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Abstract:	
	

Carbohydrates	and	glycoproteins	modulate	key	biological	functions.	Computational	
approaches	inform	function	to	aid	in	carbohydrate	structure	prediction,	structure	
determination,	and	design.		However,	experimental	structure	determination	of	sugar	
polymers	is	notoriously	difficult	as	glycans	can	sample	a	wide	range	of	low	energy	
conformations,	thus	limiting	the	study	of	glycan-mediated	molecular	interactions.	In	this	
work,	we	expanded	the	RosettaCarbohydrate	framework,	developed	and	benchmarked	
effective	tools	for	glycan	modeling	and	design,	and	extended	the	Rosetta	software	suite	to	
better	aid	in	structural	analysis	and	benchmarking	tasks	through	the	SimpleMetrics	
framework.	We	developed	a	glycan-modeling	algorithm,	GlycanTreeModeler,	that	
computationally	builds	glycans	layer-by-layer,	using	adaptive	kernel	density	estimates	
(KDE)	of	common	glycan	conformations	derived	from	data	in	the	Protein	Data	Bank	(PDB)	
and	from	quantum	mechanics	(QM)	calculations.	After	a	rigorous	optimization	of	kinematic	
and	energetic	considerations	to	improve	near-native	sampling	enrichment	and	decoy	
discrimination,	GlycanTreeModeler	was	benchmarked	on	a	test	set	of	diverse	glycan	
structures,	or	“trees”.	Structures	predicted	by	GlycanTreeModeler	agreed	with	native	
structures	at	high	accuracy	for	both	de	novo	modeling	and	experimental	density-guided	
building.	GlycanTreeModeler	algorithms	and	associated	tools	were	employed	to	design	de	
novo	glycan	trees	into	a	protein	nanoparticle	vaccine	that	are	able	to	direct	the	immune	
response	by	shielding	regions	of	the	scaffold	from	antibody	recognition.	This	work	will	
inform	glycoprotein	model	prediction,	aid	in	both	X-ray	and	electron	microscopy	density	
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solutions	and	refinement,	and	help	lead	the	way	towards	a	new	era	of	computational	
glycobiology.	
	
Introduction:	
	 Carbohydrates	and	glycoproteins	are	ubiquitous	in	biological	organisms1.	Viral	
glycoproteins	such	as	HIV	envelope	trimer,	influenza	hemagglutinin,	and	SARS-CoV-2	spike,	
employ	N-linked	glycosylation	as	an	immune	evasion	strategy,	taking	advantage	of	the	fact	
that	host	glycans	on	the	surface	of	proteins	are	usually	recognized	as	“self”	by	the	adaptive	
immune	system2.	Yet,	HIV	broadly	neutralizing	antibodies	often	target	glycans	as	part	of	
their	epitopes3,4,5.	Small	carbohydrate	residues	attached	to	serine	or	threonine	can	act	in	
signaling	pathways	akin	to	phosphorylation6,	while	glycans	on	the	constant	region	of	
antibodies	act	as	mediators	of	effector	function7,8.	Glycans	can	also	improve	stability9	and	
solubility10,	reduce	aggregation11	,	and	even	improve	biological	drug-targeting	and	vaccine	
design	through	glycan	masking	of	off-target	regions12.	
	 The	biosynthesis	of	glycoconjugates	is	complex.	Carbohydrates	can	be	attached	to	
certain	amino	acid	residues	including	serine,	threonine,	asparagine,	and	(rarely)	
tryptophan	through	covalent	modification,	forming	glycoproteins.	The	attachment	can	be	
made	to	nitrogen,	oxygen,	or	carbon	atoms,	(known	as	N-,	O-,	or	C-linked	glycosylation,	
respectively),	with	each	process	involving	a	multitude	of	enzymes,	sugar	moieties	and	
resulting	carbohydrate	structures.	These	processes	are	stochastic	in	nature,	producing	
glycoproteins	that	are	heterogeneous	in	both	the	occupancy	of	a	glycan	at	the	glycosylation	
site	(macro-heterogenicity)	and	the	chemical	makeup	of	the	N-,	C-,	or	O-linked	glycan	
(micro-heterogenicity)13.	

The	most	common	form	of	glycosylation	observed	in	glycoprotein	structures	is	N-
linked	glycosylation.	Initiation	of	this	process	occurs	during	translation,	by	the	protein	
oligosaccharyltransferase	(OST),	which	recognizes	a	multi-residue	consensus	motif,	or	
sequon,	of	NX(S/T)	(where	X	is	any	residue	except	proline),	and	covalently	attaches	a	lipid-
linked	core-oligosaccharide	to	the	asparagine	residue	through	an	N-glycoside	linkage	1.	
This	process	is	not	deterministic	(not	every	sequon	results	in	attachment	of	a	glycan)	and	
certain	amino	acids	in	and	around	the	sequon	motif	can	affect	the	efficiency	of	this	process,	
resulting	in	higher	or	lower	glycan	occupancy	at	the	site14,15.	

Upon	successful	protein	folding	in	the	endoplasmic	reticulum,	the	initial	N-linked	
glycan	is	“trimmed	down”	by	removal	of	several	terminal	glucosyl	residues,	while	many	
sugar	processing	enzymes	in	the	Golgi	apparatus	can	add	or	remove	sugar	residues	from	
the	nascent	branched	sugar	(tree).	The	resulting	chemical	makeup	of	the	glycan	tree	
depends	on	which	enzymes	are	available	in	the	Golgi,	which	is	heavily	influenced	by	
species,	disease	state16,	developmental	stage17;	and	the	local	structure,	sequence,	and	
environment	of	the	glycosylation	site18.	In	addition,	a	particular	glycosylation	site	can	
result	in	vastly	different	glycans19	,	though	this	can	be	controlled	to	some	extent	through	
various	bioengineering	techniques13,20,21.	

Glycans	are	also	conformationally	flexible,	being	highly	hydrophilic	and	typically	
exposed	on	the	surface	of	proteins,	with	a	large	number	of	conformational	degrees	of	
freedom.	However,	as	has	been	observed	in	molecular	dynamics	and	NMR	experiments,	
glycan	conformations	can	be	influenced	by	their	structural	environment22.	Through	the	
plethora	of	high-resolution	crystallographic	and	cryo-EM	studies,	we	also	know	that	
glycans	can	adopt	stable	conformations	with	well-defined	density	observed	for	many	of	the	
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glycan	residues	in	each	tree,	especially	towards	the	root	of	the	glycan	tree,	even	for	some	
unrestrained	glycans23,24.	Presumably,	these	low-energy,	stable	conformations	are	
occupied	at	higher	frequency	in	solution.		In	addition,	a	recent	QM	study	on	glycan	torsional	
energies	showed	that	the	QM-derived	conformational	preferences	of	glycan	torsions	match	
well	with	glycan	structures	analyzed	from	the	protein	data	bank,	indicating	that	
conformational	diversity	is	also	influenced	by	the	chemical	makeup	of	each	glycan	
structure25.	

Given	the	complex	chemistry	and	conformational	diversity	involved,	accurate	
modeling	of	glycans	is	currently	a	grand	challenge	in	computational	biology.	Computational	
glycobiology	tools	and	webapps	have	been	developed	for	protein	glycosylations26,	
validation	of	carbohydrate	structural	chemistry27,	statistical	analysis28,	and	docking29,30	.	
Common	methods	in	glycoprotein	modeling	typically	involve	molecular	dynamics	(MD)	
simulations31	or	adding	glycans	by	manual	placement	and	conformational	tweaking	into	
their	density	for	structure	determination32.		Recently,	a	new	method	for	automatic	building	
of	glycan	structures	from	sequence	was	described33;	this	method,	the	CHARM-GUI	Glycan	
Modeler,	was	benchmarked	only	up	to	the	first	and	second	sugar.		

Here	we	describe	a	new	glycan	modeling	algorithm	built	within	the	Rosetta	
software	suite,	a	platform	that	incorporates	state-of-the-art	applications	and	modules	for	a	
variety	of	macromolecular	modeling	and	design	tasks34.	The	new	algorithm	provides	user	
interfaces	for	the	creation	of	tailor-made	protocols35,36	and	includes	a	reliable	knowledge-
based	energy	function	to	evaluate	models	and	designs37.	We	build	on	earlier	work	that	
enabled	representing	and	evaluating	carbohydrate	structures	within	Rosetta38	and	in	
loading,	representing,	and	refining	glycans	from	the	Protein	Data	Bank39.		We	expand	on	
this	foundational	work	through	the	addition	of	new	carbohydrate-specific	sampling	
methods,	an	updated	conformer	database	employing	adaptive	kernel	density	estimates,	a	
new	framework	for	general	analysis	in	Rosetta	(SimpleMetrics),	and	a	new	algorithm	for	
accurately	modeling	complex	carbohydrates,	the	GlycanTreeModeler.			

We	rigorously	benchmark	the	new	method	on	a	set	of	diverse	high-resolution	
crystal	structures	of	glycans	in	symmetric	crystal	environments,	and	we	show	that	the	
GlycanTreeModeler	is	capable	of	recapitulating	native	glycan	structures	with	high	accuracy	
both	through	de	novo	and	density-guided	modeling40.		We	then	applied	our	glycan	
modeling	protocol	with	Rosetta	sequence	design	of	glycan	sequons	to	engineer	optimal	
new	glycans	onto	a	protein	nanoparticle	vaccine	scaffold	and	evaluated	changes	in	immune	
responses.	We	observed	reduced	reactivity	to	the	underlying	protein	surface	in	
immunization	experiments,	thus	demonstrating	that	glycans	can	be	computationally	
engineered	to	tailor	immunogenicity	of	vaccines.	

	
Results	

The	Rosetta	GlycanTreeModeler	builds	whole	glycan	“trees”	through	an	algorithm	
that	mimics	the	growth	of	natural	trees.	A	primary	difficulty	in	de	novo	glycan	modeling	is	
the	correct	prediction	of	the	base	of	glycoconjugate	structures.	To	increase	the	accuracy	of	
the	first	few	sugars	of	the	tree,	our	algorithm	begins	modeling	from	the	“root”	(reducing	
end)	of	the	glycan	tree	out	to	the	branching	“foliage”.	Monte	Carlo	optimization	through	
sampling	of	glycan	degrees	of	freedom	(DOFs)	is	carried	out	through	the	new	
GlycanSampler,	which	includes	routines	for	glycosidic	torsion	angle	(backbone)	sampling,	
structure	minimization,	hydroxyl	and	other	side-chain	optimization,	and	neighbor	protein	
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side-chain	optimization.	During	the	protocol,	the	total	amount	of	sampling	scales	linearly	
with	the	number	of	glycan	residues	being	modeled,	ensuring	even	sampling	regardless	of	
the	size	or	quantity	of	glycans	being	modeled.			

The	GlycanSampler	optimizes	glycosidic	torsion	angles	using	statistically	favorable	
sets	of	phi,	psi,	and	omega	angles	(conformers)	and	single	torsions	sampled	from	QM-
derived	probabilities	originally	used	for	energetic	evaluation	of	glycosidic	linkages25,29.	
Conformer	sets	are	dependent	on	each	chemically	distinct	pair	of	saccharides	making	up	a	
glycosidic	bond,	whereas	single	torsions	depend	on	the	anomeric	chemistry	of	the	linkage.	
We	derived	the	conformers	for	this	work	by	carrying	out	a	new	bioinformatic	analysis	of	
glycans	in	the	PDB	through	the	use	of	adaptive	kernel	density	estimates	in	a	similar	
manner	to	what	was	done	for	the	2010	Dunbrack	Backbone-dependent	Rotamer	Library41	
(see	supplemental).	

To	optimize	the	conformations	of	glycan	residues	on	different	branches	at	the	same	
time,	the	glycan	tree	is	built	layer-by-layer,	with	a	layer	defined	as	the	residue	distance	to	
the	root	(Figure	1a).	Once	each	new	layer	is	built	and	optimized,	all	previous	layers	are	
then	optimized	further	(Figure	1b).	After	all	layers	are	built	and	optimized,	a	final	
optimization	is	conducted.	The	lowest	energy	model	(decoy)	found	during	this	Monte	Carlo	
algorithm	is	output	at	the	end	of	the	program	as	a	PDB	file.	The	lowest-energy	structure	of	
all	the	output	decoys	is	used	as	the	“best”	model	produced	by	the	algorithm.	See	the	
supplemental	material	for	more	details	[supp	vid	1].		

	

	
Figure	1:	Glycan	Modeling	Diagram.	a.	Glycan	trees	building	layer	by	layer.	Numbers	indicate	distance	to	
root	of	the	glycan	tree,	which	is	the	first	residue.	b.	After	a	layer	is	built,	Glycan	Sampling	is	performed	on	the	
new	layer,	and	then	all	layers,	before	building	the	next	layer.	c.	Diagram	showing	major	components	of	the	
GlycanSampler.	The	GS	is	a	weighted	random	sampler,	indicating	that	each	DOF	is	sampled	with	a	specific	
probability.	See	supplemental	for	details.		
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In	order	to	examine	the	performance	of	GlycanTreeModeler,	we	built	a	new	
benchmarking	infrastructure	in	Rosetta.	We	developed	the	SimpleMetrics	framework	
within	the	XML	interface	to	Rosetta	(RosettaScripts35),	which	allows	for	robust	analysis	
through	more	than	20	associated	structural	and	energetic	metrics,	with	data	reporting	at	
any	step	in	a	RosettaScripts	protocol.	The	Python	scripting	language	was	used	to	load	the	
resulting	JSON	scorefile	for	data	analysis	and	figure	creation	using	the	numpy42,	pandas43,	
and	seaborn44	libraries.	To	facilitate	large	scale	benchmarking,	we	developed	a	general	
application	for	parallel	RosettaScripts	computing,	rosetta_scripts_jd3,	enabling	glycan	
calculations	to	be	run	in	parallel	on	a	high-performance	computing	cluster.	This	application	
can	run	multiple	jobs	within	a	single	parallel	run	of	Rosetta,	with	individually	configured	
glycan	trees	to	be	modeled,	and	any	associated	input	files	for	each.	The	SimpleMetric	
framework	and	rosetta_scripts_jd3	application	are	reviewed	in	detail	in	the	supplemental	
material.	

Glycan	masking	was	carried	out	through	the	use	of	two	new	RosettaScript	
components;	the	CreateGlycanSequonMover,	which	designs	typical	and	enhanced45,15	glycan	
sequons	into	a	protein	at	a	desired	position,	and	the	SimpleGlycosylateMover,	which	adds	
whole	glycans	of	a	given	IUPAC	onto	a	protein.		Glycans	were	then	sampled	using	the	
GlycanTreeModeler.	
	
	
	
Glycan	Structure	Test	Set	

The	Rosetta	GlycanTreeModeler	algorithm	was	benchmarked	against	a	set	of	25	
unique	N-linked	glycan	trees	ranging	from	three	to	twelve	residues,	across	19	unrelated	
glycoprotein	structures	of	better	than	2	Å	resolution,	totaling	139	sugar	residues.	Each	
glycan	tree	was	checked	for	chemical	and	structural	inconsistencies	(such	as	incorrect	
isoform	assignments,	wrong	linkages,	or	missing	atoms)	using	the	glycosciences.de	pdb-
care	webserver27.	Preparation	and	analysis	of	the	structures	can	be	found	in	the	
supplemental	material.	
	

To	assess	the	predictive	capability	of	the	GlycanTreeRelax	algorithm,	the	dihedral	
angles	of	the	glycans	are	randomized	at	the	start	of	the	algorithm,	and	waters	are	removed.		
Models	are	compared	to	the	crystal	structures	using	the	all-heavy-atom	Root	Mean	Square	
Deviation	(RMSD)	metric,	with	the	lowest	energy	model	of	all	output	decoys	used	for	
assessment	(Figure	2).			The	RMSD	is	calculated	on	all	glycan	residues	that	have	an	
acceptable	fit	to	the	density	in	the	native	model,	as	terminal	glycan	residues	of	some	
glycans	often	cannot	be	observed	in	the	density	due	to	their	higher	flexibility.	A	description	
of	the	methods	used	for	the	RMSD	calculation	is	provided	in	the	supplemental.		
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Figure	2:	Schematic	of	benchmarking	protocol.		
	
	
Protocol	Optimization	

Development	of	the	glycan	modeling	protocol	began	with	the	implementation	of	the	
GlycanSampler.	Initial	results	showed	that	the	sampler	alone	produced	models	that	were	
energetically	favorable,	but	most	final	models	were	well	above	5	Å	RMSD	from	native—the	
mean	and	median	RMSD	values	over	the	benchmark	set	were	7.6	Å	and	7.2	Å,	respectively.	
For	some	of	the	more	sterically	confined	input	glycans,	many	of	the	decoys	had	major	
clashes	in	their	first	few	glycan	residues,	indicating	that	sampling	of	these	residues	was	
insufficient,	even	after	increasing	the	overall	amount	of	sampling.	

To	correct	for	the	sampling	problem,	we	modeled	our	algorithm	after	the	growth	of	
natural	trees,	in	which	we	kinematically	build	and	sample	the	glycan	layer-by-layer,	
essentially	“growing”	a	glycan	“tree”.	We	defined	a	layer	as	the	number	of	residues	to	the	
glycan	root	to	enable	branched	glycan	residues	to	sample	conformations	together.	This	
build-by-layer	algorithm	improved	enrichment	of	near-native	output	models	and	decreased	
the	median	RMSD	to	6.1	Å,	but	did	not	improve	the	overall	mean.	(Figure	3).	We	then	
sought	to	systematically	improve	the	algorithm	through	iterative	benchmarking	and	
optimization	of	kinematic	and	energetic	experiments.	
	 The	original	build-by-layer	algorithm	builds	two	layers	at	a	time,	with	an	overlap	of	
one	layer	(window).	Although	this	algorithm	improved	enrichments	compared	to	the	
GlycanSampler	alone	(all_sampler,	Figure	3),	once	a	layer	is	built	and	the	overlap	
refinement	is	complete,	those	layers	are	not	optimized	further,	which	makes	refinement	of	
the	overall	orientation	of	the	glycan	difficult,	especially	for	large,	branching	glycans	(which	
performed	worse	using	this	algorithm).		

Two	protocols	were	tested	that	include	the	build-by-layer	protocol	with	more	
optimization	of	previously	built	layers.	The	hybrid	algorithm	builds	and	optimizes	glycan	
layers	as	before	but	optimizes	all	previously	built	layers	before	the	next	build	occurs.	This	
algorithm	significantly	improved	enrichments	for	all	near-native	definitions	(Figure	3).	The	
hybrid-GS	algorithm	is	a	simplified	protocol	implemented	in	RosettaScripts	that	splits	
sampling	time	across	the	first	two	tested	algorithms.	It	first	runs	build-by-layer	and	then	
runs	the	GlycanSampler	for	optimization.	This	protocol	did	not	improve	enrichments,	
indicating	that	additional	sampling	of	previous	layers	during	the	build	process	instead	of	
after	is	important	for	improved	model	quality	(figure	S3).	

Finally,	since	the	hybrid	algorithm	is	refining	previously	built	layers,	we	removed	
the	window	sampling	and	benchmarked	the	number	of	build	layers.	By	building	a	single	
layer	at	a	time	(hybrid-build-one),	we	further	improved	decoy	enrichments	(Figure	3);	
however,	building	two	layers	at	a	time	did	not	improve	enrichments	(Figure	S4).	
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Figure	3:	Kinematic	Sampling	Optimization,	Decoy	Enrichment	from	each	individual	experiment.	All	
experiments	were	conducted	with	the	same	total	amount	of	sampling.	a.	Boxplots	without	whiskers	at	decoy	
enrichments	of	<1A,	<2.5A,	and	<5.0A.	b.	Means	of	decoy	enrichments	of	<1A,	<2.5A,	and	<5.0A.	Asterisks	
indicate	statistically	significant	differences	through	paired	t-test.	Asterisk	above	bar	indicate	statistical	
significance	with	all	other	groups.	*,p	<.05;	**,p<.005;	***,p<.0005		
	

Each	of	the	major	kinematic	experiments	generally	improved	near-native	model	
quality	(Figure	3,	S5,	and	S6),	but	this	was	much	more	pronounced	for	the	stem	region	of	
the	glycan,	defined	as	the	first	two	layers	of	the	glycan	tree	(Figure	S7).	Through	better	
optimization	of	the	base	region	through	kinematics,	the	overall	quality	of	output	models	
was	improved.	We	then	sought	to	improve	decoy	discrimination	of	these	low-RMSD	models	
through	improvements	to	the	scoring	function.	
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Scoring	Optimization	
	
	 The	default	Rosetta	energy	function	is	composed	of	many	individual	energy	terms,	
each	with	an	associated,	optimized	weight37.	A	core	component	of	the	RosettaCarbohydrate	
framework	is	a	specific	energy	term	for	the	carbohydrate	backbone,	analogous	to	that	of	
the	Ramachandran	term	used	for	peptide	bonds.	This	QM-derived	term	is	used	to	improve	
backbone	geometry	arising	from	anomeric	stereochemistry	of	both	glycan	residues	in	the	
bond18	and	is	on	by	default	at	a	weight	of	1.0	when	working	with	glycans	in	Rosetta.	We	
first	sought	to	find	a	balance	between	the	overall	energetics	of	the	glycan	and	the	penalties	
arising	from	this	term	when	native	geometries	are	not	ideal.	An	initial	small	test	of	various	
weights	of	this	term	indicated	that	a	weight	of	0.5	resulted	in	better	decoy	discrimination	
through	the	PNear	metric,	though	this	was	not	statistically	significant	(Figure	S8).	
However,	comparing	the	weight	of	1.0	and	0.5	using	a	larger	benchmark	did	result	in	
statistical	significance	at	a	lambda	of	1	Å	(Figure	4).	
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Figure	4:	Funnel	Plot	quality	of	Scoring	Benchmarks	assessed	by	the	pNear	metric.	a.	Boxplot	of	pNear	
values	for	each	benchmark	glycan,	indicating	funnel	plot	quality	for	lambdas	of	1.0,	2.5,	and	5.0	RMSD	to	
native.	Higher	pNear	indicates	better	near-native	discrimination	from	other	decoys.	Blue	squares	indicate	
mean.	b.	Means	of	pNear	over	each	experiment.	Significance	from	paired	t-test;	*	indicates	p	<.05.	
	
	 We	then	sought	to	improve	the	overall	discrimination	through	the	recently	
developed	Rosetta-ICO	(beta)	energy	function46.	Among	other	improvements,	this	energy	
function	includes	an	atomistic	repulsive	term	within	residues	(intra_rep),	and	a	more	
accurate	implicit	solvation	model	that	takes	into	account	potential	bridging	waters	–	both	
of	which	are	important	considerations	for	carbohydrate	modeling.	
	 Each	of	these	energy	function	changes	improved	decoy	discrimination	through	the	
PNear	metric.	The	sugar_bb	energy	term	change	was	statistically	significant	at	a	lambda	of	
1.0	Å,	indicating	that	too	high	of	a	sugar_bb	weight	reduces	the	energy	function’s	ability	to	
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discriminate	near-native	models	from	decoys	(Figure	4).	Notably,	both	optimizations	
together	improved	decoy	discrimination	for	lambdas	of	both	2.5	and	5.0	Å,	which	can	help	
distinguish	poor	quality	models	from	acceptable	ones.	This	improvement	was	statistically	
significant	compared	to	the	base	energy	function	of	ref2015.	
	
	

	
Figure	5:	Scoring	Optimization,	Decoy	Enrichments	of	each	experiment.	Asterisk	above	bar	indicate	
statistical	significance	with	all	other	groups	through	paired	t-test.	*|p	<.05	**|p<.005	***|p<.0005		a.	Decoy	
Enrichment	in	output	models	at	<1.0A,	<2.5A,	and	<5.0A	RMSD.	b.	Decoy	Enrichment	in	output	models	of	the	
base	(STEM)	region	indicating	layers	0	and	1.		
	
	
	 Although	these	improvements	were	observed	in	decoy	discrimination,	using	the	
Rosetta-ICO	energy	function	(beta)	in	combination	with	a	lower	sugar_bb	weight	also	
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improved	enrichment	of	near-native	models,	especially	in	the	root/STEM	region	(First	two	
sugars,	Figure	5).	These	changes	also	directly	influenced	the	quality	of	the	final	models,	
most	likely	due	to	improvements	in	PNear	(Figure	S9).		
	
	
	
Benchmarking	of	De	novo	modeling	
	

Using	the	optimized	protocol	and	scoring	function	found	during	protocol	
optimization,	benchmarking	was	done	on	the	set	of	25	glycans	described	above.		Across	the	
benchmark	dataset,	the	median	RMSD	of	the	glycan	predictions	to	the	native	structures	
was	2.7	Å,	while	the	mean	was	5	Å.	For	the	first	two	residues	of	the	glycan	tree,	the	median	
was	1.28	Å	with	a	mean	of	2.17	Å	.		Of	the	25	glycan	trees,	20%	of	the	glycans	were	
predicted	at	<	1	Å	accuracy	and	72%	(18/25)	of	the	glycans	were	predicted	at	<	5	Å	
accuracy	(Figure	6	and	7).	The	largest	glycan	in	our	dataset,	with	twelve	residues,	was	
benchmarked	at	2.5	Å.	Full	results	for	each	glycan	are	listed	in	Table	S3.			
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Figure	6:	Near	native	structures	from	de	novo	modeling.	(Top	Scoring	models	for	each	glycan	in	the	
benchmark	set)	Yellow=Native,	Cyan=Model	
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Figure	7:	De	novo	predictions,	Farthest	from	native.	(Top	Scoring	models	for	each	glycan	in	the	
benchmark	set)	Yellow=Native,	Cyan=Model	

	
It	is	also	useful	to	understand	how	well	the	algorithm	predicts	the	internal	structure	

of	the	glycans,	as	a	single	dihedral	angle	change	at	the	root	of	the	glycan	can	significantly	
change	the	overall	structure	of	the	glycan	relative	to	the	protein.	For	each	of	these	
structures,	the	same	lowest-energy	models	were	superimposed	onto	the	input	glycan.	The	
median	superimposed	RMSD	is	1.1	Å,	with	a	mean	of	2.7	Å.	Overall,	32%	(8/25)	were	<	1	Å	
RMSD,	64%	<	2.5	Å	RMSD	and	92%	of	the	predictions	<	5	Å.	Both	RMSD	measurements	of	
the	glycans	were	generally	correlated	to	each	other	(Figure	S10).		

In	addition,	most	of	the	glycan	benchmarks	in	our	dataset	had	convergent	score	vs.	
RMSD	(funnel)	plots	(Figure	S11).	This	funnel-like	quality	is	directly	related	to	the	ability	of	
the	scoring	function	to	discriminate	near-native	models	from	decoys	and	was	quantified	
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using	the	PNear	metric47	that	estimates	the	Boltzmann-weighted	probability	of	finding	a	
system	near	its	native	state	at	various	near-native	cutoffs	(lambdas)	[See	supp].	A	PNear	
closer	to	1.0	indicates	the	highest	quality	funnel	possible.	The	worst-performing	glycans	in	
our	benchmark	set	had	poor	score	vs.	RMSD	funnels,	indicating	that	the	scoring	function	
was	not	able	to	capture	important	biophysical	properties	of	the	structure	(Figure	S12).		The	
worst-performing	glycan	from	the	Fc	antibody	fragment	of	3ave,	had	an	RMSD	of	almost	25	
Å	with	an	internal	(superimposed)	RMSD	of	3.6	Å.		In	this	lowest-scoring	model	(and	
others),	the	modeled	glycan	interacts	with	the	more	hydrophilic	surface	of	a	
crystallographic	symmetry	mate	rather	than	the	more	hydrophobic	glycan-interacting	
surface	of	the	parent	protein	that	includes	two	aromatic	rings	(Figures	7,	S13).		This	result	
is	further	detailed	through	the	low	pNear	metrics	of	the	funnel	plot	with	all	lambdas	being	
less	than	.01,	showing	that	the	current	energy	function	is	unable	to	score	these	types	of	
interactions	well.	However,	a	scoreterm	that	accurately	represents	glycan-aromatic	CH-π 
interactions48	may	improve	these	results.	

Solvent	is	implicitly	represented	in	most	Rosetta	applications,	but	we	observe	that	
half	of	the	benchmark	glycans	have	significant	crystallographic	waters	in	contact	with	the	
surrounding	protein.		Attempting	to	understand	the	effect	of	waters,	we	modeled	the	
worst-performing	and	best-performing	glycans	and	then	predicted	explicit	waters	around	
the	glycan	for	each	output	decoy	using	Rosetta-ECO46	in	order	to	score	more	native-like	
conformations	that	have	these	bridged	waters.	However,	decoy	discrimination	as	measured	
by	pNear	was	significantly	worse	for	all	lambda	cutoffs	(even	for	the	best-performing	
glycans),	indicating	that	even	with	explicit	waters	and	sufficient	near-native	sampling	
distributions,	the	Rosetta	energy	function	was	unable	to	use	this	information	to	accurately	
distinguish	near-native	decoys.	(Table	S4)	

In	the	benchmark	set,	the	internal	(superimposed)	RMSDs	are	generally	low	in	
comparison	to	the	overall	RMSD	(84%	<	3	Å),	showing	that	the	energy	function,	guided	by	
the	QM-derived	sugar_bb	energy	term,	can	accurately	predict	many	glycan	structures,	but	
may	need	to	be	further	improved	to	more	accurately	score	glycan-protein	interactions	in	
the	future.		
	
Density	Building	
	 There	are	an	increased	number	of	glycoprotein	structures	being	determined.	To	
assist	structure	determination,	many	recent	glycan	modeling	tools	have	focused	on	their	
ability	to	aid	in	glycan	structure	building	and	refinement	using	the	experimental	density,	
especially	for	structures	with	many	resolved	glycans	such	as	HIV	Env.		We	tested	the	ability	
of	the	GlycanTreeModeler	to	build	glycan	structures	using	crystallographic	density	
information	to	guide	modeling	and	decoy	discrimination	using	integrated	density	scoring40.		
The	experiment	was	conducted	in	the	same	manner	as	de	novo	modeling,	by	first	
randomizing	all	backbone	dihedral	angles	of	the	glycan	to	be	modeled	for	each	output	
decoy	and	removing	all	crystallographic	waters.	For	each	of	the	25	glycans,	the	lowest-
energy	model	was	used	for	assessment.		
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Figure	8.	Best	and	Worst	results	from	Density-guided	modeling:	a.	Structural	comparison	of	3GML	165A	
glycan;	0.08A	RMSD;	cyan=model	|	yellow=native	b	(and	e).	RMSD	vs.	Score	(funnel)	plot,	top	80%	by	energy.		
c	(and	f).	Funnel	plot	of	top	10%	models	with	pNear	metrics.	d.	Structural	comparison	of	1GAI	171A	glycan;	
0.88A	RMSD;	cyan=model	|	yellow=native	
	
	

Without	further	refinement	or	any	additional	changes	to	the	protocol,	all	glycans	
were	modeled	at	sub-angstrom	accuracy.	The	best	glycan	in	the	current	benchmark,	with	
six	residues,	was	built	at	0.08	Å	RMSD	to	native	(3GML	position	165A	glycan),	while	the	
worst,	a	five-residue	glycan,	was	modeled	at	0.88	Å	RMSD	(1GAI	position	171A	glycan).	For	
both	of	these	glycans,	funnel	plots	were	generally	good,	with	respective	PNear	values	of	
0.99	and	0.46	at	a	lambda	of	1.0	Å	(Figure	8).	For	1GAI	glycan	171A,	the	last	residue	in	the	
glycan	is	twisted	in	the	best	model	compared	to	the	native	and	fits	two	constituent	oxygens	
into	the	low	residue	density	at	a	different	angle	than	the	solved	structure.	This	twist	can	
clearly	be	seen	in	the	funnel	plot	where	the	distribution	of	models	less	than	1	Å	is	bimodal,	
indicating	two	primary	close	solutions	of	the	electron	density.		(Figure	8F).		
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Figure	9.	Density-guided	Modeling	Quality:	a	.	Boxplot	of	the	RMSD	to	native	of	the	best-scoring	decoy	for	
each	of	the	benchmarked	input	glycans.	b.	Boxplot	of	the	funnel	quality	for	each	of	the	benchmark	glycans	as	
measured	by	the	pNear	metric.	A	value	closer	to	1.0	indicates	a	high-quality	funnel.		
	
	

Overall,	the	GlycanTreeModeler	achieved	a	mean	heavy	atom	RMSD	of	0.48	Å	using	
all	residues	and	0.34	Å	using	residues	that	had	acceptable	fits	into	the	density	(133/139	
total	glycan	residues,	see	supplemental).	For	both	inclusion	types,	the	median	RMSD	was	
0.31	Å	and	0.28	Å	respectively,	while	the	mean	RMSD	of	the	glycan	root	(first	two	sugar	
residues)	was	.23		Å	(Figure	9a)	(Table	S5).	Values	for	PNear	with	lambda	of	1.0	Å	were	
generally	quite	favorable,	indicating	high-quality	funnels,	with	a	mean	of	0.86	and	median	
of	0.92	(Figure	9b).	These	results	show	that	the	GlycanTreeModeler	can	be	effective	for	
modeling	known	glycans	into	electron	density,	especially	with	available	methods	for	
refinement.		
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Sugar	coating	protein	surfaces	
	

Addition	of	glycans	to	exposed	protein	surfaces	can	reduce	B	cell	receptor	access	to	
underlying	surface	epitopes;	this	approach	(called	“glycan	masking”)	has	been	used	to	
decrease	the	amount	of	antibodies	elicited	against	off-target	epitopes	of	designed	
immunogens12,49,50,51.	Given	the	predictive	capability	of	the	GlycanTreeModeler	to	accurately	
model	the	spatial	arrangement	of	complex	glycans,	we	used	the	algorithm	in	combination	
with	RosettaScript	SugarCoating	methods	for	sequon	design	and	computational	
glycosylation	to	design	four	N-linked	glycans	onto	the	outer	surface	of	the	I53-50A	trimeric	
component	of	the	I53-50	protein	nanoparticle	scaffold	(Figure	10A;	details	of	the	design	
approach	are	described	in	Materials	and	Methods	of	the	supplemental	text).	I53-50	was	
selected	as	a	model	immunogen	because	it	is	currently	in	clinical	trials	as	the	nanoparticle	
scaffold	for	SARS-CoV-252	and	RSV53	vaccines.		

When	glycosylated	I53-50A	trimers	and	I53-50B	pentamers	were	mixed	in	vitro	at	
equimolar	concentrations,	the	two	components	self-assembled	into	I53-50(gly)	
nanoparticles	that	display	240	glycans	on	the	outer	surface	(Figure	10A,	B).	Biophysical	
characterization	by	negative	stain	transmission	microscopy	(nsTEM),	dynamic	light	
scattering	(DLS),	and	size	exclusion	chromatography	(SEC)	confirmed	the	formation	of	
monodisperse	particles	with	the	known	I53-50	morphology	(Figure	10B).	SDS-PAGE	
analysis	of	the	I53-50A(gly)	trimer	treated	with	PNGase	F	confirmed	that	the	designed	
glycans	were	present	in	the	protein	(Figure	10B).	Mice	were	immunized	three	times	with	
1.0	μg	of	I53-50	or	I53-50(gly)	particles.	Anti-I53-50A	trimer	serum	antibody	titers	were	
significantly	lower	in	mice	immunized	with	I53-50(gly)	particles	compared	to	mice	
immunized	with	I53-50	particles,	whereas	anti-I53-50A(gly)	trimer	titers	were	unchanged	
between	the	two	groups	(Figure	10C).	These	data	demonstrate	that	the	methods	presented	
here	can	be	used	for	glycan	tools	for	glycan	masking	by	modeling	the	spatial	arrangement	
of	putative	glycans	on	protein	surfaces.	
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Figure	10.	(Α)	Schematic	of	protein	design	models.	On	the	left,	twenty	I53-50A	trimers	(gray)	and	twelve	
I53-50B	pentamers	(orange)	self-assemble	into	I53-50	protein	nanoparticles54.	Rosetta	sugarcoating	design	
protocols	were	used	to	glycosylate	the	outer	surface	of	I53-50A	trimers	with	4	N-linked	glycans	(green)	per	
protomer	to	form	I53-50	particles	with	240	N-linked	glycans	(middle).	The	inset	on	the	right	is	a	close-up	
view	of	glycosylated	I53-50A	trimers	with	12	total	glycans	on	the	outward-facing	surface.	(B)	
Characterization	of	bare	versus	glycosylated	I53-50	particles	using	negative	stain	transmission	electron	
microscopy	(nsTEM),	SDS-PAGE,	dynamic	light	scattering	(DLS),	and	size	exclusion	chromatography	(SEC)	on	
a	Superose	6	Increase	10/300	GL	column	(GE	Healthcare).	In	the	SEC	chromatogram,	both	I53-50	and	I53-
50(gly)	particles	reach	peak	elution	at	12.5	mL;	unassembled	I53-50A	and	I53-50B	components	elute	at	~18	
mL.	(C)	ELISA	curves	(left	two	plots)	and	corresponding	EC50	titers	(right	bar	plot)	showing	reduction	in	anti-
I53-50A	antibody	responses	when	mice	were	immunized	with	I53-50(gly)	versus	I53-50.	BALB/c	mice	were	
immunized	intramuscularly	at	0,	3,	and	6	weeks	with	5.57	μg	of	I53-50	or	I53-50(gly)	and	serum	antibody	
binding	to	I53-50A	trimer	(left)	or	I53-50A(gly)	trimer	(right)	was	quantified	via	ELISA	using	8-week	sera	
(N=5	mice/group).	For	statistical	analysis,	Mann-Whitney	tests	were	used	to	compare	among	the	
experimental	groups.		
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Discussion	
		

The	GlycanTreeModeler	and	associated	tools	allow	modelers	to	accurately	model	
glycans	of	interest	through	de	novo	and	density-guided	modeling.		The	algorithm	and	
energy	function	were	rigorously	optimized	and	benchmarked	with	glycans	of	varying	
length	and	complexity	at	a	median	de	novo	RMSD	of	2.7A.	In	fact,	even	before	full	
optimization	and	release,	the	GlycanSampler	algorithm	(previously	the	glycan_relax	app)	
was	used	to	model	glycans	on	HIV55,	Hepatitis	C56,	vaccine	candidates57,58	and	(with	the	
final	optimized	version)	SARS-CoV-259;	illustrating	the	general	utility	of	the	algorithm.		

The	modular	nature	of	Rosetta	and	the	tools	created	for	this	work	allow	them	to	be	
used	in	a	variety	of	complex	modeling	and	design	tasks.		The	GlycanTreeModeler	was	used	
with	previously	published	density	tools40	to	build	glycans	into	their	crystallographic	or	
cryoEM	experimental	density	with	sub-Angstrom	accuracy.		However,	while	the	results	are	
encouraging,	a	truly	automated	solution	for	glycoprotein	modeling	must	also	sample	glycan	
chemistries,	branching,	and	kinematics	simultaneously	in	order	to	build	potential	glycan	
residues	into	the	density	of	unknown	glycans.		Knowledge	of	the	range	of	glycoforms	and	
occupancy	occurring	at	a	glycosylation	site	can	be	obtained	through	mass-spectroscopy	
techniques19,60,	but	due	to	chemical	and	structural	heterogeneity	at	any	single	glycan	site,	
modelers	will	typically	need	to	build	models	for	multiple	different	glycoforms	at	a	single	
site,	especially	for	complex	glycans.		The	tools	presented	here	can	sample	and	build	
multiple	potential	whole	glycans	at	a	site	through	the	SimpleGlycosylateMover,	but	core	
Rosetta	methods	that	also	consider	species	and	cell-type	dependent	glycan	chemistries	
during	the	GlycanTreeModeler	or	end-to-end	deep	learning	methods	would	be	a	welcome	
addition	to	the	methods	presented	here.			
	 By	combining	the	tools	through	RosettaScripts,	it	becomes	possible	to		
computationally	design	glycan	sequons	at	ideal	positions	on	a	protein,	and	then	build	and	
model	multiple	potential	glycans	at	a	variety	of	sites	in	a	symmetric	manner.		This	general	
workflow	was	used	to	sugarcoat	a	clinically	relevant	nanoparticle	vaccine	scaffold	with	N-
linked	glycans.		In	vitro	and	in	vivo	testing	of	this	glycosylated	scaffold	showed	a	decrease	
in	the	humoral	immune	response	to	the	glycan-masked	surface.	Sugar	coating	therapeutics	
using	these	methods	could	potentially	reduce	off-target	effects	of	many	preclinical	
biologics,	especially	with	respect	to	immunogenicity.			

Most	glycans	are	can	sample	a	wide	range	of	conformations	in	solution,	as	they	are	
mostly	polar,	usually	exposed	to	solvent,	and	have	many	conformational	degrees	of	
freedom.	Thus,	accurately	predicting	the	lowest	energy	states	(and	highest	occupancy	
conformations)	for	glycans	is	difficult.		While	we	can	generalize	that	low	energy	
conformations	found	through	the	GlycanTreeModeler	should	be	indicative	of	probable	
solution	conformations,	the	GlycanTreeModeler	was	not	benchmarked	on	an	experimental	
ensemble	of	glycan	structures.		The	few	glycan	ensembles	found	through	solution	NMR61	
may	approximate	conformational	ensembles	in	solution	and	could	be	the	bases	for	future	
benchmarking.	However,	even	with	this	consideration,	many	of	the	benchmark	glycans	that	
were	modeled	accurately	to	their	crystal	structures	are	not	hindered	by	monomer	or	
crystal	contacts,	but	have	interactions	to	protein	in	their	glycan	root.		Additionally,	
predictions	of	the	internal	(superimposed)	RMSDs	of	all	glycans	benchmarked	were	
generally	favorable	with	a	median	benchmarked	accuracy	of	1.1	Å	and	a	mean	of	2.7	Å,		
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indicating	that	the	glycan	root,	subsequent	torsional	preferences,	and	intra-glycan	
interactions	may	be	determining	structural	factors	for	these	isolated	glycans.			
	 Although	the	algorithm	is	capable	of	accurate	de	novo	modeling	of	many	glycans	
(especially	at	their	base)	and	has	been	used	for	experimental	glycan	masking,	there	is	
certainly	room	for	improvement.		In	nearly	all	of	the	benchmarks,	the	native	structure	is	
sampled	adequately,	but	in	a	subset	of	structures,	the	energy	function	is	not	able	to	choose	
near-native	structures.		Upon	further	investigation	of	the	many	native	glycans	in	the	
benchmark	set	with	water-mediated	hydrogen	bonds,	we	originally	hypothesized	that	
explicit	water	modeling	might	help	the	energy	function	discriminate	near-native	models.	
However,	we	found	that	implicit	modeling	actually	led	to	better	discrimination	scores	
through	the	pNear	metric.		In	order	to	improve	the	algorithm	further,	the	Rosetta	energy	
function	will	need	to	be	optimized	to	improve	glycan-protein	interactions,	specifically	in	
terms	of	hydrogen	bonds,	solvation,	and	the	introduction	of	energy	terms	that	better	
represent	aromatic	CH-π interactions48.	Finally,	the	algorithm	requires	more	compute	time	
as	the	number	of	glycans	to	model	increases,	which	can	be	prohibitive	for	large,	multimeric	
glycoproteins	such	as	HIV.			

	In	this	work,	optimization	of	both	sampling	and	scoring	was	necessary	to	improve	
overall	accuracy.	A	key	component	of	the	algorithm	is	the	nature-inspired	kinematics	used	
during	sampling,	which	was	shown	to	be	an	important	determinant	of	the	overall	accuracy	
of	the	algorithm.		The	kinematics	were	rigorously	benchmarked	here,	though	kinematics	
are	not	always	taken	into	account	or	optimized	in	state-of-the-art	classical	modeling	
algorithms.	This	benchmarking	was	made	possible	by	the	SimpleMetric	framework	and	a	
new	RosettaScripts	application	that	were	created	and	used	continuously	throughout	this	
work.	

SimpleMetrics	have	now	become	a	critical	tool	for	general	analysis	in	Rosetta	and	as	
a	way	to	export	important	information	for	external	algorithms,	such	as	the	quantum	
annealer62.		As	core	protocols	in	Rosetta	continue	to	be	optimized,	and	as	deep	learning	
becomes	a	more	integral	aspect	of	modeling	and	design,	SimpleMetrics	should	allow	the	
robust	analysis	of	new	protocols,	results,	and	Rosetta	benchmarks,	as	it	has	for	this	work.	
	 	These	results	show	that	the	GlycanTreeModeler	is	able	to	accurately	predict	glycan	
structures	de	novo,	build	them	into	known	density,	and	be	used	in	SugarCoating	protein	
surfaces.	In	addition,	the	modular	nature	of	the	components	allows	them	to	be	further	
developed	for	specific	engineering	tasks	such	as	immunogenicity	reduction	or	the	
optimization	of	developability	characteristics	such	as	half-life,	solubility,	and	aggregation	
potential.			
		
	
	
Availability	and	Documentation	
	 The	GlycanTreeModeler,	GlycanSampler,	and	all	tools	used	in	this	work	are	available	
in	the	Rosetta	Software	Suite,	which	is	free	for	non-commercial	use.	All	tools	are	available	
as	components	for	RosettaScripts	and	PyRosetta.	In	addition,	the	use	of	all	components	are	
covered	in	publicly	accessible	tutorials63	and	detailed	protocol	captures64.		Results	of	this	
study	are	continuously	benchmarked	using	the	Rosetta	automated	scientific	testing	
framework65.	
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Figures	
	 Figures	were	created	using	matplotlib66.		Glycans	were	visualized	in	PyMol	using	the	
Azahar	plugin67,	which	was	expanded	for	this	work:	https://github.com/BIOS-
IMASL/Azahar/pull/17	
	
	
Documentation	Links:	

● RosettaScripts:	
o https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/Ro

settaScripts	
● Working	with	Glycans:	

o https://www.rosettacommons.org/docs/latest/application_documentation/carbohydrates/
WorkingWithGlycans	

● Chapter	13	of	the	PyRosetta	Notebooks:	
o https://github.com/RosettaCommons/PyRosetta.notebooks	
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