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Abstract 

Axon loss is a cardinal neuropathological feature of multiple sclerosis (MS). Axonal injury in 

MS and experimental disease models is most frequently detected in acutely demyelinating 

regions. Furthermore, acute axonal injury consistently correlates with the extent of 

inflammatory demyelination. Following lysolecithin-induced demyelination, we recently 

reported a compensatory response in neurons, where mitochondria move from the cell body 

to the acutely demyelinated axon and increase the mitochondrial content. We termed this 

energetics phenomenon, that is also evident in MS, the axonal response of mitochondria to 

demyelination (ARMD). In the present study, we assessed axonal mitochondrial content as 

well as axonal mitochondrial respiratory chain complex IV activity (COX) of axons and related 

these to axonal injury in nine different experimental disease models. We consistently found 

ARMD in all experimental disease models. However, the increase in mitochondrial content 

within demyelinated axons was not always accompanied by a proportionate increase in COX 

activity, particularly in experimental autoimmune encephalomyelitis (EAE). Axonal COX 

activity inversely correlated with the extent of axonal injury in experimental disease models. 

Our findings indicate that ARMD is a consistent and prominent finding and emphasises the 

need to preserve axonal mitochondrial COX activity in inflammatory demyelination, paving 

the way for the development of novel neuroprotective therapies.    
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Introduction 

 

Axonal loss is a cardinal neuropathological feature of multiple sclerosis (MS) [9, 27]. Axonal 

injury is most prominently observed in actively demyelinating regions of MS and a gathering 

body of evidence implicates a state of energy failure in the degeneration of demyelinated 

axons [14]. The bioenergetic need (in terms of ATP) of demyelinated axons is said to be 

increased owing to the redistribution of ion channels [28]. In keeping with this increase in 

energy demand by demyelinated axons, we recently identified a neuronal compensatory 

mechanism where mitochondria move from the cell body to the acutely demyelinated axon, 

increasing the axonal mitochondrial content and energy producing capacity [13]. We termed 

this homeostatic mechanism the axonal response of mitochondria to demyelination (ARMD) 

[13].  

 

Increased axonal mitochondrial content, reflecting ARMD, has been reported in MS and in a 

limited number of experimental disease models [17, 19, 24]. In MS, the increase in 

mitochondrial content of non-degenerated demyelinated axons was accompanied by 

increased axonal mitochondrial respiratory chain complex IV activity [15, 29, 32]. At the edge 

of chronic active MS lesions, where axon transection is most prominent, axonal complex IV 

activity inversely correlated with the extent of inflammation [15]. In inflammatory 

demyelinating environments, axonal mitochondrial function is compromised, perhaps by nitric 

oxide, an inhibitor of complex IV, and mitochondria may be damaged by post translational 

modification of respiratory chain complex subunits due to nitration [21, 25]. Furthermore, 

axonal mitochondrial transport may be perturbed by inflammation, as evident in experimental 

autoimmune encephalomyelitis (EAE) [23, 26]. However, it is not known whether ARMD is 

consistently evident in experimental disease models, leads to a corresponding increase in 

mitochondrial respiratory chain complex IV activity in demyelinated axons, and how these 

mitochondrial changes relate to axon degeneration are not known.  

 

Against this background, we used nine experimental disease models and quantified the 

mitochondrial content, as well as mitochondrial respiratory chain complex IV (COX) activity of 

demyelinated axons. As complex IV deficiency may be due to the loss of subunits, following 

mitochondrial DNA mutations, or modification of subunits by reactive oxygen species, we 

assessed complex IV subunit-I (COX-I) expression in complex IV deficient axonal 

mitochondria to gain insight into the potential cause of complex IV deficiency. Finally, we 

correlated complex IV activity within axonal injury in demyelinating lesions. We found ARMD 
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to be a consistent feature of all nine animal models. However, COX activity was only 

increased significantly following lysolecithin. In all experimental disease models, COX-I was 

intact in COX deficient axonal mitochondria indicating inhibition and post-translational 

modification, rather than the lack of subunits due to mtDNA deletions and transcriptional 

changes, as the main cause of COX deficiency in animal models. Correlation of COX 

deficiency with the extent of axon degeneration suggests a crucial role for COX in meeting 

the increased energy demand of the acutely demyelinated axon. This study extends our 

previous characterisation of ARMD by including axonal complex IV activity in multiple animal 

models and highlighting the need to protect complex IV activity of mitochondria in 

demyelinated axons for neuroprotection. 
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Results 

Increased mitochondrial content within demyelinated axons indicates ARMD in experimental 

disease models irrespective of the mode of demyelination 

 

We assessed the mitochondrial content of demyelinated axons in nine different disease 

models at peak clinical disease or, when a clinical phenotype is not yet present, peak 

demyelination time point (Table 1) and compared it with myelinated axons in controls (Table 

2). Mitochondria within demyelinated axons, selected by neurofilament labeling and lack of 

myelin basic protein (MBP) immunofluorescence, were identified in confocal images based on 

immunofluorescent labeling of porin, which is a voltage gated anion channel (VDAC) 

expressed in all mitochondria. (Fig. 1). The mitochondrial content within demyelinated axons 

was significantly increased in the spinal cord of all EAE, lysolecithin, lipopolysaccharide (LPS) 

and Theiler’s murine encephalomyelitis virus (TMEV) induced models as well as in the corpus 

callosum in cuprizone mediated demyelination, compared with myelinated axons in controls, 

indicating the presence of ARMD (Fig. 1 and Table 1). The significant increase in mitochondrial 

content within demyelinated axons of all models arose from increased mitochondrial size 

and/or increased mitochondrial number (Table 2). In lysolecithin and cuprizone mediated 

demyelination and TMEV induced demyelination the average axonal mitochondrial size was 

significantly greater than in control myelinated axons. Meanwhile, the greater mitochondrial 

number accounted for the increased mitochondrial content in EAE models. These observations 

show that ARMD is a consistent phenomenon irrespective of the mode of demyelination.  

 

Increase in axonal mitochondrial content is not always accompanied by a corresponding 

increase in mitochondrial respiratory chain complex IV activity 

 

To determine whether the increased mitochondrial content within demyelinated axons is 

reflected at the functional level, we assessed complex IV activity of mitochondria at a single 

axon level using an established technique involving sequential COX histochemistry and 

immunofluorescent labeling of axons in snap frozen serial cryosections (Fig. 2) [31]. This 

sequential technique labels mitochondria with complex IV activity (in brightfield image). 

Furthermore, this technique identifies mitochondria that lack complex IV activity (in 

immunofluorescent images) and permits the determination of the subunit status of 

mitochondria that lack complex IV activity, as previously described [15, 31]. Quantification of 

complex IV activity within axons revealed a significantly greater area of the demyelinated 

axons occupied by complex IV active mitochondria in lysolecithin-induced lesions (Figure 2 
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and Table 3). In these focal lesions, complex IV active mitochondria with elongated 

morphology were prevalent within demyelinated axons (Fig. 2). The remaining models did 

not show a significant increase in complex IV activity within demyelinated axons. Although 

complex IV activity had a tendency to increase within demyelinated axons in cuprizone and 

TMEV models the difference was not statistically significant.  

 

Mitochondrial respiratory chain complex IV subunit-I is preserved in complex IV deficient 

axonal mitochondria in all experimental disease models 

 

In axonal mitochondria that lack complex IV activity, the extent of complex IV subunit-I (COX-

I) labeling was similar in demyelinated axons when compared with myelinated axons, 

suggesting that that the lack of complex IV activity is not caused by the loss of complex IV 

subunit-I. To confirm that the complex IV subunit is intact in demyelinated axons, we 

immunofluorescently co-labeled mitochondria and the subunit in serial sections and found a 

significant increase in complex IV subunit-I within demyelinated axons compared with 

myelinated axons (Table 3). The regions with inflammatory infiltrates in EAE showed a diffuse 

loss of complex IV activity and upregulation of iNOS [13]. These findings suggest that complex 

IV activity is acutely inhibited and/or complex IV subunits are post-translationally modified by 

the inflammatory response in a proportion of axonal mitochondria which had moved to the axon 

through ARMD as well as those already present in the axon before demyelination [21].  

 

Mitochondrial complex IV activity in demyelinated axons inversely correlates with axonal injury 

in experimental disease models 

 

We assessed the relationship between axonal mitochondrial parameters (content and complex 

IV activity) and axonal damage as indicated by the density of APP and synaptophysin positive 

elements (Fig. 3). We did not detect a significant correlation between axonal mitochondrial 

content and axonal damage. However, at the level of complex IV activity, there was a 

significant inverse correlation between the mean complex IV activity within demyelinated axons 

and the density of synaptophysin positive elements (Fig. 3). APP-positive elements also 

showed a significant inverse relationship with axonal complex IV activity (Fig. 3). The inverse 

correlation between axonal complex IV activity and axonal damage indicates the importance 

of preserving complex IV activity in acutely demyelinated axons. 
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Discussion 

 

We recently reported a homeostatic mechanism in neurons, termed ARMD, where 

mitochondria move from the cell body to the axon upon lysolecithin induced focal demyelination 

[13]. In the present study we show that ARMD is a consistent feature of demyelinated axons 

in nine experimental disease models. In contrast, complex IV activity was not consistently 

increased in demyelinated axons, particularly in the EAE models studied, and axonal complex 

IV activity inversely correlated with axonal injury. These findings identify preservation of 

complex IV activity in axonal mitochondria that have responded to demyelination as an 

important strategy for neuroprotection in inflammatory demyelination. 

 

Previous studies have identified increased mitochondrial content in demyelinated axons in 

ethidium bromide (EB) lesions, demyelinated cat optic nerve and Theiler’s murine 

encephalomyelitis virus (TMEV) as well as in MS [15, 17, 24, 32]. In this study we show that 

the axonal mitochondrial content consistently increases, irrespective of the mode of 

demyelination, due to increased size and/or number of axonal mitochondria. The lack of 

increased mitochondrial size in inflammatory demyelination may be due to mitochondrial 

fragmentation, as previously reported in EAE, as well as decreased fusion of mitochondria in 

demyelinated axons. Whether mitochondrial fusion occurs within demyelinated axons in EAE, 

before mitochondrial fragmentation, needs to be investigated using live imaging techniques. 

While the increased axonal mitochondrial content has been proposed as a pathogenic 

mechanism, a study that prevented the increase of mitochondrial content in demyelinated 

axons by disrupting mitochondrial docking established that ARMD is a homeostatic and 

protective mechanism [19]. Furthermore, recent studies that enhanced ARMD, by over-

expressing PGC1a in neurons as well as pharmacologically targeting PGC1a to increase 

mitochondrial biogenesis, showed protection of acutely demyelinated axons in EAE and 

lysolecithin-induced lesions [13, 22]. Our current findings in nine experimental models robustly 

establish that ARMD is a consistent compensatory response to demyelination.  

 

Whether the increased mitochondrial content of demyelinated axons is reflected at the level 

of mitochondrial complex IV activity had not been studied in experimental disease models. In 

this study, we show that the extent of complex IV activity of demyelinated axons is 

dependent on the mode of experimental demyelination (Fig. 4). The finding that lysolecithin 

induced lesions, showing a significant increase of complex IV activity in demyelinated axons, 

is comparable to findings in dysmyelinated axons in shiverer mice, where inflammation is 
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minimal [3]. In contrast, autoimmune inflammation did not lead to a significant increase of 

axonal complex IV activity despite the increase of axonal mitochondrial content (Fig. 4). The 

loss of complex IV activity in axonal mitochondria that have responded to demyelination in 

EAE may be due to a number of reasons. Firstly, a previous study has shown that 

modification of complex IV subunits occurs in EAE, although this was not localised to 

particular cellullar structures [21]. Secondly, an excess of nitric oxide which is known to 

compete with oxygen and inhibit complex IV is evidenced by the increase in iNOS in EAE 

[13, 25] Nitric oxide is also implicated in axon degeneration due to the correlation between 

iNOS expression and acute axonal injury [1]. In TMEV induced demyelination, the relative 

sparing of complex IV activity at 41 days is likely to be due to weak expression of iNOS and 

reactive oxygen species at this stage [11, 20]. Thirdly, reactive oxygen species damage 

axonal mitochondria and disrupt axonal mitochondrial transport in EAE [18, 26]. The 

differential complex IV activity within axons in toxic demyelination and inflammatory 

demyelination is consistent with inflammation related complex IV deficiency in demyelinating 

models. 

 

Our findings of intact COX-I indicate that the lack of complex IV acitivity in experimentally 

demyelinated axons in EAE is due to inhibition or post-translational modification of complex IV 

subunits rather than due to mitochondrial DNA (mtDNA) mutations or loss of transcripts. These 

observations in EAE are supported by previous studies of transcripts of mitochondrial 

respiratory chain subunits and mtDNA, both of which were unaltered in experimental models 

[4, 13]. While experimental disease models with inflammatory demyelination represent 

complex IV deficiency in axons, at a mechanistic level these models only represent 

inflammation induced complex IV deficiency, rather than the irreversible complex IV deficiency 

due to mitochondrial DNA mutations that are found in MS [5, 13].  

 

Complex IV activity is important for axonal health in non-demyelinating disorders and likely to 

be even more relevant in demyelinating disorders as a result of the increased energy demand 

of demyelinated axons. For the first time, we show an inverse relationship between complex 

IV activity in demyelinated axons and extent of axon degeneration in experimental disease 

models, suggesting the importance of preserving mitochondrial respiratory chain function in 

demyelinated axons. We recently showed that enhancing ARMD in complex IV deficient 

neurons can protect demyelinated axons in COX10Adv mice [13]. This indicates that complex 

IV deficiency in axons plays a role in the axon degeneration through the loss of function or lack 

of energy rather than due to a toxic gain of function. Unlike in COX10Adv mice, where the 

complex IV deficiency is irreversible, complex IV deficiency due to inhibition by nitric oxide and 
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modification of subunits by reactive oxygen species, as evidenced in certain experimental 

disease models, is potentially reversible. This reversibility stems from the ability of neurons in 

experimental disease models to generate healthy mitochondria as they do not show mtDNA 

mutations or loss of nuclear DNA encoded transcripts [4, 13]. In these experimental disease 

models, newly generated mitochondria and their movement from the cell body to the axon may 

replace damaged mitochondria and restore axonal energy production. In MS, complex IV 

deficiency of axons is caused by multiple mechanisms, including nitric oxide mediated 

inhibition of complex IV, inflammation related direct damage to complex IV as well as the 

chronic nature of oxidative injury leading to mtDNA deletions. The co-occurence of potentially 

reversible complex IV deficiency due to inflammation induced mitochondrial damage with the 

irreversible complex IV deficiency due to mitochondrial DNA mutations in MS offers therapeutic 

potential [5, 15]. 

 

In summary, we show that ARMD is a consistent feature of a wide range of experimental 

disease models and highlight the importance of preserving axonal complex IV activity in 

inflammatory demyelinating disorders. Our findings suggest that enhancing ARMD as a 

neuroprotective strategy for MS may be further optimised by limiting damage to complex IV, 

through combinatorial therapies including immunomodulation. 
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Table 1. Features of the disease models 

 

Model (co-author) species 

(strain) 

time points for analysis 

in days 

n= (brain, 

spinal 

cord) 

focal demyelinating dorsal 

funiculus lesion: 

LPC (1%)[30]  

 

LPS (200ng)[8]  

 

Mouse 

(C57BL/6) 

 

5* 

 

0, 6 

Rat  

(Sprague-

Dawley) 

7* 

 

0, 6 

Cuprizone-mediated 

demyelination of the brain 

[10]  

Mouse 

(C57BL/6) 

42* 

 

 

6, 0 

 

TMEV-induced inflammatory 

demyelination [24]  

Mouse  

(SJL/J) 

41 (demyelinating) 

 

3, 3 

 

T-reg depleted active EAE 

with MOG35-55 [16]  

Mouse 

(C57BL/6) 

13 (acute)* 

 

0, 10 

 

humanized TCR transgenic 

with spontaneous EAE [7] 

Mouse 

(C57BL/6) 

120-150*, (clinical 

score 1-2 and >3) 

3, 3 

 

chronic EAE with 

subcutaneous spinal cord 

homogenate [2]  

Mouse  

(Biozzi ABH) 

18 (acute)* 

 

3, 3 

 

acute EAE with rMOG [6]  Rat  

(Dark Agouti, 

Harlan) 

14* 3, 3 

EAE with rMOG34-56 [12]  Marmoset 

(Callithrix 

jacchus) 

11 days*, on average, 

post EAE score of 2.5 

9, 5 
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*indicates peak clinical disease or peak demyelination time point for the analysis of axonal 

mitochondrial parameters. All the time-points stated above were included in the detection for 

respiratory-deficient cells. EAE: experimental autoimmune encephalomyelitis. LPC: 

lysolecithin. LPS: lipopolysaccharide. MOG: myelin oligodendrocyte glycoprotein. TCR: T-cell 

receptor. TMEV: Theiler’s murine encephalomyelitis virus. n= number of animals used for brain 

and spinal cord analysis. Equal numbers of age-matched controls were used, except for 

marmoset EAE, where 4 age-matched naïve controls were used. 
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Table 2. Changes in axonal mitochondrial content, size and number following demyelination in 
models and MS 

model mitochondrial 

content (% of 

axon area) 

mitochondrial 

size (μm2) 

mitochondrial 

number/103 μm2 

of axon area 

focal LPC 28.78 ± 9.98*** 5.28 ± 1.77** 42.07 ± 19.39 

15.02 ± 3.57 2.93 ± 1.56 32.28 ± 19.36 

focal LPS 23.88 ± 12.98*** 4.55 ± 2.24 56.40 ± 25.57* 

13.17 ± 3.73 4.58 ± 1.30 40.11 ± 14.02 

cuprizone-mediated 23.01 ± 4.99*** 4.75 ± 1.71** 68.81 ± 12.21*** 

15.02 ± 3.57 2.92 ± 1.03 47.66 ± 7.71 

TMEV-induced 20.39 ± 2.88** 6.61 ± 2.29** 34.71 ± 8.62 

15.17 ± 2.04 4.56 ± 1.29 33.45 ± 10.92 

TCR tg EAE 16.76 ± 7.30* 5.01 ± 1.09 40.76 ± 20.51* 

10.15 ± 4.00 4.26 ± 1.21 23.30 ± 13.13 

EAE Biozzi ABH 20.81 ± 7.42*** 4.93 ± 1.29 43.04 ± 14.74** 

12.79 ± 3.22 4.69 ± 1.24 27.75 ± 5.16 

T-reg depleted EAE 23.18 ± 9.79*** 2.57 ± 0.97 53.46 ± 14.77 

15.38 ± 4.88 1.98 ± 1.42 32.04 ± 16.96 

EAE rat 25.74 ± 7.72*** 5.10 ± 2.62 54.90 ± 13.78*** 

13.37 ± 3.91 3.78 ± 1.24 37.15 ± 10.39 

EAE marmoset 19.51 ± 5.92* 3.08 ± 0.64 64.93 ± 21.44 

14.92 ± 8.33 3.31 ± 1.93 53.18 ± 12.49 

Progressive MS 

(Zambonin et al., 

2011) 

19.61 ± 5.67** 15.67 ±3.68** 49.21 ± 11.93 

6.26 ± 1.73 5.22 ± 1.92 33.60 ± 9.67 

Table 2. Mitochondrial content (column two) is expressed as a percentage of axonal area 

occupied by porin-labelled elements. Mitochondrial size (column three) and mitochondrial 

number (column four) are based on the area and number, respectively, of porin-labelled 

elements within axons in confocal images. Shaded rows indicate mean values for myelinated 

axons from controls and unshaded rows mean indicate values for demyelinated axons. EAE: 

experimental autoimmune encephalomyelitis. LPC: lysolecithin. LPS: lipopolysaccharide. TCR 

tg: T-cell receptor transgenic. TMEV: Theiler’s murine encephalomyelitis virus. Values indicate 

mean ± standard deviation. *p<0.05, **p<0.01 and ***p<0.001. 
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Table 3. Complex IV activity and complex IV subunit-I relative to axonal area and complex IV 
subunit-I relative complex II subunit labeled area in myelinated axons and demyelinated 
axons 

model complex IV activity 

in all axonal 

mitochondria (% of 

axon area) 

complex IV subunit-

I in complex IV-

deficient 

mitochondria (% of 

complex II 70KDa 

area) 

complex IV subunit-

I in all axonal 

mitochondria (% of 

axonal area) 

Focal LPC 12.81 ± 3.69** 85.49 ± 16.96 24.15 ± 8.37** 

7.44 ± 4.57 62.22 ± 11.59 10.25 ± 2.43 

Focal LPS 6.08 ± 2.55 63.16 ± 21.29 15.51 ± 8.43** 

5.84 ± 1.78 69.13 ± 14.51 
 

8.49 ± 2.48 

Cuprizone-

mediated 

10.50 ± 6.55 68.73 ± 14.24 17.30 ± 3.75** 

6.83 ± 1.55 61.34 ± 11.98 11.08 ± 2.25 

TMEV-

induced 

9.42 ± 6.37 58.41 ± 14.14 15.89 ± 2.91** 

4.98 ± 1.19 62.88 ± 10.87 10.89 ± 2.44 

EAE, TCR 

tg 

4.28 ± 2.48 73.46 ± 15.32 11.61 ± 5.31* 

4.59 ± 1.38 67.25 ± 11.14 7.72 ± 2.87 

EAE, Biozzi 

ABH 

3.69 ± 2.15 62.36 ± 21.20 15.16 ± 5.28** 

5.07 ± 2.16 67.54 ± 10.26 8.76 ± 2.09 

EAE, T-reg 

depleted 

2.18 ± 1.15 64.73 ± 18.56 14.24 ± 4.96* 

6.10 ± 1.11 71.96 ± 11.90 9.32 ± 2.23 

EAE, rat 4.36 ± 1.90 64.78 ± 20.50 17.59 ± 5.28** 

5.57 ± 2.50 67.83 ± 12.17 8.12 ± 2.38 

EAE, 

marmoset 

5.01 ± 1.39 66.49 ± 22.95 14.71 ± 4.46* 

5.74 ± 1.98 70.76 ± 18.49 10.13 ± 5.66 

Progressive 

MS 

7.37 ± 4.98** 

(Mahad et al., 

2009) 

22.82 ± 21.34** 10.10 ± 3.89** 
 

2.23 ± 1.62 51.89 ± 22.86 4.91 ± 3.05 
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Table 3. Mitochondrial respiratory chain complex IV active mitochondria in axons (column two) 

are assessed as a percentage of axonal area occupied by these complex IV active 

mitochondria. Complex IV subunit-I is assessed in all axonal mitochondria as the percentage 

area of the subunit present within the axons (column three) in triple labeled images. When 

axonal mitochondria that lack complex IV activity are detected using complex II 70kDa labelled 

elements within axons by the sequential COX histochemistry and triple labeling technique, the 

percentage area of complex IV subunit-I labeling in the mitochondria are not significantly 

different between myelinated axons in controls and demyelinated axons in all the disease 

models (last columns). Shaded rows indicate values for myelinated axons and unshaded rows 

indicate values for demyelinated axons. EAE: experimental autoimmune encephalomyelitis. 

LPC: lysolecithin. LPS: lipopolysaccharide. TCR tg: T-cell receptor transgenic. TMEV: Theiler’s 

murine encephalomyelitis virus. Values indicate mean ± standard deviation. *p<0.01 and 

**p<0.001. 
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Figure 1 
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Figure 1. Axonal mitochondrial content consistently increases upon experimental 

demyelination. Compared with myelinated axons from controls, in triple labeled 

immunofluorescent confocal images (column to the left with MBP in red, neurofilament-H in 

blue and porin in green), mitochondria are more prevalent in demyelinated axons (column to 

the right) from all the models. The grey scale images (Ai-Li) show porin-positive elements 

within axons from the corresponding triple labeled colour images (A-L). The quantitation of 

axonal mitochondrial content shows a significant increase in the lysolecithin-induced focal 

lesions (LPC, A-B and M), lipopolysaccharide-induced focal lesions (LPS, C-D and N), 

cuprizone model (E-F and O), Theiler’s murine encephalomyelitis virus (TMEV) model (P) as 

well as experimental autoimmune encephalitis (EAE, G-L and Q-U) in mice (C57BL6, SJL/J 

and Biozzi ABH), rat (Dark agouti) and marmoset species (the area of porin-positive elements 

as a percentage of axon area). 20 axons per region were randomly selected from each animal 

for quantitation. The box plots indicate the median, inter-quartile range (25%-75%) and 90% 

confidence interval. *p<0.05, **p<0.01 and ***p<0.01. Scale bar indicates 10μm. 
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Figure 2 
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Figure 2. Complex IV activity within axons and the detection of complex IV subunit-I relative to 

complex II 70kDa in complex IV-deficient axonal mitochondria. 

 

Complex IV activity can be localized to the axon by the sequential complex IV histochemistry 

(bright field images, Ai-Ii) and triple immunofluorescent labeling (Aii-Iii) of neurofilament 

(green), complex II 70kDa subunit (red) and complex IV subunit-I (blue) and then by merging 

the bright field image with triple labeled immunofluorescent image (A-I). This sequential 

technique immunofluorescently labels the complex IV-deficient mitochondria (labeled with 

complex II 70kDa, Aiii-Iiii) and their mitochondrial respiratory chain complex subunits (Aiv-Iiv), 

as previously described [31]. The grey scale immunofluorescent images of axonal complex II 

70kDa (Aiii-Iiii) and complex IV subunit-I (Aiv-Iiv) are generated by splitting the corresponding 

triple labeled colour image (Aii-Iii) and clearing the non-axonal mitochondria. As reported 

previously, the mitochondria with complex IV activity, evident in the bright field images, are not 

immunofluorescently labelled [31]. Following lysolecithin-induced (LPC) demyelination (panel 

B), there are numerous axonal mitochondria with complex IV activity and elongated 

morphology (B and Bi) compared with myelinated axons from controls (A and Ai). In contrast, 

mitochondria with complex IV activity in demyelinated axons are less numerous and rounded 

or less elongated in all other models [lipopolysaccharide-induced (LPS) lesions (C-Ci), 

cuprizone model (D-Di), TMEV model and experimental autoimmune encephalitis (EAE) in 

mouse, rat and marmoset]. The quantitation of complex IV activity within axons shows a 

significant increase following LPC-induced focal demyelination (J). 20 axons per region were 

randomly selected from each animal for quantitation. The bar charts indicate the mean plus 

standard deviation. *p<0.001. Scale bar indicates 10μm. 
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Figure 3 

 

Figure 3. The association between complex IV activity within demyelinated axons and extent 

of axonal injury. The density of axonal injury, judged by amyloid precursor protein (APP, A) 

and synaptophysin (Ai) labelling, varies considerably between the disease models (ANOVA 
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p<0.001). There is a significant inverse correlation between complex IV activity within 

demyelinated axons and axon degeneration, judged by the density of APP (B, r2 = 0.421, 

p=0.048) as well as synaptophysin (Bi, r2 =0.561, p=0.020) labelling. In contrast, a significant 

correlation is not found between mitochondrial content in demyelinated axons and the density 

of APP (C, r2 =0.040, p=0.604) and synaptophysin (Ci, r2 =0.147, p=0.308) labeling. Sequential 

COX histochemistry and immunofluorescent labelling of APP shows that a subset of APP and 

synaptophysin labelled structures contains mitochondria with complex IV activity in all nine 

disease models (D, synaptophysin positive structures lacking complex IV activity are shown in 

T-reg depleted EAE lesion, arrowheads). The bar charts indicate the mean plus standard 

deviation. 
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Figure 4 

 

 

Figure 4. The role of complex IV in ARMD. Compared with myelinated axons, demyelinated 

axons consistently show increased mitochondrial content irrespective of the mode of 
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experimental demyelination. At the level of complex IV activity (green mitochondria) 

lysolecithin induced lesions show a significant increase compared with myelinated axons, 

reflecting the increased axonal mitochondrial content. In contrast, the increased mitochondrial 

content of demyelinated axons in EAE is not accompanied by a corresponding increase in 

complex IV activity (red mitochondria). The lack of complex IV activity in demyelinated axons 

is associated with a substantially greater extent of axon injury. Intact COX-I in complex IV 

deficient axonal mitochondria suggests that the complex IV deficiency due to inhibition by nitric 

oxide and subunit modification by reactive oxygen species (ROS) is potentially reversible 

through mitochondrial biogenesis and subsequent replacement with healthy mitochondria.   
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