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Abstract 42 

Hybridization and polyploidization are pivotal to plant evolution. Genetic crosses between 43 

distantly related species rarely occur in nature mainly due to reproductive barriers but how 44 

such hurdles can be overcome is largely unknown. xBrassicoraphanus is a fertile intergeneric 45 

allopolyploid synthesized between Brassica rapa and Raphanus sativus in the Brassicaceae 46 

family. Genomes of B. rapa and R. sativus are diverged enough to suppress synapsis 47 

formation between non-homologous progenitor chromosomes during meiosis, and we found 48 

that both genomes reside in the single nucleus of xBrassicoraphanus without genome loss or 49 

rearrangement. Expressions of syntenic orthologs identified in B. rapa and R. sativus were 50 

adjusted to a hybrid nuclear environment of xBrassicoraphanus, which necessitates 51 

reconfiguration of transcription network by rewiring cis-trans interactions. B. rapa coding 52 

sequences have a higher level of gene-body methylation than R. sativus, and such 53 

methylation asymmetry is maintained in xBrassicoraphanus. B. rapa-originated transposable 54 

elements were transcriptionally silenced in xBrassicoraphanus, rendered by gain of CHG 55 

methylation in trans via small RNAs derived from the same sequences of R. 56 

sativus subgenome. Our work proposes that not only transcription compatibility but also a 57 

certain extent of genome divergence supports hybrid genome stabilization, which may 58 

explain great diversification and expansion of angiosperms during evolution. 59 

  60 
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Introduction 61 

Genome hybridization and polyploidization have served as major driving forces in 62 

plant evolution (Wendel, 2000; Soltis and Soltis, 2009, 2016; Van de Peer et al., 2017; Cheng 63 

et al., 2018). However, strong hybridization barriers exist in nature to prevent a gene flow 64 

between different species in plants and animals (Abbott et al., 2013). Several mechanisms 65 

have been proposed to explain the postzygotic barriers resulting from genome incompatibility 66 

between distantly related species (Lafon-Placette and Kohler, 2015; Dion-Cote and Barbash, 67 

2017). Among them, a ‘genome shock’ is proposed as one of the critical causes of genome 68 

destabilization upon hybridization, restructuring the hybrid genome through changes of 69 

chromosomal organization or mobilization of transposable elements (TEs) (McClintock, 70 

1984). Another is a ‘transcriptome shock’ that incurs extensive changes of parental gene 71 

expression patterns in the hybrid (Hegarty et al., 2006; Buggs et al., 2011). 72 

Despite such negative consequences of hybridization between distantly related 73 

species, novel species can be naturally or artificially produced in a rare occasion while 74 

overcoming the hybridization barrier, the mechanism of which is largely unknown. The 75 

Brassicaceae family contains a variety of agronomically important crop species such as 76 

broccoli, cabbage, cauliflower, oilseed rape, radish and turnip, in addition to a model plant 77 

Arabidopsis. The genus Brassica is well known for hybridization between different species 78 

within the same genus (interspecific hybridization). For instance, three diploid species 79 

Brassica rapa (Br; AA), B. nigra (BB) and B. oleracea (Bo; CC) can hybridize each other 80 

generating allotetraploid species B. napus (AACC), B. juncea (AABB) and B. carinata 81 

(BBCC), as epitomized by the model of ‘Triangle of U’ (U, 1935).  82 

Hybridization between species in the Brassicaceae family is not restricted to 83 

interspecific hybridization. Since 1826 by Sageret (Oost, 1984), intergeneric hybrids between 84 

Brassica and Raphanus have been sporadically reported (Karpechenko, 1928; Mcnaughton, 85 

1973; Dolstra, 1982) but failed to survive. Recently developed xBrassicoraphanus (xB) 86 

(AARR; 2n = 4x = 38) is an intergeneric allotetraploid between Br (AA; 2n = 2x = 20) and 87 

Raphanus sativus (Rs) (RR; 2n = 2x = 18) (Lee et al., 2011). Unlike most newly synthesized 88 

interspecific/intergeneric hybrids, xB is self-fertile and genetically stable displaying 89 

phenotypic uniformity in successive generations (Supplemental Figure S1). Genetic and 90 

phenotypic stability of xB is very exceptional considering that many allopolyploids often 91 

display a high degree of genome instability and sterility issues, indicating that the 92 

hybridization barrier was overcome immediately after the two genomes have merged. 93 
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We hypothesized that allopolyploidization events have somewhat ameliorated 94 

deleterious shock phenomena such as genome and transcriptome shocks, and thereby 95 

overcome an intrinsic hybridization barrier between distantly related species. We here report 96 

genome structure, chromosome behaviors, and transcriptome/epigenome profiles of xB. We 97 

observed inhibition of meiotic non-homologous interactions, adjustment of homoeologous 98 

gene expressions and gain of DNA methylation. All these likely contribute to genome 99 

stability and transcription network compatibility in xB. This study further proposes the 100 

possible mechanisms by which two divergent genomes can successfully merge into a novel 101 

species during evolution of angiosperms. 102 

 103 

Results 104 

Genomic features of xBrassicoraphanus 105 

xB is a fertile and genetically stable intergeneric allotetraploid synthesized from a 106 

cross between Br and Rs. The xB genome was de novo assembled using 195.0 Gb of Illumina 107 

shotgun reads (Figure 1A, Table 1 and Supplemental Tables S1 and S2). Flow cytometry 108 

analysis estimated the size of xB genome as 998.3 Mb, close to the sum of Br (485 Mb) and 109 

Rs (510 Mb) genomes (Wang et al., 2011; Jeong et al., 2016) (Supplemental Figure S2). We 110 

assembled 692.8 Mb sequence covering ~70% of the xB genome, which contains 87,861 111 

annotated genes and 39.19% (255.8 Mb) of repeat regions with long terminal repeats (LTRs) 112 

being predominant (Supplemental Table S3). The assembled chloroplast genome of xB 113 

(153,482 bp) was 99.9% identical to that of Br indicating its maternal origin (Supplemental 114 

Figure S3 and Supplemental Table S4). In xB genome (692.8 Mb), 335.5 Mb and 343.5 Mb 115 

of scaffolds were assigned to Br and Rs genomes (referred to as ABr and RRs hereafter), 116 

respectively (Wang et al., 2011; Jeong et al., 2016), comprising two subgenomes of xB 117 

(referred to as AxB and RxB hereafter) (Table 1 and Supplemental Figure S4). Differentially 118 

expressed genes (DEGs) whose expressions are up- or down-regulated relative to the 119 

progenitors emerge evenly throughout the xB genome (Figure 1A). DNA methylation is 120 

predominant in repeat-enriched regions at all CG, CHG and CHH (H = A, T or C) contexts 121 

(Figure 1A and Supplemental Figure S5). Differentially methylated regions (DMRs) refer to 122 

the regions where DNA methylation levels in xB are significantly different (absolute 123 

difference > 0.3 for CG, > 0.15 for CHG and > 0.1 for CHH) from those of Br and Rs, and 124 

about 60.2% of hyper-DMRs are confined to repeat regions (Supplemental Figure S5 and 125 

Supplemental Data Set S1). Approximately 75.8% of H3K9me2 repressive histone marks are 126 
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also enriched in repeat regions (Figure 1A, Supplemental Figure S6 and Supplemental Data 127 

Set S2). Small RNAs (18-30 nt) are distributed throughout the entire xB genome and 128 

significantly associated with DNA methylation (Figure 1A). Cytological observation revealed 129 

a total of 19 chromosome pairs present in xB without aneuploidy and/or chromosome 130 

rearrangements (Figure 1B). Previous studies reported that many synthetic allopolyploid 131 

plants such as rapeseed, tobacco and wheat went through massive chromosome 132 

reconstruction leading to transgressive gain or loss of chromosomes and/or aneuploidy over 133 

generations (Xiong et al., 2011; Zhang et al., 2013; Chen et al., 2018; Sosnowska et al., 134 

2020). However, our findings indicate that xB retains both ABr and RRs genomes in the single 135 

nucleus without structural aberrations, but at the same time, experiences substantial changes 136 

in transcriptome and epigenome profiles after hybridization. 137 

 138 

Suppression of homoeologous interactions between A and R chromosomes 139 

Interspecific hybridization often involves extensive homoeologous exchanges during 140 

meiosis eventually causing non-homologous recombination in immediate offspring 141 

(Szadkowski et al., 2010; Szadkowski et al., 2011; Xiong et al., 2011; Zhang et al., 2013; 142 

Grandont et al., 2014; Chen et al., 2018; Sosnowska et al., 2020). To investigate whether 143 

homoeologous interactions occur between AxB and RxB chromosomes, we examined the 144 

synapsis formation of meiotic chromosomes by immunolocalization of ASYNAPTIC1 145 

(ASY1) and ZIPPER1 (ZYP1). ASY1 is the axial/lateral element of meiotic chromosomes 146 

loaded onto chromatids before synapsis (Armstrong et al., 2002), and ZYP1 is the central 147 

element of synaptonemal complex present in synapsed chromosomes (Higgins et al., 2005). 148 

We found that ASY1 was correctly loaded onto the entire axis of all euploid and allodiploid 149 

pachytene chromosomes at meiotic prophase I (Figure 2). ZYP1 also co-localized with ASY1 150 

in all euploid pachytene chromosomes (Figure 2). Allodiploid B. napus (AC) produced 151 

discontinuous stretches of ZYP1 signals, indicating partial synapsis between A and C 152 

chromosomes (Supplemental Figure S7). Notably, however, ZYP1 was hardly associated 153 

with allodiploid xB (AR) pachytene chromosomes (Figure 2), suggesting that crossover 154 

between non-homologous chromosomes was strongly suppressed in xB (Park et al., 2020). 155 

These findings demonstrate that Br and Rs chromosomes share little structrual similarity, and 156 

thus, orthology-dependent homoeologous interactions are prevented during meiosis while 157 

minimizing non-homologous exchanges, which would otherwise lead to aneuploidy and/or 158 
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chromosome reshuffling. This also supports our observation that both Br and Rs genomes 159 

exist in entirety without losses in allotetraploid xB after hybridization (Figure 1B). 160 

 161 

Homoeologous expression adjustments in xB 162 

It is assumed that speciation between Br and Rs has occurred earlier than between Br 163 

and Bo, although exact speciation timing is controversial (Mitsui et al., 2015; Jeong et al., 164 

2016; Kim et al., 2018). Pairwise comparison of coding sequences (CDS) of all orthologs 165 

revealed 95.7% of sequence identity between Br and Bo within the same genus but 91.9% (Br 166 

vs. Rs) and 92.0% (Bo vs. Rs) across the genera (Figure 3, A and B). The same analysis in 167 

tribe Camelineae also showed similar sequence divergence for interspecific (93.5% for A. 168 

thaliana vs. A. lyrata) and intergeneric (89.7% for A. lyrata vs. Capsella rubella, and 90.3% 169 

for A. thaliana vs. C. rubella) relationships (Figure 3, A and B). Such divergence allowed us 170 

to clearly distinguish Br- and Rs-originated transcripts in xB (Figure 3, A and B). In xB 171 

seedling transcriptome, about half of the reads (51.4%) were assigned to AxB and the other 172 

half to RxB (48.6%), indicating that both subgenomes equally contribute to xB transcriptome 173 

(Supplemental Figure S8A). Similar portions of AxB and RxB transcripts were also present in 174 

four different tissues (leaf, hypocotyl, root and flower; Supplemental Figure S8A). 175 

 Both Br and Rs genomes are retained, and thus, orthologous pairs become 176 

homoeologous each other in xB (Figure 3C). Among 28,751 genes commonly annotated in Br 177 

and xB, the majority were expressed at similar levels but 2,703 (9.40%) genes differentially 178 

expressed (>2 fold) between Br and xB seedlings (1,251 up-DEGs and 1,452 down-DEGs in 179 

xB; Figure 3, D and E). Differential expression between Rs and xB was more prominent, with 180 

4,767 (20.96%) from 22,741 Rs-derived genes being dissimilarly expressed between Rs and 181 

xB seedlings (2,395 up-DEGs and 2,372 down-DEGs in xB; Figure 3, D and E). In addition, 182 

expression levels of Br-originated genes expressed in Br and xB seedlings were more 183 

positively correlated (r = 0.9367) than those of Rs-originated genes expressed in Rs and xB 184 

seedlings (r = 0.8403). These findings indicate that the majority of genes retain parental gene 185 

expression levels in xB, albeit Br-originated genes have a greater tendency to maintain their 186 

parental expression levels than Rs-originated genes. In other words, Br genome retains 187 

‘maintenance expression’ over Rs, where Br-originated expression levels are preferentially 188 

inherited to the xB hybrid genome. 189 

A total of 15,376 genes were identified as syntenic orthologs between Br and Rs, 190 

where 5,701 orthologous pairs (37.07%) were differentially expressed (>2 fold) between Br 191 
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and Rs seedlings (2,440 up- and 3,261 down-DEGs in Br relative to Rs; Figure 3F). This 192 

indicates that Br and Rs have distinct expression profiles for phenotypic divergence. In xB 193 

seedlings, however, only 3,655 (23.77%) homoeologous pairs were differentially expressed 194 

(1,553 up- and 2,102 down-DEGs in AxB relative to RxB; Figure 3F). Moreover, expression 195 

levels of AxB and RxB homoeologous pairs in xB seedlings were more highly correlated (r = 196 

0.8667) than those of ABr and RRs orthologous pairs between Br and Rs seedlings (r = 0.7628) 197 

(Figure 3G). This suggests that distinct expressions of many orthologous genes are adjusted 198 

to similar levels in the context of homoeologous relationship in xB. Such expression 199 

adjustment was also observed in tissue-specific expression profiles (Supplemental Figure 200 

S8B). 201 

 202 

Reconfiguration of transcription network 203 

Previous studies analyzed the changes of expression levels with the sum of 204 

homoeologous pairs in allopolyploids relative to the parents, and determined additive or non-205 

additive expressions of duplicated genes (Rapp et al., 2009; Grover et al., 2012; Yoo et al., 206 

2014; Li et al., 2020; Shan et al., 2020; Wei et al., 2021). In this study, we further 207 

investigated how orthologous pairs were adapted to a new nuclear environment by 208 

monitoring changes of expression patterns of homoeologous genes in xB relative to the 209 

progenitors (Figure 4A). Out of 12,150 orthologous/homoeologous pairs commonly 210 

expressed in all Br, Rs and xB seedlings, 7,631 (62.80%) pairs were expressed at similar 211 

levels in every genome context, and their expressions are regarded to be ‘constant’ (gray in 212 

Figure 4A). By contrast, 1,435 (11.81%) pairs showed ‘biased’ expressions with significant 213 

differences between Br and Rs, while maintaining distinct progenitor expression levels in 214 

subgenomes AxB and RxB (blue in Figure 4A). Interestingly, expressions of 1,971 (16.22%) 215 

homoeologous pairs were adjusted to similar levels in xB, albeit their expressions were 216 

different between ABr and RRs progenitors (red in Figure 4A). Such ‘convergent’ expressions 217 

were more prominent for RRs-originated genes (1,483/1,971). We assumed that ‘convergent’ 218 

expressions might result from similar cis-regulatory sequences between homoeologous pairs 219 

under the same transcriptional control in xB. We analyzed the sequence similarities between 220 

homoeologous gene pairs of the categories of ‘convergent’ vs. ‘biased’ expressions (Figure 221 

4B). Coding sequences of both ‘convergent’ and ‘biased’ homoeologous pairs have a high 222 

level of sequence identities (92.54% vs. 92.00%; Figure 4B). By contrast, the upstream cis-223 

elements are noticeably divergent between homoeologous pairs. Interestingly, ‘convergent’ 224 
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homoeologous pairs share less diverged cis-element sequences than ‘biased’ ones (68.42% 225 

vs. 63.29%; Figure 4B). These findings support our hypothesis that the upstream regulatory 226 

sequences of the orthologs have diverged after speciation but retain essential cis-elements 227 

that are likely under control of the same trans-acting regulators in xB. This also suggests that 228 

both A and R genomes still maintain the compatibility in transcription system to prevent a 229 

‘transcriptome shock’ (Hegarty et al., 2006; Buggs et al., 2011), but divergence in regulatory 230 

elements should entail the reconfiguration of overall expression network in the hybrid 231 

genome of xB. 232 

 233 

Coordinated expression of homoeologous genes in response to external stimuli 234 

Gene ontology (GO) enrichment analysis was performed for three categories of 235 

homoeologous expressions – ‘constant’, ‘biased’ and ‘convergent’. ‘Constant’ homoeologous 236 

pairs have enrichment for GO terms such as “cell differentiation”, “developmental cell 237 

growth” and “cell cycle” (Figure 5A and Supplemental Data Set S3), suggesting that cell 238 

function-related genes maintain consistent expression patterns after hybridization. However, 239 

the ‘biased’ homoeologous pairs did not display GO enrichment for specific functions (P > 240 

0.001). Notably, the ‘convergent’ homoeologous pairs had GO enrichment for diverse 241 

responses such as “response to hormone”, “response to stress”, “response to biotic stimulus” 242 

and “response to abiotic stimulus” (Figure 5A and Supplemental Data Set 3). This suggests 243 

that the homoeologous pairs coordinately expressed in response to various stimuli tend to 244 

have similar cis-elements, although they are distinctly expressed in the progenitors. 245 

Moreover, the motifs of stress-responsive cis-elements such as abscisic acid-responsive 246 

element (ABRE; BACGTGK, B = C, G or T; K = G or T) (Lieberman-Lazarovich et al., 247 

2019) and dehydration-responsive element/C-repeat element (DRE/CRT; RCCGAC, R = A 248 

or G) (Suzuki et al., 2005) were found abundantly in the upstream sequence of ‘convergent’ 249 

homoeologous pairs (Figure. 5B). This indicates that the genes involved in cellular signaling 250 

may require essential cis-elements to properly respond to external stimuli. 251 

We treated cold to Br, Rs and xB seedlings and monitored expression changes of 252 

orthologous/homoeologous genes. Out of 15,376 orthologs, 1,579 genes were differentially 253 

regulated by cold in Br seedlings, with 956 up-DEGs and 623 down-DEGs (Figure 5C). In 254 

cold-treated Rs seedlings, 2,378 genes were differentially expressed, with 1,093 up-DEGs 255 

and 1,285 down-DEGs (Figure 5C). Among them, only small fractions of orthologous genes 256 

(182 up- and 91 down-DEGs; 9.75% and 5.01%) were similarly regulated in both Br and Rs 257 
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(Figure 5C). In xB seedlings, a total of 2,657 genes were differentially regulated by cold 258 

treatment. Specifically, 1,431 Br-derived orthologs were differentially expressed (661 up-259 

DEGs and 770 down-DEGs in AxB) and 1,226 Rs-derived orthologs differently regulated (562 260 

up-DEGs and 664 down-DEGs in RxB) after cold treatment (Figure 5C). Notably, a larger 261 

fraction (261 up- and 378 down-DEGs; 27.13% and 35.80%) of AxB and RxB homoeologous 262 

pairs were identified as common DEGs in xB (Figure 5C). These observations indicate that 263 

many of orthologous/homoeologous pairs are distinctly regulated in Br and Rs progenitors 264 

but their expressions are systematically coordinated in xB hybrid genome in response to cold 265 

exposure. We also found that expressions of ABr and RRs orthologous genes had a weak 266 

correlation regardless of expression categories (Figure 5D). Interestingly, AxB and RxB 267 

‘convergent’ homoeologous pairs had a strong correlation (r = 0.620), whereas ‘biased’ ones 268 

did not (r = 0.195) (Figure 5E). These data suggest that evolutionarily divergent 269 

homoeologous pairs still share essential motifs in cis-elements that can be subjected to the 270 

same trans-acting regulation, conceivably responsible for coordinated expressions in 271 

response to environmental cues in hybrids. 272 

 273 

Silencing of transposable element stabilizes the xB hybrid genome 274 

Resynthesized hybrids often experience epigenetic alterations (Greaves et al., 2015). 275 

We investigated methylation profiles in coding genes and repeat regions. In coding regions, 276 

DNA methylation levels are high in gene body, decrease towards 5’ and 3’ shores, and 277 

increase again beyond translation start and termination sites in all Br, Rs and xB seedlings 278 

(Figure 6A). Notably, ABr and RRs progenitor genomes have distinct CG methylation patterns 279 

in coding genes, with ABr being more densely methylated than RRs. This methylation 280 

asymmetry is inherited to AxB and RxB subgenomes (Figure 6A). TEs are heavily methylated 281 

in general, especially near-complete CG methylation in all species (Figure 6B). TEs also have 282 

higher CHG and CHH methylation levels than coding genes. Interestingly, Br and Rs TEs 283 

have distinct CHG methylation profiles, with more CHG methylation at Rs TEs (Figure 6B). 284 

However, such asymmetry is abolished in xB, where Br-derived TEs have an increased CHG 285 

methylation level comparable to Rs-derived TEs (Figure 6B). This suggests that TEs from Br 286 

acquired more CHG methylation after hybridization possibly via trans-acting mechanisms. 287 

We analyzed small RNAs in Br, Rs and xB seedlings, and found that approximately 30~50% 288 

of small RNAs were 24-nt RNAs as potential short-interfering RNAs (siRNAs) 289 

(Supplemental Figure S9A). siRNAs were highly associated with hyper-DMRs in xB but 290 
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loosely with hypo-DMRs, indicating a strong correlation between 24-nt RNA and DNA 291 

methylation (Figure 6C). About 12% of 24-nt RNAs from Br and Rs have a pairwise 292 

sequence identity and may share the same targets across the genomes (Supplemental Figure 293 

S9B). Indeed, 10.4% of 24-nt RNAs from xB also have indistinguishable origins 294 

(Supplemental Figure S9C). This suggests that, in xB hybrid genome, RxB-originated siRNAs 295 

induce gain of CHG methylation at TEs on AxB possibly via RNA-directed DNA methylation 296 

(RdDM) (Law and Jacobsen, 2010). DNA transposons are widespread throughout the xB 297 

genome with little association with DMRs (Figure 6D). LTRs that account for approximately 298 

30% of repeats (Supplemental Table S3) were also heavily methylated. Notably, it was clear 299 

that LTRs on AxB had higher methylation levels at the CHG context than ABr (Figure 6D and, 300 

Supplemental Figures S10 and S11). This suggests that DNA methylation profiles have 301 

changed in a subgenome-specific manner, for which RxB-originated siRNAs might induce 302 

gain of CHG methylation in trans at LTRs of the same kind on AxB. As exemplified in Figure 303 

6E, the Gypsy element on AxB was found to have higher CHG methylation levels than ABr at 304 

the scaffold level, albeit CG and CHH methylation levels are nearly identical. Northern blot 305 

analysis verified that Copia and Gypsy elements were moderately expressed in Br but 306 

silenced in xB seedlings (Figure 6F). These findings suggest that RdDM-mediated DNA 307 

methylation induces TE silencing across subgenomes, which in turn stabilizes the xB hybrid 308 

genome. 309 

 310 

Discussion 311 

 Hybridization barriers serve as a mechanism to prevent a gene flow between species 312 

(Abbott et al., 2013). In particular, the post-zygotic hybridization barrier after fertilization is 313 

often manifested as hybrid inviability or sterility (Dion-Cote and Barbash, 2017). Hybrid 314 

sterility is generally associated with a failure in meiosis. Normal meiosis requires the 315 

formation of synapsis between homologous chromosome pairs, but when they are abolished 316 

or formed between multiple and/or non-homologous chromosomes, the chromosomes 317 

segregate abnormally, resulting in sterile gametes and aneuploidy (Martinez-Perez and 318 

Colaiacovo, 2009). Aneuploidy and/or chromosome rearrangements are frequently observed 319 

in resynthesized allopolyploids between close species (Xiong et al., 2011; Zhang et al., 2013; 320 

Chen et al., 2018). This is mainly caused by the collinearity/homology between less divergent 321 

parental chromosomes. For instance, A1/C1, A2/C2 and parts of A5/C4 (A from Br and C 322 

from Bo) chromosomes are homologous to each other (Parkin et al., 2005), and most 323 
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phenotypic variations and aneuploidy in resynthesized B. napus lines are caused by 324 

homoeologous interactions, mostly between non-homologous chromosomes (Gaeta et al., 325 

2007; Xiong et al., 2011; Grandont et al., 2014). However, the presence of full compliments 326 

of both Br and Rs chromosomes in xB demonstrates that a merger of divergent genomes may 327 

avoid such harmful interactions, while producing fertile gametes after polyploidization. 328 

 Hybridization between species inevitably entails changes in cis-trans interactions 329 

bringing about alterations in the transcription network (Hu and Wendel, 2019). Therefore, 330 

extensive changes in parental expression profiles are expected, and when such changes are 331 

intolerable, the hybrid will undergo a ‘transcriptome shock’, manifested as hybrid dysgenesis 332 

(Martienssen, 2010) or outcrossing depression (Frankham et al., 2011). xB experienced 333 

moderate expression changes of progenitor genes after hybridization but still maintains a 334 

transcription network between subgenomes compatible enough to generate novel or 335 

intermediate phenotypes. Our four-point expression analysis revealed that ‘convergent’ 336 

homoeologs share similar cis-elements, and expression levels of a larger fraction of Rs-337 

derived homoeologs were adjusted to Br-derived ones. This suggests that Br-originated trans-338 

acting factors probably play dominant roles for co-regulation of homoeologous pairs in xB 339 

(Hu and Wendel, 2019). Notably, stress response-related motifs are enriched in the cis-340 

elements of ‘convergent’ homoeologs, suggesting that transcriptional regulation is primarily 341 

mediated by trans-acting factors sharing common homoeologous targets that are involved in 342 

diverse responses. Such reconfiguration of transcription network is conceivably crucial to the 343 

adaptation of newly synthesized hybrids. 344 

 Br has higher gene-body CG methylation levels than Rs, which is inherited to each 345 

subgenome in xB. This indicates that differential gene-body methylation is maintained after 346 

hybridization and this methylation asymmetry may contribute to ‘maintenance expression’ of 347 

AxB through unknown mechanisms. TEs are heavily methylated in general, but also showed 348 

asymmetric CHG methylation between Br and Rs. Intriguingly, Br-originated LTRs gained 349 

CHG methylation comparable to Rs ones in xB, suggesting that repeat-originated siRNAs 350 

trigger hypermethylation via RdDM in trans and TE silencing (Wendel et al., 2016). This 351 

may prevent hyper-activation of TEs and subsequent genome destabilization, which would 352 

otherwise culminate to a ‘genomic shock’ as initially proposed by McClintock (McClintock, 353 

1984). 354 

 It is believed that the more distantly related the species, the stronger the hybridization 355 

barrier. On the contrary to this assumption, our findings strongly suggest that, as long as the 356 
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physiology and transcriptional regulatory networks are compatible, a certain extent of 357 

genome divergence promotes hybridization between distant species. Therefore, a trade-off 358 

between genome divergence and transcriptome compatibility is meaningful to facilitate 359 

hybridization between species without causing genome destabilization and/or a conflict in 360 

transcription network. This concept also proposes that interspecific/intergeneric hybridization 361 

may occur more frequently in nature than we have thought, and the model of ‘triangle of U’ 362 

(U, 1935) can be further expanded to the intergeneric level. 363 

After whole genome duplication or hybridization between the different species 364 

followed by chromosome doubling (allopolyploidization), polyploid plants generally undergo 365 

gradual but substantial genome reconstruction including massive chromosome 366 

rearrangement, differential deletion or retention of duplicated genes and biased genome 367 

fragmentation
 
(Cheng et al., 2018). This eventually leads to a decrease in both chromosome 368 

number and genome size, with most of polyploid properties being lost. Extensive changes in 369 

genome structure and gene repertoire accompanied with sub-functionalization/neo-370 

functionalization of duplicated genes also contribute to the formation of new species with 371 

novel phenotype and function, which sometimes outperform the diploid progenitors with the 372 

greater ecological fitness. Thus, evolution of land plants, especially the angiosperms, is not a 373 

one-way process. Rather, it is likely to comprise the recurrent cycles of hybridization, 374 

diversification, diploidization and reunification among the species in the same lineage 375 

(Wendel, 2015). Furthermore, understanding the highly dynamic and flexible process of 376 

hybridization and polyploidization should provide a clue to Charles Darwin’s ‘abominable 377 

mystery’ (Darwin, 1903) questioning the great diversification and expansion of angiosperms 378 

within a short geological time. 379 

  380 
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Materials and methods 381 

 382 

Plant materials 383 

xBrassicoraphanus cv. BB1 (xB), Brassica rapa L. cv. Chiifu-401-42 (Br), and Raphanus 384 

sativus L. cv. WK10039 (Rs) were grown on 1x Murashige and Skoog (MS) medium 385 

(Duchefa) in a growth chamber under 16 hr of fluorescent light at 20 ± 10 μmol m
-2

 s
-1

, 22°C 386 

for 14 days. The seedlings including shoots and roots were harvested together for whole 387 

genome-seq, RNA-seq, bisulfite (BS)-seq, chromatin immunoprecipitation (ChIP)-seq and 388 

small RNA-seq. For tissue-specific transcriptome analysis, RNA was extracted from leaf, 389 

hypocotyl, and root of the seedling and from the opened flower of Br, Rs and xB. For cold 390 

treatment, 14-day-after-sowing seedlings of Br, Rs and xB were grown at 4°C for five weeks. 391 

RNA was extracted and stored at -20°C until use. 392 

 393 

Genome sequencing, assembly and genome size estimation 394 

Paired-end and mate-pair sequencing libraries with insert sizes of 200 bp, 400 bp, 3 kb, 8 kb 395 

5 kb, 10 kb and 15 kb were constructed using KAPA library prep kit (Roche) and Illumina 396 

Mate Pair Library kit (Illumina) following the manufacturer’s instructions (Supplemental 397 

Table S1). The libraries were sequenced on an Illumina HiSeq 2000 platform. Prokaryotic 398 

sequences, duplicated reads, low quality reads and low frequency reads were filtered out 399 

(Supplemental Table S1). The preprocessed sequences were assembled using SOAPdenovo2 400 

(Luo et al., 2015) with the best k-mer values for each library. To increase the length of 401 

scaffolds, serial scaffolding processes were carried out using SOAPdenovo2 (Luo et al., 402 

2015) and SSPACE (Boetzer et al., 2011). Gaps in the scaffolds were reduced further using 403 

SOAPdenovo Gapcloser (Luo et al., 2015) and Platanus (Kajitani et al., 2014) (Supplemental 404 

Table S2). In the k-mer analysis, counting k-mer occurrence of 19-mer were performed using 405 

Jellyfish (Marcais and Kingsford, 2011). The genome size of xB was estimated by flow 406 

cytometry analysis (FACSCalibur, BD Biosciences) as previously described (Huang et al., 407 

2013). Genome data were visualized with Circos (Krzywinski et al., 2009). 408 

 409 

Chloroplast genome assembly 410 

The chloroplast genome was de novo assembled from the 1x coverage of whole-genome 411 

sequencing reads. The chloroplast genome was annotated with GeSeq (Tillich et al., 2017) 412 
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and manually curated. The chloroplast genome was visualized using 413 

OrganellarGenomeDRAW (Lohse et al., 2013). 414 

 415 

Assignment of scaffolds to AxB and RxB subgenomes 416 

Whole-genome sequencing reads of Rs and Br from Brassica Database (BRAD) were mapped 417 

to the xB scaffolds using Bowtie (Langmead et al., 2009). The number of mapped reads was 418 

counted and the scaffolds were assigned to AxB and RxB subgenomes, based on a comparison 419 

of the number of parental reads (AxB subgenome: >99% ratio of mapped reads from Br; RxB 420 

subgenome: >99% ratio of mapped reads from Rs). Next, assigned xB scaffolds were 421 

anchored to the reference chromosomes of Br and Rs to build xB pseudo-chromosomes. 422 

 423 

Gene and TE annotation 424 

Gene annotations of xB and Rs were performed following the previous annotation pipeline 425 

with minor modifications (Kim et al., 2014). Briefly, the annotation pipeline consisted of 426 

repeat masking, mapping of different protein sequence sets and mapping of RNA-seq reads. 427 

Independent ab initio predictions were performed with AUGUSTUS (Stanke et al., 2008). 428 

The EVidenceModeler (Haas et al., 2008) software combines ab initio gene predictions with 429 

protein and transcript alignments into weighted consensus gene structures. Gene annotation 430 

of Br was downloaded from Ensembl plant (ftp://ftp.ensemblgenomes.org/pub/plants/release-431 

31/gff3/brassica_rapa/) and additional 1,700 genes were annotated using Exonerate (Slater 432 

and Birney, 2005). Functional annotation was performed through BLASTP against SwissProt 433 

and Plant RefSeq database. TE-related repeat sequences were predicted by RepeatModeler 434 

(Smit and Hubley, 2008) and Repeatmasker (Smit et al., 2015). 435 

 436 

Fluorescence in situ hybridization (FISH) analysis 437 

The sequences of 5S rDNA, 45S rDNA, RsCent1, RsCent2, BrCent1, BrCent2, RsSTRa, 438 

RsSTRb, BrSTRa, BrSTRb and telomere were used as probes (Supplemental Table S5). The 439 

probes were labelled by nick translation with different fluorochromes. Root mitotic 440 

chromosome spreads and FISH procedures were performed according to the previous method 441 

(Waminal and Kim, 2012). For directly labelled probes, slides were immediately used for 442 

FISH after fixation with 4% paraformaldehyde, without subsequent pepsin and RNase 443 

pretreatment. Images were captured with an Olympus BX53 fluorescence microscope 444 
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equipped with a Leica DFC365 FS CCD camera and processed using Cytovision ver. 7.2 445 

(Leica Microsystems). 446 

 447 

Resynthesized allodiploid and allotetraploid xBrassicoraphanus plants 448 

Resynthesized allodiploid xBrassicoraphanus plants were produced from a cross between B. 449 

rapa cv. Chiifu-401-42 as the seed parent and R. sativus cv. WK10039 as the pollen donor. 450 

Thirty-day-old immature hybrid ovules were cultured on 1 × MS medium supplemented with 451 

2% sucrose (w/v) and 0.8% plant agar (w/v). The plates were placed at 24°C growth chamber 452 

for two weeks and then seedlings were vernalized at 4°C cold chamber for 4 weeks with 16 453 

hr of light and 8 hr of dark.  454 

 455 

Resynthesized allodiploid and allotetraploid B. napus plants 456 

Resynthesized allodiploid B. napus plants were produced from a cross between B. rapa cv. 457 

Chiifu-401-42 as the seed parent and B. oleracea var. Capitata as the pollen donor. Ovary 458 

culture was performed as described in the published protocol with modifications (Inomata, 459 

1977). Ovaries at 4 day after pollination were explanted on 1 × MS medium supplemented 460 

with 5% sucrose (w/v), 300 mg·L
-1

 casein hydrolysate and 0.8% plant agar (w/v) at 24°C 461 

growth chamber. Four weeks after explantation, hybrid ovules were transferred on B5 462 

medium with vitamin supplemented with 2% sucrose (w/v), 300 mg·L
-1

 casein hydrolysate 463 

and 0.8% plant agar (w/v). Ovules were incubated in the dark at 24°C in three days and 464 

placed at 16 hr of light and 8 hr of dark condition. Seedlings were vernalized at 4°C cold 465 

chamber for 4 weeks with 16 hr of light and 8 hr of dark. The plants were transferred to pots 466 

in the greenhouse with the same light condition. A 0.3% colchicine solution was applied to 467 

the shoot apical meristems for two days to obtain allotetraploids. 468 

 469 

Production of antibody and immunolocalization of meiotic proteins 470 

The coding regions of BrASY1 and BrZYP1 genes were PCR-amplified from cDNA of young 471 

flowering buds from Br (Supplemental Table S6). The fragments of BrASY1 (708 bp) and 472 

BrZYP1 (1,332 bp) were inserted into the pET-28a expression vector (Novagen) and 473 

transformed into Escherichia coli Rosetta2 (DE3) strains (Novagen). The transformed E. coli 474 

cells were grown at 30°C in 1 L of Luria-Bertani broth (LB) medium in the presence of 50 475 

µg·mL
-1

 of kanamycin and 50 µg·mL
-1

 of chloramphenicol until the OD600 reached to 0.4. 476 

Recombinant protein expression was induced with 1 mM of isopropyl b-D-477 
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thiogalactopyranoside (IPTG) at 16°C for 16 hr. Cells were centrifuged (4°C) at 6,500 rpm 478 

for 15 min and the pellet was resuspended in 100 mL of ice-cold column buffer (50 mM Tris-479 

HCl, pH 7.4, 100 mM NaCl, 10% glycerol, 0.1 mM dithiothreitol, 0.1 mM PMSF). Cells 480 

were lysed by sonication for 5 min on ice (output power, 4; duty cycle, 50%; Branson Sonifer 481 

250, Branson). Inclusion bodies were collected by centrifugation (4°C) at 9,000 rpm for 25 482 

min and dissolved in 4 M urea. The soluble lysate was purified with a 5-mL HisTrap FF 483 

column (GE Health care, USA) with a linear gradient of ice-cold column buffer (50 mM Tris-484 

HCl, pH 7.4, 100 mM NaCl, 10% glycerol, 0.1 mM dithiothreitol, 250 mM imidazole). The 485 

purified BrASY1 and BrZYP1 proteins were used to produce polyclonal antibodies from 486 

rabbit and rat, respectively, by Youngin Frontier (Korea), and the quality of antibody was 487 

validated by western blot. Immunolocalization was performed as described in the published 488 

protocol (Chelysheva et al., 2013). In brief, primary antibodies anti-BrASY1 and anti-489 

BrZYP1 were used at dilution 1:250 in PBST (0.1% Triton-X 100 in 1× PBS) containing 1% 490 

BSA and the secondary antibodies (Goat anti-rabbit IgG H&L, Alexa Fluor 488 and Donkey 491 

anti-rat IgG H&L, Alexa Fluor 594) were used at dilution 1:500. Images were captured with 492 

an Axioskop2 microscope equipped with an Axiocam 506 color CCD camera (Zeiss) and 493 

processed using Adobe Photoshop CS6 (Adobe Systems Incorporated). 494 

 495 

Identification of orthologous and homoeologous gene pairs. 496 

To identify orthologous gene pairs between parental genomes (ABr vs. RRs), the reciprocal 497 

best BLAST hit was performed with >80% of identity and >80% of coverage. Syntenic 498 

regions were defined as contiguous regions containing at least five homologous gene pairs in 499 

Br and Rs genomes, and the pairs in the syntenic regions were determined as orthologous 500 

gene pairs. Homoeologous gene pairs between the progenitor genomes (AxB vs. RxB) were 501 

determined following the same standard. 502 

 503 

RNA-seq analysis 504 

Total RNA was extracted with RNeasy plant kit (Qiagen) following the manufacture’s 505 

protocol. The DNase-treated RNA samples, including two replicates for each of seedling, 506 

leaf, hypocotyl and flower, and one replicate for root of xB and its progenitors, were used for 507 

constructing RNA-seq libraries (Zhong et al., 2011). RNA sequencing was performed on an 508 

Illumina HiSeq 2000 platform. The obtained raw reads were filtered using FASTX-Toolkit 509 

and low quality reads (Q < 20) were removed. The filtered reads were mapped on Br, Rs and 510 
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xB genomes using Tophat (Trapnell et al., 2009) with default parameters (Supplemental Data 511 

Set S4). The mapped read counts were calculated using HTSeq (Anders et al., 2015). 512 

Statistical tests of DEGs were performed using EdgeR (Robinson et al., 2010) with the false 513 

discovery rate (FDR) < 0.05 and fragments per kilobase of transcript per million mapped 514 

reads (FPKM) log2 fold change > 1. The Gene ontology (GO) terms of xB genome were 515 

annotated by Blast2Go using the non-redundant sequence database from NCBI with < 1e
-15

 of 516 

e-value parameter. The statistical comparison of GO term accumulation was conducted using 517 

TopGo in R package (Alexa and Rahnenfuhrer, 2010) with p-values of fisher’s exact test (P < 518 

0.001). Motifs of ABRE (BACGTGK, B = C, G or T; K = G or T) and DRE/CRT 519 

(RCCGAC, R = A or G) were searched in 500 bp upstream regions of genes using FIMO 520 

(Grant et al., 2011) with parameters “--verbosity 1 --thresh 0.01”. 521 

 522 

BS-seq analysis 523 

Genomic DNA (5 μg) was used to construct the BS-seq library with the KAPA Library kit 524 

(Roche) and EpiTect Bisulfite Kit (Qiagen) according to manufacturer’s instructions. The 525 

libraries were sequenced using the Illumina HiSeq 2000. Raw reads were filtered using 526 

FASTX-Toolkit and low quality reads (Q < 20) were removed. Reads were mapped onto the 527 

xB genome using BISON (Ryan and Ehninger, 2014), with the parameters “--very-sensitive --528 

score-min ‘L,-0.6,-0.6’”. Only cytosine sites with 4x coverage read depths were accepted for 529 

the subsequent analysis. Differentially methylated cytosines (DMCs) and regions (DMRs) 530 

were identified as described previously (Kim et al., 2019). In brief, DMCs were identified 531 

using Fisher’s exact test (P < 0.05) between the levels of methylation in xB and the 532 

progenitors Br and Rs. DMRs were identified based on the regions with a length ≥ 200 bp, ≥ 533 

5 DMCs, and the mean methylation difference ≥ 0.3 for CG, ≥ 0.15 for CHG, and ≥ 0.1 for 534 

CHH (Supplemental Data Set S1). For metagene plot of DNA methylation in gene bodies and 535 

repeat, regions of 2 kb upstream, downstream and gene body were divided into 50 bp 536 

windows and methylation levels were calculated each. Methylation data were visualized with 537 

the Integrated Genome Browser (Freese et al., 2016). 538 

 539 

ChIP-seq analysis 540 

ChIP was performed following the published protocol (Lee et al., 2007). Chromatin was 541 

immunoprecipitated with antibody against histone H3K9me2 (Abcam). ChIP-seq libraries 542 

were constructed as described in the Illumina ChIP sequencing kit (Illumina). DNA 543 
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fragments with about 600 bp were excised from an agarose gel and amplified for cluster 544 

generation and sequencing. All DNA libraries were sequenced on a HiSeq2500 platform 545 

(Illumina) with single-end reads. The sequencing reads were quality-controlled with FASTX-546 

Toolkit and aligned to xB genome using Bowtie (Langmead et al., 2009) with parameters “-547 

best -m1”. H3K9me2-enriched regions were defined using SICER (Zang et al., 2009) 548 

(window size = 500, gap size = 600, FDR = 0.01) and overlapping regions between two 549 

biological replicates were identified using the MergePeaks module of the Homer software 550 

(Heinz et al., 2010)
 
(Supplemental Data Set S2). 551 

 552 

Small RNA-seq analysis 553 

The small RNA libraries were constructed using the Illumina TruSeq Small RNA sample 554 

Prep kit (Illumina). The libraries were sequenced on the HiSeq 2000 platform (Illumina). The 555 

adaptor sequences were trimmed using cutadapt (Martin, 2011) with parameters “-g 556 

TACAGTCCGACGATC -a TGGAATTCTCGGGTGCCAAGG -m 18 -M 30”. Low quality 557 

sequences were removed using FASTX-Toolkit with parameters “-q 20 -p 100”. The quality-558 

trimmed read sequences ranged from 18 to 30-nt were mapped to the xB genome using 559 

Bowtie (Langmead et al., 2009) with parameters “-best -v 0”. Mapped reads were classified 560 

into ribosomal RNA, small nucleolar RNA, small nuclear RNA, signal recognition particle 561 

RNA, and transfer RNA using Rfam database version 12.1 (Nawrocki et al., 2014). 562 

Prediction of microRNA (miRNA) was performed with the miRDeep-P (Yang and Li, 2011) 563 

and ShortStack (Axtell, 2013), and the secondary structure was predicted using RNAfold. 564 

Candidate miRNAs were annotated by alignment to miRBase database version 21 (Kozomara 565 

and Griffiths-Jones, 2013). 566 

 567 

Northern blot analysis 568 

Total RNA (10 µg) was electrophoresed on a 1% formaldehyde denaturing gel and 569 

transferred onto the Hybond N+ membrane (GE Healthcare). The BrGypsy, BrCopia and 570 

Actin probes were amplified by PCR, and randomly labelled with [α-32P]dCTP (Perkin 571 

Elmer) using a Klenow fragment (3′ → 5′ exo−) (New England Biolabs). Hybridization was 572 

performed at 65°C overnight in the pre-hybridization solution containing 6x saline-sodium 573 

citrate buffer, 5x Denhardt’s reagent, and 1% sodium dodecyl sulphate. After hybridization, 574 

the membrane was washed and exposed to an X-ray film (Fujifilm). Primer sequences are 575 

provided in Supplemental Table S7. 576 
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 577 

Accession numbers 578 

The sequencing data for genomic, transcriptomic and epigenomic analyses are available from 579 

Bioproject ID PRJNA353741, PRJNA353738, PRJNA394950 and PRJNA353316. The 580 

assembled xBrassicoraphanus genome is available from Bioproject ID PRJNA353741. The 581 

chloroplast genome of xB is deposited to GenBank under accession number MN928713. 582 

 583 

Supplemental data 584 

Supplemental Figure S1. Phenotypes of xBrassicoraphanus intermediate between B. rapa 585 

and R. sativus. 586 

Supplemental Figure S2. Flow cytometry analysis and genome size estimation of 587 

xBrassicoraphanus. 588 

Supplemental Figure S3. Chloroplast genome of xBrassicoraphanus. 589 

Supplemental Figure S4. Comparison of xBrassicoraphanus genome with its parental 590 

genomes. 591 

Supplemental Figure S5. Genome-wide DNA methylation in xBrassicoraphanus. 592 

Supplemental Figure S6. H3K9me2 modification of xBrassicoraphanus. 593 

Supplemental Figure S7. Chromosome interactions in resynthesized xBrassicoraphanus and 594 

Brassica napus. 595 

Supplemental Figure S8. Transcriptome analysis of xBrassicoraphanus. 596 

Supplemental Figure S9. Small RNA analysis of xBrassicoraphanus. 597 

Supplemental Figure S10. DNA methylation metaplots in transposable elements. 598 

Supplemental Figure S11. Distribution of DNA methylation changes in A and R subgenomes 599 

of xBrassicoraphanus. 600 

Supplemental Table S1. Summary of genomic reads from xBrassicoraphanus. 601 

Supplemental Table S2. Statistics of xBrassicoraphanus genome assembly. 602 

Supplemental Table S3. Annotation of repeat sequences in xBrassicoraphanus genome. 603 

Supplemental Table S4. Chloroplast genome annotations of xBrassicoraphanus and 604 

progenitors. 605 

Supplemental Table S5. Primers and oligo for FISH probes. 606 

Supplemental Table S6. Primers for production of antibody. 607 
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Supplemental Table S7. Primers for northern blot probes. 608 
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Table 1. Summary of the xBrassicoraphanus genome assembly. 898 

Assembly information Contig Scaffold 

Total length / Number 652.44 Mb / 68,454 ea 692.83 Mb / 20,299 ea 

Average / Median 9.53 kb / 2.40 kb 34.13 kb / 901 bp 

Max / Min length 190.62 kb / 200 bp 16.46 Mb / 213 bp 

N50 28,581 bp (6,854th) 4,479,746 bp (49th) 

N90 5,982 bp (24,969th) 166,698 bp (284th) 

GC contents 35.75% 33.68% 

Scaffold assignment Total number 
Assigned to 

AxB genome 

Assigned to 

RxB genome 
Unassigned 

No. of scaffolds 20,299 7,790 7,364 5,145 

Cumulative size (bp) 

(% of total assembly) 

692,831,961 

(100%) 

335,554,805 

(48.43%) 

343,544,771 

(49.59%) 

13,732,385 

(1.98%) 

No. of scaffolds assigned to 

reference chromosomes 
213 129 84 

 

Size of scaffolds assigned to 

reference chromosomes (bp) 

(% of total assembly) 

581,691,615 

(83.96%) 

279,795,674 

(83.38%) 

301,895,941 

(87.87%)  

Species 
Protein-coding 

loci 

Total CDS 

length (bp) 

Average 

CDS 

length (bp) 

Average 

exon 

length (bp) 

Average 

intron 

length (bp) 

xBrassicoraphanus 87,861 106.896,611 1,216 244 196 

B. rapa 42,601 49,456,892 1,172 233 209 

R. sativus 52,326 67,790,376 1,295 252 170 
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Figure 1 Genome structure of xBrassicoraphanus. A, The xB genome comprises 10 AxB and 
9 RxB chromosomes. The data tracks represent (i) repeat density; (ii) gene density; (iii) DEGs 
between xB and its progenitor seedlings; (iv) CG, CHG, and CHH methylation levels and 
DMRs; (v) H3K9me2 repressive histone mark; and (vi) small RNAs. Lines in the inner circle 
represent syntenic relationships between AxB and RxB. B, Multicolor Fluorescence in situ 
Hybridization (FISH) karyograms of xB with specific probes for 5S rDNA, 45S rDNA, 
centromeric tandem repeats (Cent), short tandem repeats (STR) and telomere repeats. Scale 
bars = 10 μm. 
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Figure 2 Chromosome behaviors of xBrassicoraphanus. Coimmunolocalization of ASY1 
(green) and ZYP1 (red) at pachytene in Br (AA), Rs (RR), xB cv. BB1 (AARR), and 
resynthesized allodiploids (AR) and allotetraploid (AARR) xB. Chromosomes were stained 
with DAPI (white) and the overlay of three signals is shown (merge). Scale bars = 10 μm. 
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Figure 3 Transcriptome changes in xB. A, Phylogenetic relationship and sequence 
divergence in Camelineae and Brassiceae tribes. Percentages between species represent their 
CDS similarity of orthologous gene pairs. At, Arabidopsis thaliana; Al, A. lyrata; Cr, 
Capsella rubella. B, Distribution of sequence similarities of interspecific/intergeneric 
orthologs. Horizontal axis indicates orthologous gene pairs sorted in ascending order of 
sequence similarity. C, Relationship between orthologous and homoeologous genes in 
progenitors and xB. D, Number of DEGs in xB relative to the progenitors (ABr vs. AxB and 
RRs vs. RxB). E, Scatter plots comparing gene expression levels between ABr and AxB (black), 
and RRs and RxB (red). F, Number of DEGs of orthologous pairs between ABr and RRs, and 
homoeologous pairs between AxB and RxB. G, Scatter plots comparing gene expression levels 
between ABr and RRs (black), and AxB and RxB (red). 
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Figure 4 Expression patterns of homoeologous pairs in xB. A, Classifications of expression 
patterns of homoeologs in the xB relative to progenitor orthologs. The gray, blue and red 
blocks represent gene pairs showing ‘constant’, ‘biased’ and ‘convergent’ expressions, 
respectively. B, Sequence similarities of genic and adjacent upstream/downstream regions of 
orthologous genes showing convergent (red) and biased (blue) expressions in xB subgenomes 
(Wilcoxon’s rank-sum test, *P < 2.2e-10).  
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Figure 5 Expression of homoeologous genes in response to external stimuli. A, GO 
enrichments of ‘constant’ (gray), ‘biased’ (blue) and ‘convergent’ (red) homoeologous pairs 
(Fisher’s exact test, *P < 0.001). B, Proportion of ‘constant’ (gray), ‘biased’ (blue) and 
‘convergent’ (red) homoeologous pairs containing conserved sequences of abscisic acid-
responsive element (ABRE) and dehydration-responsive element/C-repeat element 
(DRE/CRT) (Fisher’s exact test, *P < 0.001). C, Venn diagram of cold-induced DEGs 
between ABr and RRs orthologs (left) and between AxB and RxB homoeologs (right). D, Scatter 
plots of cold-induced expression changes of ABr and RRs orthologous genes showing ‘biased’ 
(blue) and ‘convergent (red)’ expressions. E, Scatters plots of cold-induced expression 
changes of AxB and RxB homoeologous genes showing ‘biased’ (blue) and ‘convergent’ (red) 
expressions. 
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Figure 6 Relationships of DNA methylation, small RNA and TE expression in 
xBrassicoraphanus. A and B, Distribution of DNA methylation at gene body (A) and TE 
regions (B) in xB subgenomes (AxB and RxB) and its progenitor genomes (ABr and RRs). C, 
Expression levels of 24-nt RNAs at CG, CHG and CHH DMRs in xB subgenomes (AxB and 
RxB) and the progenitor genomes (ABr and RRs). The expression level of 24-nt RNAs was 
calculated as reads per million (RPM) (two-tailed Student’s t-test, *P < 5.0e-5). D, 
Distributions of DNA transposons, LTRs and DNA methylation difference between ABr and 
AxB across chromosome A02 in 100 kb bins. E, An example of methylation distributions at 
hypermethylated Gypsy class LTR in AxB and ABr. F, Northern blot for BrCopia and 
BrGypsy. Actin was used as a loading control. 
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