 378 

cause statistical type I error, hence we introduced Bonferroni multiple-comparisons 379 

procedure and false discovery rate (FDR) to correct the threshold. Bonferroni multiple-380 

comparisons procedure was determined by the following equation. 381 

3∗ = -.-/
0!"1

  382 

  In the FDR test, all links that were selected by 0.05 significant cut-off are reordered 383 

according to the magnitude of the p-value. FDR values were calculated by the following 384 

equation. 385 

4" = k 2#"   386 

678" = min(4" , … , 43)  387 

  Where, @ is the rank of the p-value in k links, which is the total links preserved by 388 

the previous threshold. The critical FDR value is normally 0.05. FDR has a great power 389 

to detect genuine positive effects, while the Bonferroni adjustment is more conservative 390 

and considers all comparisons to be statistically independent. The final file was 391 
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transferred to Cytoscape software for further visualization and analysis. All analysis 392 

processes were completed with R, and several shiny apps had been built for this study 393 

(Stationary check: https://caiweiwei.shinyapps.io/stationarycheck/. Granger Causality 394 

network website: https://caiweiwei.shinyapps.io/causalnetwork/; Correlation network: 395 

https://caiweiwei.shinyapps.io/Cornetwork/; MCCN: 396 

https://caiweiwei.shinyapps.io/combinenetwork/). The specific instruction for each app 397 

is provided in the supplementary (S1).  398 

Network indexes  399 

The several properties of the causal network were referenced from the literature of Anil 400 

Seth (Seth, 2005), and termed as the Causal score (cs), Causal density (cd), Net Causal 401 

flow (ncf), and Causal reciprocity (crecip). Table 1 shows equations for all corresponding 402 

properties.  403 

  As the network had been directed, outdegree and indegree represented the direction 404 

of edges within two nodes. A causal score (cs) was determined by the ratio of outdegree 405 

to total degrees of a specific node, reflecting the OTU influenced other OTUs rather 406 

than being influences. The causal score is defined as cs = the number of outdegrees 407 

divided by the number of indegrees in unweighted graphs (graphs in which all links are 408 

equivalent). If cs > 1, the corresponding OTU has active output, otherwise it is being 409 

passively influenced. The causal density is also termed as causal efficiency of the 410 

network, which, to some extent, represents the connectivity of the network. The net 411 

causal flow is the difference between outdegree and indegree of each node, indicating 412 
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the contribution of the individual node would be either active or passive. Herein, the 413 

active state represents the species intentionally affect others, while the passive indicates 414 

it is affected by others. Although causal flow is like causal score, the former is intended 415 

to be independent of the quantity of balanced efferent and afferent connections. The 416 

causal reciprocity is the fraction of links with a directly reciprocal edge. Overall, the 417 

causal score and flow are applied to evaluate the role of each node, while the rest 418 

describes the whole network. Additionally, the supplemented indexes, including 419 

connectivity, centrality, stress centrality etc., were analyzed with the Cytoscape 420 

software tool (Feng et al., 2017).  421 

Data availability 422 

All raw data were acquired from NCBI (accession number: PRJNA324303) (Jiang et 423 

al., 2018).   424 
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 554 
Figure 1. MGCN, each colour represents a separate phylum. The size of the node and 555 
node label is proportionate to the edge number of each node from 0 to 110. The arrows 556 
represent the direction of Granger causality.  557 
  558 
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 559 
 560 
Figure 2. ncf and crecip from MGCN. Each circle represents an individual node from 561 
MGCN with size representing the cs value. The number within the circle corresponds 562 
to the classification of OTU at the phylum level.  563 
  564 
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 565 
Figure 3. BoMGCN. Each colour represents a separate phylum. The size of the node 566 
and node label are proportionate to the edge number of each node from 0 to 110. The 567 
arrows represent the direction of Granger causality. 568 
  569 
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 570 

 571 
Figure 4.  (A) Principle of the MCCN inference from the combination of causality and 572 
correlation, the detail of correspondence from MCCN link to ecological interaction on 573 
the right table. (B) MCCN, each colour represents an individual phylum. The size of 574 
the node and node label are linearly proportionate to the edge number of each node 575 
from 0 to 50. The arrows represent the direction of Granger causality. Pink and grey 576 
link colours represent positive and negative associations, respectively. The size of the 577 
link is proportionate to the correlation absolute value from 0 to 1. 578 
  579 
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 580 

 581 
Figure 5. Ecological interaction of OTU56 with others at the OTU level. The colour 582 
represents the type of interaction. The phylogenetic tree shows the closest species 583 
according to the results of NCBI blast.   584 
 585 
 586 
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Table 1 Network indexes 588 

Name Equation Description 

Causal score (cs) 0A = 4$
4$54#

  n6 is the outdegree, n" is the indegree.  

Causal density (cd) 0B = 7
'8(8%#)   n is the total number of significant 

causal links preserved in the network 

file. N is the size of the network. 
Graph efficiency (ge) 

CD = 1 −

7%(9%#)
:%";

   

Net causal flow (ncf) 

F0G

= n76 − n7" 

n76 = H< − n" 

n7" = H< − n6 

n76  is the net outdegree of a specific 

node. n"  is the net indegree of the 

individual node. H<  is the sum of all 

neighbours of specific OTU.  

Causal reciprocity 

(crecip) 
0=>?"2 =

n=>?"2
n  

n=>?"2  represents the number of 

reciprocal links in the total network. n is 

the value of total links. 
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 590 
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Table 2 Properties of different networks 
 Granger Random Spearman Random  Random 
 MGCN BoMGCN MGCN BoMGCN MCN BoMCN MCN BoMCN MCCN MCCN 

network size 98 81 98 81 98 98 98 97 73 73 

network density     0.811 0.568 0.811 0.568   

links 1856 730 1856 730 3856 2644 3856 2644 441 441 

power law (in) 0.041 0.468 0 0.284 
0.211 0.101 (in total) 0.292 0.02 

0.552 0.016 

power law (out) 0.03 0.064 0.043 0 0.595 0.111 

average clustering coefficient 0.449 0.373 0.196 0.119 0.868 0.753 0.812 0.57 0.352 0.084 

network diameter 6 8 3 4 2 4 2 2 7 5 

network radius 3 1 2 3 2 2 2 2 1 3 

average shortest paths 2.149 2.647 1.823 2.21 1.189 1.463 1.189 1.432 2.866 2.571 

average number of neighbors 27.082 14.716 34.143 17.21 78.694 54.515 78.694 54.515 9.753 11.507 

cd 0.098 0.056 

NA NA NA 

0.042 

NA 
ge 0.815 0.9 0.93 

average cs 0.491 0.504 0.509 

average crecip 0.238 0.148 0.157 

 NA represents there is no data for this property. 
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