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1 Assessment of �tness measurement errors

The �tness values were calculated in [1] by sequencing culture samples at two time points,

T � 0, T � 24 h and estimating the relative frequencies of the di�erent genotypes in the

culture. Fitness calculation assumed that the cells grew exponentially between these two time

points (See detailed description in the Methods section, main text). Our focus in this paper

was on the fraction of genotypes with �tness higher than the wild type's. Below, we scrutinize

potential sources of error in the �tness value estimate, in order to rule out the possibility that

these high-�tness values are due to an experimental artifact.

1.1 Exponential growth assumption

The underlying assumption in the �tness calculation is that all genotypes grew exponentially

during the entire experiment (24 h.). In practice, before entering exponential growth, cells

spend time in a preparatory phase called a 'lag phase' (in which growth rate is relatively slow).

The length of the lag phase could vary between strains, hence sampling all genotypes at the

same time could potentially catch some of them still in the lag phase. In a batch culture, once

the cells use up the available nutrients, their numbers saturate and growth slows down again

(also called 'yield' phase). Although the culture was diluted after 12 h [1] some strains could

have reached their yield phase earlier than others. As we do not have detailed growth curves,

it is hard to assess how common this is and to what extent it could have a�ected the calculated

�tness values. However, this error source, if it exists, is expected to only underestimate �tness

values. That is because, the �nal genotype frequency could have been attained in a shorter

time period than assumed in the calculation, and thus the growth rate must have been larger

than estimated.

1.2 Read-count noise

The frequencies of the di�erent genotypes in the culture were estimated using samples of the

batch culture at two time points where only genotypes with at least 100 reads at T � 0

were considered [2]. Sampling errors could potentially lead to error in �tness estimates. In

contrast to the previous error source, which could only cause under-estimation of �tness values,

read-count noise could cause both over and under-estimation of �tness. A combination of

under-sampling at T � 0 and over-sampling at T � 24 h of a particular genotype could cause

an over-estimate of its �tness. In contrast, over-sampling at T � 0 and under-sampling at

T � 24 h should lead to the opposite e�ect of �tness value under-estimation. Sampling errors

in T � 0 and T � 24 h could also (at least partially) cancel each other, if they are both in
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the same direction. In Fig. S1a, we show the number of reads at T � 0 against the calculated

�tness values. We are mostly concerned with presumably high-�tness genotypes that had a low

number of reads at T � 0, and hence their �tness could have been over-estimated. To estimate

the errors, we used the number of reads obtained in the experiments for each genotype. A

common sampling of all genotypes at T � 0 was applied. This common culture was used to

inoculate the multiple growth experiments under the four di�erent growth conditions, with

3-5 independent replicates under each condition. Thus, at T � 24 h, there were multiple

samples for each genotype under each condition (one for each replicate). We estimated these

sampling errors by the standard deviations of the associated binomial distributions, following

the procedure introduced by Levy et al. [3]. For the error analysis, we took the two extremes:

To estimate the extent to which the �tness could be underestimated, we added the standard

deviation to the value measured at T � 0 and subtracted the corresponding standard deviation

at T � 24 h. To calculate the extent to which the �tness could be overestimated we did the

opposite, by subtracting the standard deviation at T � 0 and adding it at T � 24 h. As

the reported �tness values were averaged over the multiple replicates, here too, we averaged

the �tness overestimates (at all replicates) and similarly averaged all �tness underestimates.

Di�erences of the over- and underestimates from the reported �tness values are the two �tness

deviations for each genotype. We then take the maximum over these two deviations (absolute-

valued) to represent the typical error in the �tness value. In Fig. S1b, we plot this error

(calculated as explained above) relative to the reported �tness value, for each genotype with

�tness higher than 1.1. We �nd that the relative �tness errors are all smaller than 1� 10�5.

Hence, the many �tness values higher than 1.1 cannot all be dismissed as experimental error.

The �tness values reported by Li et al. are averages of the �tness values calculated from

the distinct biological replicates. As an additional estimate of the �tness values inaccuracy,

we took the �tness values calculated from single-replicate experiments and calculated the

standard deviation over these replicates - see Fig. S2. Di�erences in �tness estimates between

replicates could be due to read count as well as due to other biological factors. Unsurprisingly,

the standard deviation between the biological repeats yielded higher �tness errors than our

previous estimate of the inaccuracies due to read-count alone. In either estimate though, only

a small fraction of the genotypes found in the experiment to be �tter than the wild type, can

be attributed to measurement inaccuracy.

1.3 Background mutations

Mutations could have also occurred in other genome locations during the course of the com-

petition experiment. While not a measurement error, had such a mutation occurred, we could

have mistakenly attributed the �tness e�ect to the tRNA mutation. The cells barcode identi-

�es them by their tRNA variant. If such a background mutation occurred during the course

of the experiments, after cells had already started reproducing, it would result in cells carry-

ing a common barcode that are a mixture of multiple sub-populations: the original genome

and the one carrying the background mutations. The later such a mutation emerges, the

smaller its population fraction. Since sequencing cannot distinguish between the two types,

the estimated �tness would average over the two sub-populations. Thus, the e�ect of the

background mutation would be largest, if it occurred at the very beginning when only a sin-

gle cell of each tRNA variant existed. We are particularly interested in determining whether

high-�tness genetic variants can be explained by such background mutations; below we will
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Figure S1: Estimation of potential errors in �tness values due to read-count inac-

curacy. (A) Scatter plot of the logarithm of the reported number of reads for each variant at
the beginning of the competition (T � 0) against the reported �tness values (at 30�C). The
region marked in yellow highlights genotypes with reported high-�tness values and low number
of initial reads. Low estimate of the number of reads at T � 0 could lead to overestimation
of the �tness value. (B) Estimate of the relative �tness error due to read count noise at both
T � 0 and T � 24 h for each genotype with reported �tness > 1.1 at 30�C.

focus on bene�cial mutations alone. Both neutral and deleterious mutations are expected to

have only a minor e�ect on �tness estimates. Neutral mutations have no e�ect on �tness to

begin with and deleterious mutations are naturally selected against and hence will be present

in low numbers.

In the experimental procedure used by Li et al. , the di�erent variants were synthesized

using error-prone PCR initiated with the wild type strain. The products were then transformed

into yeast cells (See [1, 4] SI for more details). We estimate that only a small fraction (�

0.001%) of the yeast cells was transformed with a variant, and hence each variant exists in

very few cells. For simplicity, we assume here that each variant exists as a single copy only,

which is the worst-case scenario for our purpose.

To estimate the likelihood of naturally occurring bene�cial mutations, we use results from

Levy et al. [3], where the evolutionary dynamics of 500,000 di�erent yeast lineages, each

tagged by a unique barcode, was tracked. They reported the rate of bene�cial mutations as

a function of their �tness e�ect. For example, the rate of bene�cial mutations that led to

�tness increment s ¡ 5% was approximately 10�6 per cell per generation. This is equivalent,

in our formalism, to �tness f � 2s ¡ 1.03. In our dataset, there were �2000 genotypes

with �tness higher than the wild type's and the transformation phase lasted 50 generations.

Hence, the probability that such a mutation occurred in one of these � 2000 strains in the �rst

generation is only 0.002. If we account for mutations occurring during the entire experiment

(50 generations), the probability is larger (0.1), but then these cells are mixed with non-

mutated cells carrying the same barcode, such that the �tness e�ect of the mutations needs to

be much larger for it to have the same measured �tness e�ect when averaged with non-mutated

cells. Since the spectrum of bene�cial mutation rates reported by Levy et al. drops sharply
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Figure S2: The relative �tness error over multiple biological replicates against the

�tness of high-�tness variants at all four conditions. The relative �tness error - the
standard deviation of �tness values obtained at single-replicate experiments divided by the
mean - against the reported �tness - shown as 2D histograms. Each panel shows one of the
four conditions. While there are � 2000 genotypes with �tness > 1, we �nd that only for
a few dozens of them (depending on the conditions), the relative �tness error over multiple
biological replicates is larger than 10%.
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near s � 12% �tness bene�t, we estimate such a bene�cial mutation to be far less likely. This

leaves the expectation of background bene�cial mutations during transformation at 10�3, far

less from the 8%-10% proportion of bene�cial mutations found in the Li et al. data. Hence,

this error source is obviously negligible.

2 Steepness calculation

The �tness landscape was sampled non-uniformly, with dense sampling close to the wild type

and sparser sampling further away. Hence, we not only have to calculate genotype steepness

using only a subset of their 1-neighbors, but the choice of 1-neighbors is biased to genotypes

closer to the wild type. This can potentially a�ect the steepness estimates, if the �tness

landscape is not uncorrelated. To test the sensitivity of the steepness calculation to the non-

uniform sampling of the landscape, we compared the steepness values obtained using di�erent

subsets of 1-neighbors: far from the wild type (Hamming distance ¥2 from the wild type), and

close to the wild type 1-neighbors (Hamming distance ¤2 from the wild type). 1-neighbors at

distance 2 were a large fraction of the genotypes and hence were included in both sets in order

to avoid biases of the calculation. Note that in general, there is a larger total number of 2-,

3-etc. neighbors in the dataset, and we did not normalize for that. We speci�cally calculated

this for �tter-than the wild type mutants, to corroborate our �nding that the wild type is

amongst the �attest genotypes in the dataset.

We then calculated the steepness for each of those high-�tness genotypes twice: using each

of the neighbor subsets - see results in Fig. S3. We found that steepness values calculated

using only 1-neighbors close to the wild type (Hamming distance ¤ 2), were somewhat lower

(�atter) than steepness values calculated using further 1-neighbors (Hamming distance ¥ 2).

The wild type is relatively �at. Hence, its single mutants have �tness values similar to the

wild type's �tness, and thus their �tness values are also similar to each other's. The steepness

calculation using the close-to-wild-type-1-neighbors includes genotypes from the wild type's

1-neighbors and hence it is reasonable that it yields low steepness values compared to the

other calculation. We conclude that there is some bias in the steepness calculation, at least

close to the wild type. This also means that there is some level of �tness correlation in this

�tness landscape, which is very typical of biological �tness landscapes [5].

Despite this bias, with either calculation, the wild type steepness value remains at the low

end of the steepness distribution. As our steepness calculations include more close-to-wild-

type than far-from-wild-type 1-neighbors, we are likely underestimating the steepness values

of many genotypes. Hence, the steepness di�erence between the wild type and the other

genotypes can be even greater than what we reported, based on the partial set of mutants.

2.1 In the NK model, mean �tness of neutral evolution exactly overlaps

with the landscape mean �tness

In Fig. 5a of the main text, we also compared the �tness to the median �tness value of the

entire dataset (horizontal blue dashed line). The �tness obtained in the control simulation

was very close to the median �tness value, but was consistently slightly higher. If the neutral

simulation uniformly sampled all the genotypes in the dataset, we would expect it to overlap

with the dataset median �tness value. For comparison, we ran a similar evolutionary simu-
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Figure S3: Comparing steepness calculations using two di�erent subsets of 1-

neighbors. We calculated the steepness values for the same set of �tter-than wild type
genotypes using two di�erent sets of 1-neighbors: their 1-neighbors far from the wild type
(red curve) and their 1-neighbors close to the wild type (blue curve). We plot here the distri-
butions of steepness values obtained in these calculations. The wild type steepness is shown
for reference (vertical black dashed line).

lation with a neutral control on an arti�cially fabricated NK model landscape for which we

have full data of all genotypes and equal connectivity for all genotypes - see Fig. S4. Here,

the �tness of the control simulation exactly overlapped with the dataset median �tness value.

Hence, we attribute the small gap between the control (green points) and the dataset median

found in main text Fig. 5a to some level of correlation between connectivity and �tness in our

dataset.
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Figure S4: NK model: mean population �tness at di�erent mutation rates - simu-

lation results. We plot here the mean population �tness as obtained in evolutionary simula-
tions, against the mutation rate (red curve). As in the tRNA simulations (main text. Fig. 5),
we also ran a control simulation with equal �tness for all genotypes (green curve). We plot,
for reference, the mean �tness value of the entire landscape (blue horizontal line). Similarly to
the tRNA landscape, we observe a drop in �tness beyond a critical mutation rate (here found
at approximately 10�2). As in the evolutionary simulations over the tRNA landscape, here
too, the control simulation exhibits no dependence on the mutation rate. Here, however, the
mean �tness in the control simulation coincides with the whole landscape mean �tness value.
Simulation parameters: N = 7 , K � 1, Population size = 5000, random initialization. The
simulation ran for 200 generations each time. Each dot is an average of multiple repeats for
each parameter setting.
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