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Abstract 
Automated machine learning (AutoML) is positioned to democratize artificial intelligence (AI) by 

reducing the amount of human input and ML expertise needed to create prediction models. However, 

successful translation of ML in biomedicine requires moving beyond optimizing only for prediction 

accuracy and towards discovering reproducible clinical and biological inferences. Here, we present a 

model-agnostic framework to reinforce AutoML using strategies and tools of explainable and 

reproducible AI, including novel metrics for performance precision and feature instability. The 

framework enables clinicians to interpret AutoML-generated models for clinical and biological 

verifiability and consequently integrate domain expertise during model development. We applied the 

framework towards spinal cord injury prognostication and identified a detrimental relationship between 

intraoperative hypertension and patient outcome. Furthermore, our analysis captured evolving clinical 

practices such as faster time-to-surgery and blood pressure management that affected clinical model 

validation. Altogether, we illustrate how augmenting AutoML for inferential reproducibility empowers 

biomedical discovery and builds trust in AI processes towards effective clinical integration. 

Introduction 
Automated machine learning (AutoML) is a rapidly-developing ML subfield focused on automating 

model optimization processes including algorithm selection, feature engineering, and hyperparameter 

tuning1,2. AutoML applications produce high-performance models across diverse sophisticated 

algorithms and preprocessing methodologies while reducing the overall need for human input and 

modeling expertise3,4. Correspondingly, AutoML lowers the technical and knowledge barrier impeding 

ML democratization for various domains including biomedicine5–9. With the growing popularity of ML in 

clinical research10–13 and the increasing breadth, depth, and accessibility of clinical health data14, AutoML 

stands to exponentially accelerate clinical ML applications by empowering scientists and clinicians to 

train and leverage powerful models5. However, clinical utility requires ML models to be interpretable for 

biological mechanisms, verifiable by clinicians, and methodologically and inferentially reproducible15,16. 

Achieving reproducibility is further complicated by the fact that clinical datasets often have small sample 

sizes relative to the number of variables collected which can result in unstable model behavior
17,18

. This 

is especially true for rare diseases with smaller patient populations, and translation of AutoML from 

computer-to-clinic thus necessitates additional approaches beyond maximizing prediction accuracy with 

“black box” algorithms. In this study, we applied a modeling framework incorporating explainable and 

reproducible AI strategies to predict spinal cord injury (SCI) patient outcome. Furthermore, we 

demonstrate how we can improve the inferential reproducibility of ML and integrate clinical expertise in 

the process while leveraging AutoML for model optimization.  

SCIs are highly debilitating, resulting in chronic motor, sensory, and autonomic impairment including 

paralysis. While SCI affects comparatively fewer patients – about 17,700 new cases a year and 291,000 

patients with chronic disabilities in the US alone – the total societal cost is estimated to exceed $267 

billion19,20. The variety of SCI characteristics makes identification of patient outcome predictors 

challenging despite the volume of data collected throughout the hospitalization and treatment of each 

patient20. Various prognostic models for SCI outcome have been developed with algorithms ranging 

from logistic regression to extreme gradient boosted (XGB) trees and convolutional neural 

networks12,21,22. While such studies bear potential for informing clinical care, algorithm selection in many 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.461544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461544
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

SCI ML studies have primarily depended on the researchers’ familiarity with specific ML algorithms, and 

prediction accuracy remains the primary metric for comparing models23,24. Moreover, deciphering the 

relationships between outcome and predictors is still difficult with complex algorithms, ultimately 

dampening clinician enthusiasm about applying ML tools and results given the inability to interpret and 

verify such models25. 

In our AutoML application for SCI patient prognosis, we demonstrate: 

• A framework for reproducible and explainable modeling that implements (1) a repeated cross-

validation strategy, (2) performance precision and feature instability metrics and analyses, (3) 

model interpretation with permutation feature importance (pFI) and partial dependence plots 

(PDPs), (4) stabilized backward feature reduction, and (5) model validation with population 

similarity analysis (Fig. 1). In particular, repeated cross-validation allows for model aggregation 

to account for modeling variability and improve the inferential reproducibility of the results. 

• The importance of integrating domain expertise. We highlight how stabilized pFI and PDPs, 

useful model-agnostic explainable AI tools, enable biomedical researchers to draw robust 

inferences regarding the relationship between clinical variables and outcome. Furthermore, we 

illustrate how augmenting feature selection with domain expertise can improve model 

performance beyond deploying ML naively. 

• Additional analyses to interpret model validity. Many clinical ML studies with smaller sample 

sizes depend on newly collected data for external validation. Investigating the population 

similarity between training and validation cohorts provides meaningful information about model 

generalizability beyond validation performance and can capture evolving clinical practices that 

inevitably affects clinical ML implementation. 

By applying this framework to SCI, we identified actionable intraoperative mean arterial pressure (MAP) 

thresholds for hypertension and hypotension associated with worse patient outcome. Additionally, our 

analysis revealed underlying shifting clinical practices such as reducing time-to-surgery and hypotension 

management that invariably affects model validation efforts in SCI research. Altogether, we present 

methods to bolster the interpretability, reproducibility, and trustworthiness of clinical ML as AutoML 

becomes increasingly accessible to biomedical researchers. 

 

Results 
AutoML Model Generation 
We applied an AutoML platform to investigate clinical predictors of SCI patient outcome from 

intraoperative and acute hospitalization records collected between 2005-2011 and curated by the 

Transforming Research and Clinical Knowledge for SCI (TRACK-SCI) program, one of the largest SCI 

patient registries in the US20. We selected 46 variables (i.e. features) as predictors from de-identified 

data of 74 patients (Stable 1). Of these, 16 features were summary statistics (i.e. mean, standard 

deviation, skew, and kurtosis) derived from timeseries data capturing heart rate, systolic blood pressure, 

diastolic blood pressure, and mean arterial pressure (MAP) during SCI surgery. As intraoperative 

hypertension and hypertension have been shown to be detrimental to SCI outcome26,27, we also 

calculated the time each patient spent outside of previously-established upper (104 mmHg) or lower (76 

mmHg) MAP thresholds during surgery (time_MAP_Avg_above_104 and time_MAP_Avg_below_76, 
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respectively)28. We defined the prediction target as whether the patient’s ASIA Impairment Scale (AIS) 

score, a common SCI outcome assessment29, improved between time of hospital admission and time of 

hospital discharge. 

To account for potential instability in model optimization, we applied a repeated 10-fold cross-validation 

strategy with 25 repetitions where each had a unique partitioning arrangement (i.e. 25 projects)30,31. We 

then aggregated the results for analysis. AutoML generated 80-90 blueprints: unique combinations of 

data preprocessing methods and ML algorithms. From these, the platform fully optimized 30-40 models, 

15 of which had better mean performance (lower LogLoss and higher AUC) than the benchmark majority 

class classifier model (Fig. 2A, 2B). 

For the purposes of illustration, we selected two high performance blueprints for further interpretation 

and validation. The first was a L2 regularized logistic regression model with a spline transformation of 

numeric variables during data preprocessing (BPlog; Fig. 2C). BPlog had the best overall performance by 

LogLoss (0.67 ± 0.01) and was a top performer by AUC (0.68 ± 0.02). To apply our framework to a highly 

complex model use case and given the popularity of XGB in biomedical ML research, we also examined 

the “eXtreme gradient boosted trees classifier with unsupervised learning features” blueprint with the 

best LogLoss performance in its class (BPXGB; LogLoss = 0.68 ± 0.01; AUC = 0.67 ± 0.02). Importantly, XGB 

trees have gained popularity in biomedical ML research. BPXGB specifically includes a TensorFlow 

Variational Autoencoder preprocessing step32 (Fig. 2D) as the “unsupervised learning feature”, 

exemplifying the availability of sophisticated methodologies through AutoML platforms. 

 

Feature Importance 
We utilized a permutation-based approach33 to quantify feature importance (pFI) for BPlog and BPXGB. 

Notably, pFI values from individual models varied significantly; we accordingly aggregated pFI across the 

25 projects for more robust comparisons. While the order of features by importance for BPlog and BPXGB 

were different, we observed that many of the high importance features for both models were the 

timeseries summary statistics (SFig. 1). Interestingly, time_MAP_Avg_above_104 and 

time_MAP_Avg_below_76 were the most important features for BPlog (SFig. 1A) but were 11th and 18th 

in rank respectively for BPXGB (SFig. 1B). 

 

Performance Precision 
We observed that different partitioning arrangements resulted in varying model performances even 

with the same blueprint (Fig. 3A, 3B). We sought to determine whether aggregating the results of 25 

projects significantly improved the precision of model performances (i.e. performance precision) 

towards reproducible comparisons between blueprints. Measures of performance precision, including 

descriptive statistics such as 95% confidence intervals (CI), provide a critical measure of the reliability of 

the modeling process and is applicable to both AutoML and single model workflows. We additionally 

contextualized performance precision relative to the mean model performance: 
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Standardized performance CI width provides a measure of model precision in the context of the model’s 

performance; for example, a CI width of ±0.5 is effectively imprecise if the mean performance value is 

also 0.5. Large standardized CI width values indicate high unreliability in the modeling process and thus 

caution against definitively comparing model performances in such cases.  

To characterize how performance precision changes with the number of projects aggregated, we ran 

150 projects with BPlog and BPXGB and performed a sampling analysis (see Methods). For BPlog, we 

observed that aggregating 25 projects more than halved the expected standardized performance CI 

width when compared to only 2 projects: by LogLoss, 5.22 ± 0.24% vs 1.85 ± 0.01% for 2 projects vs 25 

projects respectively (Fig. 3A) and by AUC, 8.03 ± 0.38% vs 2.79 ± 0.02% respectively (SFig. 2A). Analysis 

of BPXGB performance precision generated similar results: by LogLoss, 5.42 ± 0.32% vs 2.06 ± 0.04% for 2 

projects vs 25 projects respectively (Fig. 3B) and by AUC, 8.36 ± 0.38% vs 2.84 ± 0.02% respectively (SFig. 

2B). The performance precision analysis further highlights the variability in model performances by 

different partitioning arrangements even if the blueprint and training dataset are unchanged. Running 

multiple projects and aggregating the results increases performance precision and ultimately improves 

confidence in model comparisons. From the 25 projects in our primary repeated cross-validation 

workflow, we observed standardized CI widths of 1.92% by LogLoss and 2.88% by AUC for BPlog and 

1.55% by LogLoss and 2.73% by AUC for BPXGB. 

 

Feature Instability 
We similarly observed that different partitioning arrangements resulted in pFI variability (i.e. feature 

instability). Given two different pFI lists – for example, from two different modeling projects or multi-

project aggregates with corresponding averaged pFI – we can quantify the differences between them by 

calculating: 

 	��!�	 "��# ����������$ % "�& �  ∑ |� � ���#�,� ) � � ���#�,�|
�

���  ,  

where a and b represent two different pFI lists, i is the ith feature, and f is the total number of features. 

FRI essentially sums the difference in the ranking of features by pFI for the features shared between any 

two pFI lists; higher FRI indicates more feature instability.  

Similar to the performance precision analysis, we performed a sampling analysis with 150 projects to 

determine the relationship between number of projects aggregated and feature instability for BPlog and 

BPXGB (see Methods). We observed extremely high FRI when the number of aggregated projects is small, 

suggesting that pFI can differ significantly from one project to another. When we increased the number 

of aggregated projects towards 150, FRI decreased towards 0, indicating that pFI ranking can be 

stabilized with sufficient project aggregation. At 25 projects, BPlog and BPXGB had average FRI values of 

13.03 ± 0.34 and 11.65 ± 0.33 respectively (Fig. 3C, 3D). This approximately amounted to a 93% decrease 

in instability for both BPlog and BPXGB as compared to when only aggregating across 2 projects. 

 

Automated Feature Reduction 
A component of AutoML is automating feature reduction (i.e. variable selection) to obtain a more 

parsimonious feature list34,35. This is particularly important for clinical models since clinical features 
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often outnumber the observations in biomedical datasets, increasing the danger of model overfitting36. 

We employed an iterative backward wrapper approach utilizing pFI to determine and remove the 

lowest-importance features at each step (see Methods). 

Importantly, we needed to ascertain the stability of features to be eliminated. Because our approach 

initially removes five features at a time, we accordingly applied our feature instability analysis to just the 

five lowest-importance features. With 25 projects, we found that BPlog had a FRI value of 0.96 ± 0.08 

(Fig. 3E) and BPXGB had a FRI value of 0.56 ± 0.06 (Fig. 3F) for the bottom five features. In contrast, the 

bottom five features cumulatively shifted at least eight ranks on average if we aggregated only two 

projects. By aggregating across 25 projects, we can be confident that the least important features are 

reliably the lowest ranked. 

The best-performing parsimonious BPlog had an average LogLoss of 0.55 ± 0.02 and only nine retained 

features (Fig. 4A). Of these, the highest pFI features included time_MAP_Avg_above_104, 

time_MAP_Avg_below_76, and the MRI BASIC score (MRI_1_BASIC_Score), a neuroimaging score for 

injury severity collected upon hospital admission (Fig. 4B)37. The corresponding mean AUC (0.83 ± 0.02) 

was also close to the maximum AUC of the feature-reduced models (SFig. 3A). 

Interestingly, initial feature reduction with BPXGB removed the time_MAP_Avg_below_76 feature. Given 

that clinical experts and SCI literature emphasize the correlation between hypotension and worse 

patient outcome28, we tested if preserving time_MAP_Avg_below_76 during feature reduction would 

produce better parsimonious model performance. The resulting parsimonious BPXGB model included 11 

features, had an average LogLoss of 0.48 ± 0.02 (Fig. 4C), and was close to the maximum AUC observed 

(0.87 ± 0.01) (SFig. 3B). Notably, this final performance was better than the best parsimonious model 

when time_MAP_Avg_below_76 had been eliminated (LogLoss = 0.52 ± 0.02; AUC = 0.87 ± 0.01). 

Furthermore, time_MAP_Avg_below_76 did not end up as the lowest-ranked feature in the final 

parsimonious feature list despite requiring user guidance to prevent elimination (Fig. 4D). Since 

time_MAP_Avg_below_76 exhibited collinearity with the other surgical timeseries-derived features, the 

handling of collinear features by the XGB algorithm is likely why time_MAP_Avg_below_76 was dropped 

without user intervention. Indeed, we observed higher FRI at each feature reduction step for BPXGB as 

compared to BPlog corresponding with larger pFI changes for BPXGB as collinear features are eliminated 

(SFig. 4). Additionally of interest, the most important feature of the parsimonious BPXGB feature list was 

the AIS score at admission (AIS_ad) which provides similar context for initial injury severity as the MRI 

BASIC score37. 

 

Feature Interpretation 
For additional interpretability, we utilized partial dependence plots (PDPs) to quantify the relationship of 

each individual features’ values to the model’s prediction38–40. PDPs are a model-agnostic approach and 

thus can be applied regardless of the preprocessing steps or algorithm implemented. We aggregated the 

partial dependence for each feature for BPlog and BPXGB across the 25 projects (SFig. 5, SFig. 6). 

The PDPs of the initial injury severity features – MRI_1_BASIC_Score for BPlog and AIS_ad for BPXGB – 

captured nuances between the two (Fig. 5A, 5B). We observed that a BASIC score of 4, which 

corresponds to severe injuries with notable hemorrhage, reduced the probability of patient 

improvement. Similarly, patients classified as AIS A (i.e. complete, severe SCIs) had the lowest 
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probability of outcome improvement. Both PDPs thus conveyed that the most severe SCI cases are 

unlikely to see improvement by the time of hospital discharge. However, the two scores had different 

effects for mild injuries: for BPlog, low BASIC scores (0-3) all increased the probability of improvement 

whereas AIS D reduced the likelihood of improvement for BPXGB. This underscores the difference in 

sensitivity and granularity between the AIS and BASIC scores. AIS D broadly encapsulates mild SCIs and is 

effectively a ceiling on the scale since improvement requires full recovery, which is uncommon. BASIC 

scores of 0-2 cover a range of functionally mild-to-moderate SCIs; indeed, BASIC and AIS scores do not 

correlate 1:137. Overall, the results suggested that patients with moderate SCIs (AIS B and C; BASIC 2) 

have the highest likelihood of outcome improvement.  

PDPs of time_MAP_Avg_above_104 and time_MAP_Avg_below_76 revealed that the models predicted 

worse outcome if a patient exceeded 104 mmHg by more than 70 minutes (Fig. 5C, 5D) or dropped 

below 76 mmHg for more than 150 minutes (Fig. 5E, 5F). BPlog and BPXGB produced similar 

time_MAP_Avg_above_104 and time_MAP_Avg_below_76 PDPs, though we observed that BPXGB 

predicted relatively better outcome for patients at the extreme upper range of time (>115 min for 

time_MAP_Avg_above_104 and >200 min for time_MAP_Avg_below_76). This is likely due to the 

dataset having fewer patients at the extreme ranges rather than a true clinical effect. Critically, BPlog 

implemented a spline transformation (Fig. 2C) and quintiled the continuous variables; all patients 

exceeding 70 or 150 minutes outside the upper or lower thresholds respectively were categorized to the 

same quintile. Accordingly, BPlog would not produce the PDP rebound observed with BPXGB.  

 

MAP Threshold Validation 
We previously found that time outside the MAP range of 76-104 mmHg was associated with lower 

probability of AIS improvement as determined by LASSO logistic regression models testing different 

MAP ranges while expanding the lower and upper MAP thresholds simultaneously28. To validate the 

MAP thresholds, we started with the best-performing parsimonious feature lists, removed the MAP 

threshold features, and then swept through various lower threshold (70-85 mmHg) or upper threshold 

(95-115 mmHg) features separately to identify how the threshold affected prediction.  

With BPlog, we observed the best performances with lower thresholds of 74-76 or 79 mmHg and with 

upper thresholds at 103-105 mmHg by LogLoss (Fig. 6A). With BPXGB, we observed the best 

performances at lower thresholds of 74-76 mmHg and at upper thresholds at 103-104 mmHg (Fig. 6B). 

The results were similarly reflected with AUC (SFig. 7), corroborating the thresholds of 76 and 104 

mmHg for predicting patient outcome. Our analysis furthermore revealed that the time spent above the 

upper threshold improved the predictive performance of the models significantly more, highlighting 

intraoperative hypertension as an important correlate and a potential factor for worse SCI recovery. 

 

Model Validation 
We visualized how each step of the workflow improves AUC and corresponding receiver operating 

characteristic (ROC) curves. Starting with BPlog and all our predictors except MAP threshold features, we 

achieved an average AUC of 0.63 ± 0.019 (SFig. 8A). Inclusion of MAP threshold features (with 76 and 

104 mmHg thresholds) improved AUC to 0.68 ± 0.02 (SFig. 8B), underscoring the importance of 

intraoperative MAP regulation. The largest improvement to model performance occurred after feature 
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reduction to a more parsimonious feature list (AUC 0.84 ± 0.02) (SFig. 8C). Adjusting the MAP thresholds 

produced miniscule improvements to AUC (AUC 0.85 ± 0.02) (SFig. 8D). Lastly, by repeating the process 

with BPXGB, prediction performance was improved to AUC 0.87 ± 0.01 (SFig. 8E). Altogether, we can 

improve model performance by adjusting the feature list and model by leveraging the AutoML workflow 

(SFig. 8F). Importantly, the ROC curves from each of the 25 projects notably differ, emphasizing how 

varying the dataset partitioning can produce significant model variability. 

Critically, the greatest obstacle for translating predictive models into the clinic is the validity of the 

models on novel data. While many ML scenarios implement a holdout partition from the original dataset 

for validation, clinical datasets often have relatively small sample sizes where such practices would 

result in underfitted models, especially for medical fields with smaller patient populations such as SCI41. 

Clinical model validity is thus often assessed with an external validation dataset collected from a new 

cohort of patients. Here, we obtained additional data for external validation from a prospective (2015 

onward) TRACK-SCI cohort of 59 patients. Of these, 14 patients improved in outcome while the 

remainder 45 did not. 

We used the parsimonious BPlog and BPXGB models to predict the probability of AIS improvement of the 

validation cohort. We aggregated these values across the 25 projects and generated plots and confusion 

matrices using the mean predictions and best F1 thresholds calculated by the AutoML platform. The 9-

feature parsimonious BPlog model correctly predicted 13 of the 14 patients who improved but only 15 of 

the 45 patients who did not (Fig. 7A; SFig. 9A). The 11-feature parsimonious BPXGB model correctly 

predicted only 9 of the 14 patients with AIS improvement and 14 of the 45 patients without (Fig. 7B; 

SFig. 9B). While BPXGB has higher predictive accuracy on the training dataset, the model did not perform 

as well on novel data as the BPlog model.  

We hypothesized that the poor validation performance was due to data drift where the validation 

patient population no longer resembled that of the training dataset. We accordingly performed 

population similarity analysis, starting with population stability index (PSI) assessment for each of the 

parsimonious features. PSI broadly reflects the differences in value distribution between the two 

cohorts42. We observed that most of the features exhibited significant (PSI > 0.25) or moderate (PSI > 

0.1) drift between training and validation datasets, and only TBI_Present and Vertebral_Artery_Injury 

features could be considered to not have drifted (PSI < 0.1) (STable 2). The PSI results overall suggested 

that the training and validation populations are dissimilar, thus resulting in poor model performance 

during validation. 

To investigate clinical trends underlying data drift, we clustered all the patients by the raw feature 

values of the 15 parsimonious features via UMAP and HDB clustering. We observed notable differences 

in cluster representation: in particular, the validation cohort was only sparsely represented in Clusters 1 

and 2 as compared to the training cohort (Fig. 7C). We summarized the distribution of values within 

each cluster to better understand the subpopulation characteristics and found that Cluster 1 was 

defined by extremely high Time_to_OR and Cluster 2 by extremely high time_MAP_Avg_below_76 

(STable 3). In discussion with clinical experts, we found that this corresponded with shifting clinical 

practices to reduce time-to-surgery and prevent intraoperative hypotension43,44. Population similarity 

analysis thus provided critical insight into the differences between training and validation populations 

while demonstrating the crucial need to validate predictive models and corresponding conclusions 

before translating findings to the clinic. 
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Overall, we illustrate a framework to augment AutoML for interpretability, reproducibility, and validity. 

The process presents opportunities to integrate methods for explainable and reproducible AI that are 

essential for biological inferences and evidence-based clinical practice. Augmenting AutoML to generate 

verifiable machine intelligence will be critical to building confidence and trust in powerful AI tools 

towards advancing biomedical research and precision medicine. 

 

Discussion 
As AutoML become increasingly efficient at optimizing an ever-growing repertoire of data preprocessing 

methods and algorithms, biomedical researchers will have more opportunities to leverage powerful 

models to transform their field4,6,9,45. Importantly, there remains a strong, parallel need for better 

evaluation and interpretation of AutoML-derived models for healthcare where trust in ML requires 

reproducibly identifying and validating biological mechanisms before translation to patient care46. Here, 

we demonstrate a framework to improve the reproducibility of ML and AutoML workflows by 

implementing a repeated cross-validation strategy with performance precision and feature instability 

metrics, actively incorporating domain expertise throughout model optimization and interpretation, and 

applying population similarity analysis during model validation to better contextualize model 

generalizability through broader patient population characterization (Box 1; Fig. 1). By incorporating 

such methods and strategies that emphasize model interpretability and reproducibility, biomedical 

experts will be empowered to integrate their domain knowledge into ML processes to construct more 

Box 1. Key highlights of the framework for reproducible, interpretable AutoML application 

in biomedicine 

• Perform modeling with a repeated cross-validation strategy. Aggregating across 

models mitigates spurious findings due to model variance from implicit modeling 

parameters that can lead to model instability with smaller clinical datasets, such as 

partitioning arrangement. 

• Stabilize pFI and PDPs for model interpretation by aggregating repeated cross-

validation models to improve inferential reproducibility. 

• Characterize performance precision (metrics: performance CI; standardized 

performance CI width) for more robust model comparisons. Performance precision 

analysis can be further applied to achieve a target precision in modeling processes. 

• Characterize feature instability (metric: pFI CI; feature rank instability) to capture pFI 

variability. Feature instability analysis can be further applied to stabilize pFI-dependent 

processes such as feature reduction. 

• Integrate domain expertise throughout; combining expert guidance and model-driven 

feature selection can improve final parsimonious model performance. Any inferences 

drawn from modeling should be verified with clinical expertise. 

• Investigate data drift (i.e. population similarity analysis) between the training and 

external validation datasets during model validation. PSI and clustering analysis can 

uncover clinical differences between the cohorts and the underlying evolution of 

clinical practices that further inform model validation results. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.461544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461544
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

trustworthy models and build confidence in AI-driven applications in biomedicine. 

Repeated cross-validation is an easily applied strategy to reinforce the reproducibility of ML research 

and has been well-established for handling variation in partitioning47,48. Yet despite the focus on 

confidence intervals, significance, and inference in biomedical research, repeated cross-validation is not 

commonly implemented by clinical ML studies. This is likely due to the associated computational costs, 

resulting in clinical ML researchers optimizing and drawing conclusions from a single model instead. We 

show that different dataset partitions affected model performance and pFI values; the practice of only 

relying on a single optimization can thus lead to false assumptions that one algorithm is definitively 

better at prediction or that specific features are definitively more important.  Additionally, combining 

repeated optimizations can help stabilize subsequent processes; 25 projects was the critical aggregation 

threshold for our backward feature reduction approach such that the bottom 5 features by pFI would be 

reproducibly ranked the least important. Naturally, selecting the number of repetitions ultimately 

depends on the dataset, the specific model, and the research question or ML process of interest. 

Nevertheless, a repeated k-fold cross-validation strategy to report confidence intervals, performance 

precision, and feature instability can help contextualize the reproducibility of results and mitigate 

spurious conclusions whether applying AutoML or a single model blueprint. 

The variability we observed also reflects the concept of underspecification in ML: that even with the 

same model blueprint and training data, different optimizations can produce divergent solutions49. 

Underspecification highlights how seemingly arbitrary modeling choices – such as implicit modeling 

parameters and data partitioning – can lead to models with high accuracy on training data that then fail 

to perform on novel data. While this emphasizes the need to validate models, underspecification also 

underscores an ongoing demand for additional model evaluation metrics. Repeated cross-validation 

strategies along with performance precision and feature instability analyses can be applied to 

characterize and control for underspecification factors of model optimization. This can be further 

extended to deployment applications: bagging models to account for underspecification can improve 

model validity, and precision and instability analyses can help estimate the effective number of models 

for ensembling. Moreover, the predictions of the individual models underlying an ensemble can provide 

useful context about model precision to users and ultimately enhance trustworthiness and adoption for 

clinical decision-making.  

A major challenge in clinical modeling is obtaining external validation data, especially for conditions 

where the patient population is relatively small20,41. Inconsistent data collection methods and standards 

further exacerbate the difficulties. Many clinical ML studies consequently produce accurate models that 

remain unvalidated or are later shown to underperform on novel data50–52. We obtained data from a 

recent patient cohort enrolled in the TRACK-SCI prospective study and observed that despite the high 

performance of the final BPlog and BPXGB models on training data, both performed poorly during 

validation. Population similarity analysis by PSI revealed that almost every feature exhibited significant 

data drift, indicating differences between the two patient cohorts. We reviewed the PSI and cluster 

analysis results with TRACK-SCI clinicians who validated that the observed changes corresponded with 

evolving guidelines including moving SCI patients into surgery sooner and improving blood pressure 

management to avoid hypotension43,44
. Indeed, both practices were implemented during the prospective 

era, and the overarching findings illustrate the fact that biomedical data inevitably shifts with ever-

updating clinical practices25. Furthermore, while all of our data was collected at UCSF, the phenomenon 

of data drift can apply to data from different medical centers; clinical ML studies commonly utilize data 
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from only a single source, and resultant models fail to generalize. Thus beyond simply validating models 

with novel data, the analytical framework for successful clinical ML application should also contrast the 

training and validation populations with quantitative metrics alongside domain expertise to identify 

critical clinical context to inform model validity. 

Understanding population similarity can also provide avenues for improving clinical models: a simplistic 

approach could be to retrain the model with more recent or representative data while balancing dataset 

size and population similarity. Researchers could also directly incorporate sources of data drift and 

population dissimilarity into the modeling strategy, such as via cross-hospital validation, to produce the 

most generalizable models and inferences53. A third possibility is to combine data across time and 

centers to obtain a larger sample size, thus allowing for a holdout partition that better mimics the 

training dataset. With careful, balanced representation of patients and feature values in training and 

holdout partitions, researchers could identify common predictive features that are generalizable across 

a broader clinical population. Specific to SCI, harmonizing data across multiple clinical programs could 

help reinforce future ML studies with a more comprehensive patient dataset. Most importantly, once a 

model is deployed into clinic, monitoring for data drift will be necessary to determine whether the 

model will need to be retrained to keep up with changing medical practices. 

Especially for datasets with a small observations-to-features ratio as is common in clinical research, 

parsimony can improve performance by decreasing multicollinearity and removing low-signal features 

while improving interpretability54. We deployed an iterative wrapper approach35: backward feature 

selection based on recalculated pFI rankings to optimize LogLoss. While the process is model-agnostic, 

the results are affected by the characteristics of the underlying algorithms; the final parsimonious 

feature lists differed between BPlog and BPXGB, and BPXGB exhibited in greater pFI instability between each 

feature reduction step. This can be attributed to how regularized regression and tree-based models 

handle multicollinearity – a common trait of clinical datasets – which affects pFI as colinear features are 

eliminated. Critically, there is no definitive approach to feature selection; clinical verification of the final 

parsimonious feature list is necessary given that the preserved features depend heavily on the 

implemented reduction method and models34,35. More broadly, pFI has been shown to overestimate the 

importance of colinear features, especially for tree-based models55; future work should refine the 

framework by employing techniques to address feature collinearity, such as Shapley additive 

explanations or accumulated local effects plots in place of pFI and PDPs respectively56,57. 

We allowed for preselection of features by domain experts during feature reduction, and because the 

process inherently optimizes model accuracy, we can determine if preservation of expert-selected 

features improves or undermines the final model performance. Here, by preserving the time a patient 

spent below 76 mmHg MAP, we improved the maximum performance for the parsimonious BPXGB 

model. The process can also be applied to test other hypotheses, including ones where deliberate 

experimentation might be difficult or impossible. For example, whether a SCI patient receives specific 

treatments is a matter of clinical care rather than experimental design, but we can compare the impact 

of excluding or including the treatment feature on the final model accuracy to glean a relationship 

between treatment and outcome. Such findings would provide further insight to the efficacy of clinical 

practices that may be difficult to test experimentally and highlight areas for future, targeted clinical 

research. Importantly, removed variables are not necessarily unimportant or uninformative; feature 

selection ultimately reflects the representation of samples and the limitations of the dataset. Continual 

validation and updating of the parsimonious feature list alongside the model are critical for maintaining 
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and improving clinical models. This aligns with the budding concept of expert-augmented AI wherein the 

interaction between human expertise and ML leads to better models. 

Our results also provide more granularity on how intraoperative MAP thresholds relate to outcome: the 

time patients spent outside the upper MAP threshold contributed more to model prediction than the 

time spent below the lower threshold. Additionally, the corresponding PDPs reveal that the critical out-

of-threshold duration for worse outcome is shorter for hypertension (> ~70 min) than for hypotension (> 

~150 min). Previous blood pressure management studies have primarily focused on hypotension as a 

contributor to worse patient outcome58–60 despite the increased risk of cardiovascular and 

cerebrovascular complications as a result of hypertension61. Notably, the importance of perioperative 

hypertension for SCI outcome has been observed both clinically and preclinically26–28,62; this is the first 

analysis to suggest that hypertension is more predictive of worse outcome than hypotension, thus 

proposing that careful MAP management should strive to avoid hypertension while minimizing 

hypotension. Future prospective clinical studies should extend the verifiability of the findings 

throughout broader SCI patient care such as during treatment in the emergency room and intensive care 

unit. Moreover, the illustrated framework can be similarly applied to investigate other modifiable 

components of clinical care as well as identify predictors of other patient outcome metrics including 

chronic recovery. 

Ultimately, there remains significant untapped potential for AI-driven impact on clinical practices, 

precision medicine, and general healthcare. While not completely unique to biomedicine, the challenges 

of achieving inferential reproducibility from relatively small sample sizes dictate the need for parallel 

development of explainable and reproducible AI methods that augment powerful processes such as 

AutoML. By unboxing even the most complex models and accounting for the uncertainty associated with 

ML, we can build an essential culture of trust for AI with biomedical researchers and clinicians towards a 

bidirectional relationship where clinicians actively guide AI development and AI applications effectively 

support clinical decision-making to improve patient care.  

 

Methodology 
Datasets 
The data were collected and de-identified by the Transforming Research and Clinical Knowledge for 

Spinal Cord Injury (TRACK-SCI) program20 and contains clinical variables (i.e. features) collected during 

acute hospitalization and SCI-related surgery. The training dataset consisted of 74 clinical records 

collected between 2005-2011. After implementing our AutoML workflow, we obtained a second dataset 

for model validation from TRACK-SCI consisting of 59 clinical records collected after 2015. 

Of note, 18 of the 47 features in the full feature list were derived from time-series data for 

intraoperative heart rate, systolic blood pressure, diastolic blood pressure, and mean arterial pressure 

(MAP). Each set of time-series data was summarized as mean, standard deviation, skew, and kurtosis 

features for each individual patient. Additionally, the total time each patient spent above or below a 

MAP threshold (starting with 104 and 76 mmHg respectively) was derived from the time-series MAP 

data. The prediction target AIS_is_improved was derived from the patients’ AIS scores as assessed by 

clinicians using the International Standards for Neurological Classification of SCI (ISNCSCI) exam at the 
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time of hospital admission and discharge. Specifically, AIS_is_improved was assigned a value of 0 for no 

improvement or a value of 1 if the patient’s AIS score improved between admission (AIS_ad) and 

discharge (AIS_dis). Notably, the training data included 39 patients who improved in AIS score while the 

validation dataset included 14 such patients. The AIS_dis feature was excluded for model training since 

it was used to derive the prediction target and would cause target leakage. The remaining 46 features 

used for modeling are listed in Supplementary Table 1. 

 

AutoML Model Generation and Feature Importance 
Among various available implementations of AutoML, we utilized the DataRobot commercial AutoML 

platform for our workflow5. Access and application of the platform was done primarily through the API 

in Python. Performance values (LogLoss and Area Under Curve; AUC), mutual information between 

predictors, permutation feature importance (pFI), partial dependence plot (PDP) values, receiver 

operating characteristic (ROC) values, model validation predictions, estimated best F1 thresholds, and 

population stability index (PSI) values were downloaded and then analyzed and graphed in R with the 

tidyverse package63,64. 

The training data was uploaded to the platform which generates a new project instance (i.e. project). 

Each project encapsulates a specific set of modeling inputs and parameters such as the training data, the 

type of ML problem (i.e. regression vs classification), partitioning strategy, and others that define the 

initial state of the AutoML process. For our projects, we assigned distinct random seeds which 

specifically affected the unique partitioning arrangement of the data for modeling. Given that the 

AutoML platform requires a minimum of 100 observations to perform automated classification 

modeling, we accounted for the small number of records in our dataset by duplicating the entry for each 

patient, thus doubling the dataset from 74 to 148 records. Importantly, we specified a 10-fold cross-

validation strategy while ensuring that each of the ten partitions had at least one representation of each 

of the possible prediction target values and that duplicated records were always partitioned together. 

For the first round of modeling, we included 46 features as predictors (Supplementary Table 1). The 

AutoML platform generated 80-90 possible configurations of data preprocessing steps and algorithms 

(i.e. blueprints, with each blueprint being assigned a unique identification number). Blueprints range 

from simple (e.g. BPlog: regularized logistic regression model with a spline transformation preprocessing 

step) to complex (e.g. BPXGB: extreme gradient boosted tree with a modified TensorFlow Variational 

Autoencoder preprocessing step), and the platform automatically performs data preprocessing and 

algorithm-specific optimization to maximize the final model performance. To identify the best-

performing models, the platform first trained the blueprints on a small subset of the dataset and 

selected the top performing blueprints according to their validation LogLoss accuracy. The blueprint 

selection process was repeated with a larger subset of data for a second round of selection. The 

remaining blueprints, numbering between 30-40 total, were then optimized on the full dataset, and 

cross-validation accuracy was calculated.  

To characterize the stability of the modeling process, we applied the strategy of repeated 10-fold cross-

validation with 25 repetitions. Each repetition corresponded to a project with a unique random seed 

that determined the unique arrangement of data in the partitions. Each project implemented the same 

blueprints for AutoML; we accordingly aggregated the performances for each blueprint across all 25 
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projects by calculating the mean and 95% confidence interval for the corresponding cross-validation 

performances (i.e. performance). We arranged the models according to mean performance and plotted 

those that outperformed the Majority Class Classifier benchmark model which simply predicts every 

patient as having improved – the majority class of the AIS_is_improved target. 

Permutation feature importance (pFI; also termed feature impact on the platform) was calculated 

through a permutation-based approach by the AutoML platform33. In brief, the values of a single feature 

were permuted, and the resulting loss in LogLoss accuracy was calculated. The permutation and 

performance loss assessment were repeated multiple times to generate an average accuracy loss. This 

process was performed on every feature individually. The platform further normalized the pFI values to 

the maximum pFI value observed; pFI in this study thus refers to the normalized values. We aggregated 

the pFI values across all 25 projects to calculate the mean pFI and 95% confidence interval for each 

feature. The features were then arranged from highest to lowest pFI for visualization. 

 

Performance Precision Analysis 
To characterize the relationship between number of aggregated projects and the precision (i.e. 

variability) of model performance as a result of different partitioning arrangements, we created 150 

projects, each with a unique random seed and corresponding partitioning arrangement. We optimized 

both BPlog and BPXGB in each project with the 46 features using the AutoML platform. We collected the 

resulting cross-validation LogLoss and AUC performance values for all 150 projects. We then performed 

the following sampling analysis: 

1. Randomly sample one project. 

2. Randomly sample another project without replacement. The newly-sampled project and any 

previously-sampled projects form the current project aggregate. 

3. Calculate the standardized performance CI width with the current project aggregate. 

4. Repeat steps 2-3 until all 150 projects have been aggregated. 

5. Perform steps 1-4 1000 times. 

6. Calculate the expected (i.e. mean) standardized performance CI width with corresponding 95% 

confidence intervals for each number-of-projects-aggregated. 

Standardized performance CI width was calculated with the following formula: 

����������	� �	�������	 �� ����� �  
���	��	� �����	��	 ���	���� �����

�	�� �	�������	
� 100 

The results were visualized with an emphasis on the 25-project point. The process was repeated for BPlog 

and BPXGB as well as for LogLoss and AUC metrics. 

 

Feature Instability Analysis 
To characterize the relationship between number of aggregated projects and feature instability, we used 

the same 150 projects as in the performance precision analysis. For each instance of BPlog and BPXGB, we 

calculated the normalized pFI values. To obtain the pFI ranks, we ordered and ranked the pFI values for 

each specific instance of the model and project from highest to lowest. As a metric for feature 

instability, we calculated the feature rank instability (FRI): 
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where p and q represent two different pFI lists, i is the ith feature, and f is the total number of features.  

We then performed a sampling analysis as follows: 

1. Randomly sample one project. 

2. Randomly sample another project without replacement. The newly sampled project and any 

previously sampled projects form the current project aggregate. 

3. Rank the features according to the mean pFI values in the current project aggregate. 

4. Calculate FRI between the pFI lists from the previous project aggregate and the current project 

aggregate. If only two projects have been aggregated, FRI is calculated between the pFI list from 

the first sampled project and the pFI list from the current project aggregate. 

5. Repeat steps 2-3 until all 150 projects have been aggregated. 

6. Perform steps 1-5 1000 times. 

7. Calculate the expected (i.e. mean) FRI with corresponding 95% confidence intervals for each 

number-of-projects-aggregated. 

The results were visualized with an emphasis on the 25-project point. 

We also performed the sampling analysis on just the ranking of the bottom five features by pFI (i.e. least 

important features). In this case, the entire feature list was ranked as before, but the FRI was only 

calculated for the five least important features based on the aggregate with fewer projects (i.e. when 

comparing 3-project aggregate vs 4-project aggregate, we considered the bottom 5 features from the 

pFI values of the 3-project aggregate). 

To investigate the feature instability during feature reduction for BPlog and BPXGB, we applied the FRI 

quantification to compare the feature list before and after each reduction step. Specifically, we 

calculated FRI for the features that remained after elimination. For example, at feature list size = 41, we 

calculate the FRI for the 41 features by comparing their rankings between the 46-feature model (before 

reduction) and the 41-feature model (after reduction). 

 

Automated Feature Reduction 
We applied an iterative wrapper feature reduction process implementing backward elimination similar 

to as historically applied to regression models34. Notably, the lowest-ranking features by pFI were 

removed; this feature reduction process can be applied to any blueprint on the AutoML platform. The 

process is as follows: 

1. Start with the full feature list. 

2. Calculate average pFI values for each feature across the 25 projects. 

3. Remove the 5 features with lowest mean pFI values. 

4. Optimize new models on remaining features. 

5. Repeat steps 2-4 until no features remain. 

6. Identify the range of feature list sizes containing the likely maximum performance. 

7. Repeat steps 2-4 within the range identified in step 6 and using a step size of 1. 
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The initial step size of five was chosen to balance for computational time needed to retrain 25 models at 

each elimination step. By aggregating across the 25 projects, we were able to stabilize the pFI rankings. 

Importantly, identifying the final parsimonious feature list was determined directly by the resulting 

model performances. At each elimination step, the model cross-validation performance was calculated 

and averaged across projects for comparison. The mean model performance values were used to 

pinpoint the feature list size range at step 6 as well as identify the final best-performing parsimonious 

model and feature list. 

To test whether preservation of time_MAP_Avg_below_76 would improve final parsimonious model 

performance with BPXGB, we allowed users to preselect features that the process would never eliminate 

(equivalent to augmenting feature reduction with expert guidance). If the preselected features landed in 

the elimination range of the pFI ranking, the process selected the next lowest-importance feature 

instead. We accordingly selected time_MAP_Avg_below_76 to be preserved. 

 

Feature Interpretation 
The AutoML platform implements partial dependence plots (PDPs) for feature interpretation40. In brief, 

the platform averaged the outcome predictions for the training dataset while converting the values of a 

single feature to a single value. The set value for the feature of interest was then changed, scanning 

either across the continuous range or all possible categorical values depending on the feature’s data 

type. Plotting the average outcome prediction by the possible feature values produced the feature’s PDP 

for the model. We additionally pooled the partial dependence values across the 25 projects, calculated 

the mean and 95% confidence intervals, and created an aggregated PDP for each feature in the 

parsimonious BPlog and BPXGB models. 

 

MAP Threshold Validation 
To investigate the MAP thresholds that would be most predictive of patient outcome, we first removed 

the MAP threshold features from the final parsimonious feature lists of BPlog and BPXGB. We then created 

new lists by including a single MAP threshold feature using a different lower (in range of 70-85 mmHg) 

or upper (in range of 95-115 mmHg) threshold. Sweeping through each possible threshold value, this 

produced 16 feature lists with a lower MAP threshold feature and 21 feature lists with an upper MAP 

threshold feature. We additionally included a feature list with no MAP threshold feature. Across the 25 

projects, we optimized models for each feature list, aggregated the model performance values, and 

summarized and plotted the results as mean and 95% confidence intervals. The model performance for 

the feature lists including both a lower and upper MAP threshold feature was the resulting parsimonious 

model from the feature reduction process prior. 

 

Model Validation 
To validate the parsimonious BPlog and BPXGB models, we uploaded the validation dataset to the AutoML 

platform and predicted the probability of AIS improvement for each patient. The AutoML platform also 

calculated the best F1 threshold – the value that maximizes the F1 score – for each model in each 

project. We aggregated the predictions for each patient across the 25 projects to calculate mean and 
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95% confidence intervals. We similarly summarized the best F1 threshold values. To produce the 

confusion matrices, we compared the mean prediction value for each patient against the mean best F1 

threshold value. Mean prediction values above the mean F1 threshold were considered positive 

predictions (i.e. patient improved) and conversely for negative predictions (i.e. no improvement). 

To determine whether there is data drift between the training and validation dataset, we deployed the 

parsimonious models on the DataRobot servers to access the data drift feature. In brief, the platform 

determines data drift between training and validation datasets by calculating the population stability 

index (PSI) for each of the features42. 

Combining both the training and validation datasets, we additionally performed dimensionality 

reduction via UMAP (umap R package65) for the 15 features preserved in the parsimonious BPlog and 

BPXGB models. Importantly, 9 of the 133 samples were missing values and were thus removed via listwise 

deletion for clustering analysis prior to UMAP. The resulting UMAP scores were used to cluster the 

patients via HDB Clustering (dbscan R package66) with a minimum cluster size of 8. The datapoints were 

then grouped according to training vs validation dataset and plotted. The circular borders containing the 

clusters were drawn manually for visual clarity. For the numeric features, we calculated the mean and 

95% confidence interval of the distribution within each cluster. 
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Figure Legends 
Figure 1. A framework for applying Automated Machine Learning (AutoML) for reproducible inferences 

in biomedical research. After data is curated, we perform a cyclical model development process utilizing 

AutoML to optimize an array of models. Reproducible and explainable AI tools and strategies can be 

applied to ultimately draw clinical and biological inferences from the models and allow for integration of 

domain expertise. Critically for clinical modeling, we also include a feature reduction component to 

achieve a more parsimonious model. The final models are then validated with external validation data 

along with population similarity analysis for further clinical contextualization. By applying this 

framework, models produced by AutoML can be stabilized and interpreted for inferential reproducibility 

and clinical verifiability. 

 

Figure 2. AutoML generated 15 models that performed better than the Majority Class Classifier model 

by (A) LogLoss and (B) Area Under Curve (AUC). Each model consisted of automatically implemented 

preprocessing steps and algorithms. Models were assigned names according to the algorithm and 

encoded by a unique color. Blueprints of the same algorithm class are numbered for identification 

across both LogLoss and AUC plots. Two models were selected for additional analysis: BPlog (blue box) 

and BPXGB (green box). Aggregating across 25 projects (unique partitioning arrangements of the dataset), 

BPlog had an average performance of 0.67 ± 0.01 LogLoss and 0.68 ± 0.02 AUC; BPXGB had an average 

performance of 0.68 ± 0.01 LogLoss and 0.67 ± 0.02 AUC. (C) BPlog consisted of a regularized logistic 

regression (L2) algorithm with a notable quintile spline transformation preprocessing step for numeric 

variables. (D) BPXGB implemented an eXtreme Gradient Boosted (XGB) trees classifier with unsupervised 

learning features, which refers to the TensorFlow Variational Autoencoder preprocessing step for 

categorical variables. 

 

Figure 3. Analysis of performance precision and feature instability as a function of number of projects 

aggregated. Each project uses a unique partitioning arrangement of the dataset. Performance precision 

is calculated as the standardized performance confidence interval (CI) width, which scales the CI width 

by the mean performance. Feature instability is calculated as the cumulative shift in feature importance 

ranking (feature rank instability; FRI). (A, B) Expected values and corresponding confidence intervals of 

the standardized performance CI width. As the number of projects increased, the performance precision 

improved (i.e. standardized performance CI width decreased). By LogLoss, BPlog started with a 

performance precision of 5.22 ± 0.24% with 2-project aggregation and decreased to an average of 1.85 ± 

0.01% with 25-project aggregation (A). Similarly, BPXGB started with a performance precision of 5.42 ± 

0.32% and decreased to an average of 2.06 ± 0.04% at 25 projects (B). (C, D) Expected values and 

corresponding confidence intervals of FRI for all 46 features. As the number of projects increased, FRI 

decreased (i.e. pFI ranking became more stable). BPlog had an average FRI of 174.40 ± 2.14 with 2-project 

aggregation and 13.03 ± 0.34 with 25-project aggregation (C). Similarly, BPXGB started with an average 

FRI of 153.83 ± 3.06 that decreased to 11.65 ± 0.33 at 25 projects (D). (E, F) Focusing only on the bottom 

five features by pFI to calculate FRI, BPlog had an average FRI of 20.41 ± 0.75 with 2-project aggregation 

and decreased to 0.96 ± 0.08 with 25-project aggregation (E). Similarly, BPXGB started with an average FRI 

of 7.77 ± 0.37 and decreased to 0.56 ± 0.06 for the bottom five features with 25-project aggregation (F). 
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Figure 4. Applying an iterative backward feature reduction process to identify parsimonious feature lists 

that maximize model performance. The process was performed first by removing the lowest five 

features by feature importance (step size = 5) and then repeated with step size = 1 within the feature list 

size range that contained the best performance. (A) For BPlog, the step size was reduced starting at 16 

features with the best performance observed with the 9-feature parsimonious feature list (LogLoss = 

0.55 ± 0.02). (B) The corresponding pFI of the 9-feature parsimonious BPlog model showed that the MRI 

BASIC score and the time patients spent outside of the MAP thresholds were the most important 

features. The remaining features included other intraoperative timeseries-derived features and the time 

between hospitalization and surgery (Time_to_OR_a). (C) The feature reduction for BPXGB was expanded 

to always preserve the two MAP threshold features. The step size was reduced to one starting at 16 

features with the best performance observed with the 11-feature parsimonious feature list (LogLoss = 

0.48 ± 0.02). (D) The corresponding pFI for the parsimonious BPXGB model showed that the AIS score at 

admission (AIS_ad) was the most important feature. Non-timeseries-derived features included 

Cervical_Injury, Vertebral_Artery_Injury, and TBI_Present. The time_MAP_Avg_above_104 and 

time_MAP_Avg_below_76 features were ranked 7th and 9th respectively. 

 

Figure 5. Partial dependence plots (PDPs) for features of interest help interpret how features affect 

model prediction of BPlog and BPXGB. (A) For BPlog, an MRI BASIC score of 4 resulted in lower prediction of 

improved outcome. A MRI BASIC score of 0-3 increased prediction of better outcome with a MRI BASIC 

score of 2 leading to the highest probability of improvement. (B) For BPXGB, an AIS score of A or D at 

admission resulted in lower probability of patient improvement. AIS scores of B and C both led to higher 

probability of improvement with AIS score C resulting in the highest probability. (C) For BPlog and (D) 

BPXGB, if a patient’s MAP exceeded an upper threshold of 104 mmHg for more than 50-75 minutes, the 

predicted probability of improvement decreased significantly. (E) For BPlog and (F) BPXGB, if a patient’s 

MAP fell below a lower threshold of 76 mmHg for more than 100-150 minutes, the predicted probability 

of improvement decreased significantly. Notably, BPXGB PDP for both time_MAP_Avg_above_104 and 

time_MAP_Avg_below_76 exhibited a rebound in predicted improvement probability at extreme upper 

values that was absent on the BPlog PDPs. 

 

Figure 6. LogLoss performance plots for investigating different lower and upper MAP thresholds using 

best-performing parsimonious BPlog and BPXGB models. (A) With BPlog, we observe that the lower 

threshold values of 74, 75, 76, and 79 mmHg performed the best of the lower thresholds. The upper 

threshold values of 103, 104, and 105 mmHg performed the best of the upper thresholds. Notably, the 

best-performing upper threshold feature (104 mmHg) resulted in a larger improvement to model 

performance compared to the best-performing lower threshold feature (79 mmHg). (B) With BPXGB, the 

values of 74, 75, and 76 mmHg performed the best of the lower thresholds, and the values of 103 and 

104 performed the best of the upper thresholds. Similar to BPlog, the best-performing upper threshold 

feature (104 mmHg) resulted in a larger improvement to model performance compared to the best-

performing lower threshold feature (76 mmHg). 
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Figure 7. Model validation confusion matrices and clustering analysis to demonstrate differences in 

patient population between training and validation datasets. Validation predictions were scored by 

comparing the average predicted probability of each validation sample against the average best F1 

threshold for the corresponding model. (A) The best parsimonious BPlog model correctly predicted 13 of 

the 14 true positives (i.e. patient improved in outcome) and 15 of the 45 true negatives. (B) The best 

parsimonious BPXGB model correctly predicted 9 of the 14 true positives and 14 of the 45 true negatives. 

(C) UMAP and HDB clustering analysis on the combined training and validation data produced six 

clusters of patients. Notably, Clusters 1 and 2 showed high representation in the training cohort and low 

representation in the validation cohort. Conversely, Cluster 3 showed low and high representation in the 

training and validation cohorts respectively. Clusters 3, 5, and 6 have no discernable differences 

between cohorts. 

 

Supplementary Table 1. Features and definitions for the 46 features used for modeling. 

 

Supplementary Figure 1. Normalized permutation feature importance (pFI) of each feature, aggregated 

from the 25 projects. (A) Of note, BPlog ranked the time_MAP_Avg_below_76 and 

time_MAP_Avg_above_104 highest. (B) Conversely, the two MAP threshold-related features were 

ranked 11th and 18th in pFI by BPXGB. The majority of high pFI features across both models were features 

derived from the intraoperative timeseries data for heart rate, diastolic blood pressure, systolic blood 

pressure, and mean arterial pressure (MAP). Both models also highly ranked a feature encoding initial 

injury severity: MRI_1_BASIC_Score for BPlog and AIS_ad for BPXGB. 

 

Supplementary Figure 2. Analysis of performance precision based on AUC performance metric. As 

observed for performance precision with LogLoss, increasing the number of aggregated projects 

improved performance precision (i.e. decreased the standardized performance CI width). (A) By AUC, 

BPlog started with a performance precision of 8.03 ± 0.38% and decreased to an average of 2.79 ± 0.02% 

when aggregating 25 projects. (B) BPXGB started with a performance precision of 8.36 ± 0.38% and 

decreased to an average of 2.84 ± 0.02% when aggregating 25 projects.  

 

Supplementary Figure 3. AUC performances for the feature reduction process. (A) Feature reduction of 

BPlog showed maximum AUC at the 8-feature parsimonious feature list (AUC = 0.84 ± 0.02). The 9-

feature parsimonious feature list had an AUC of 0.83 ± 0.02. (B) Feature reduction of BPXGB showed 

maximum AUC at the 9-feature parsimonious feature list (AUC = 0.87 ± 0.01). The 11-feature 

parsimonious feature list had a similar AUC of 0.87 ± 0.01. 

 

Supplementary Figure 4. Feature instability analysis for (A) BPlog and (B) BPXGB during backward feature 

reduction process. FRI was calculated by comparing the pFI ranking before and after each feature 

reduction step and only summing the features that appeared in both lists (i.e. features that were not 
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removed at the step). Notably, BPXGB exhibited higher FRI at each step than for BPlog; elimination of 

features resulted in more shifting of features by pFI rank for BPXGB. 

 

Supplementary Figure 5. Partial dependent plots (PDPs) for additional features from the best-

performing parsimonious feature list for BPlog. In order of highest pFI to lowest: (A) DiaBP_skew, (B) 

HR_kurtosis, (C) SysBP_sd, (D) MAP_kurtosis, (E) HR_sd, and (F) Time_to_OR_a. PDPs of 

MRI_1_BASIC_Score, time_MAP_Avg_above_104, and time_MAP_Avg_below_76 are shown in Figure 4. 

 

Supplementary Figure 6. Partial dependent plots (PDPs) for additional features from the best-

performing parsimonious feature list for BPXGB. In order of highest pFI to lowest: (A) MAP_kurtosis, (B) 

DiaBP_skew, (C) HR_sd, (D) Cervical_Injury, (E) TBI_Present, (F) HR_mean, (G) Vertebral_Artery_Injury, 

and (H) MAP_mean. PDPs of AIS_ad, time_MAP_Avg_above_104, and time_MAP_Avg_below_76 are 

shown in Figure 4. 

 

Supplementary Figure 7. AUC performance plots for investigating lower and upper MAP thresholds 

using best-performing parsimonious BPlog and BPXGB models. (A) Similar to the LogLoss plots, the best-

performing lower threshold values were 74, 75, 76, and 79 mmHg and the best-performing upper 

threshold values were 103, 104, and 105 mmHg for BPlog. Of the best-performing thresholds, inclusion of 

an upper threshold features produced greater improvement to AUC than inclusion of an individual lower 

threshold feature. (B) For BPXGB, the best-performing lower threshold values were 74, 75, and 76 mmHg, 

and the best-performing upper threshold values were 103 and 104 mmHg. Similar to BPlog, of the best-

performing thresholds, inclusion of an individual upper threshold feature improved AUC performance 

more than inclusion of an individual lower threshold feature. 

 

Supplementary Figure 8. Receiver operating characteristic (ROC) curves of individual projects and the 

averaged curve showing improvement in prediction performance through the workflow. (A) ROC curves 

of the L2 regularized linear regression model BPlog trained on the initial feature list with the exclusion of 

the MAP threshold features. The average model AUC was 0.63 ± 0.02. (B) ROC curves of BPlog trained on 

the full feature list including the two MAP threshold features. The average AUC was 0.68 ± 0.02. (C) ROC 

curves after performing feature reduction with BPlog to find the best-performing parsimonious model (9-

feature parsimonious feature list). The average AUC increased to 0.84 ± 0.02. (D) ROC curves after 

testing different MAP thresholds with BPlog and selecting for the best-performing lower (79 mmHg) and 

upper (104 mmHg) thresholds. The resulting AUC improved incrementally (AUC 0.85 ± 0.02) compared 

to using 76 mmHg and 104 mmHg. (E) ROC curves after performing the workflow on the eXtreme 

gradient boosted tree model BPXGB. The parsimonious feature list consisted of 11 features and the best-

performing MAP thresholds were 76 and 104 mmHg. The average model AUC was 0.87 ± 0.01. 
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Supplementary Figure 9. Model validation plots from performing predictions across the 25 projects with 

a validation cohort of 59 patients. Of these, 14 patients improved in AIS score while 45 patients did not. 

Best F1 thresholds as calculated by the AutoML platform were also aggregated from each project 

(shown in red). (A) Prediction for each validation subject by BPlog. The average best F1 threshold is 0.41 ± 

0.04. (B) Prediction for each validation subject by BPXGB. The average best F1 threshold is 0.46 ± 0.04. 

 

Supplementary Table 2. Population stability index (PSI) of the parsimonious BPlog and BPXGB model 

features. 

 

Supplementary Table 3. Within-cluster mean and 95% confidence interval of numeric features. 
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