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Abstract 
 

The majority of genetic variants detected in genome wide association studies (GWAS) exert their 

effects on phenotypes through gene regulation. Motivated by this observation, we propose a 

multi-omic integration method that models the cascading effects of genetic variants from 

epigenome to transcriptome and eventually to the phenome in identifying target genes influenced 

by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, 

comprises two types of models: one for linking cis genetic effects to epigenomic variation and 

another for linking cis epigenomic variation to gene expression. Applying these models in 

cascade to GWAS summary statistics generates gene level statistics that reflect genetically-

driven epigenomic effects. We show on sixteen brain-related GWAS that CEWAS provides 

higher gene detection rate than related methods, and finds disease relevant genes and gene sets 

that point toward less explored biological processes. CEWAS thus presents a novel means for 

exploring the regulatory landscape of GWAS variants in uncovering disease mechanisms. 

  

 

Summary 
 

The majority of genetic variants detected in genome wide association studies (GWAS) exert their 

effects on phenotypes through gene regulation. Motivated by this observation, we propose a 

multi-omic integration method that models the cascading effects of genetic variants from 

epigenome to transcriptome and eventually to the phenome in identifying target genes influenced 

by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to as CEWAS, 

combines the effect of genetic variants on DNA methylation as well as gene expression. We 

show on sixteen brain-related GWAS that CEWAS provides higher gene detection rate than 

related methods, and finds disease relevant genes and gene sets that point toward less explored 

biological processes.  
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Introduction 
 

Genome wide association studies (GWAS) have discovered tens of thousands of common 

genetic variants (SNPs) associated with complex traits and disease susceptibility1. Identifying the 

targeted genes of these SNPs is critical for translating raw GWAS findings into disease 

mechanisms. Yet, the majority of GWAS SNPs lie in non-coding regions2, thus determining the 

genes through which these SNPs act remains challenging. The conventional approach is to apply 

univariate association analysis to map each SNP to its target gene based on the correlation 

between SNP dosages and gene expression levels (i.e. expression quantitative trait loci (eQTL) 

studies)3. This approach is often followed up by applying statistical techniques that test the 

probability of colocalization between GWAS SNPs and molecular QTLs in finding causal 

SNPs4–7. More recent approaches for finding disease-associated genes are converging toward 

using sparse models to select the combination of cis SNPs near each gene that together are 

predictive of gene expression levels8,9. A few studies have begun to investigate epigenomic 

modifications by combining the effects of GWAS SNPs on phenotypes and DNA methylation 

(mQTLs), in addition to gene expression (eQTLs)10–12. Along these lines, the use of epigenomic 

annotations to guide selection of expression-predictive SNPs has also been proposed13. Further, a 

recent approach attempts to go beyond modeling cis effects by additionally incorporating trans 

SNPs associated with epigenomic mediators of gene expression14.  

 

While the importance of combining multiple omics data types is increasingly recognized for 

gene prioritization, most existing methods do not capture the cascading mechanism through 

which regulatory SNPs eventually act on phenotypes. To better trace the functional consequence 

of genetic variants, we propose a multi-omic integration method that mirrors the biophysics of 

SNP effects on nearby epigenomic elements15, which in turn impact gene expression and 

ultimately phenotypes. Our method captures this cascading mechanism by coupling two types of 

prediction models: one that links cis genetic effects to epigenomic variation, and another that 

links cis epigenomic variation to gene expression, which is analogous to using two-stage 

regression to model mediation effects of the epigenome on gene expression with SNPs being the 

instrumental variables. Here, we focus on cis effects, since cis effects tend to be more replicable 

than their trans counterparts16. Applying these models in cascade to GWAS summary statistics 

generates gene level statistics that reflect genetically-driven epigenomic effects on a given 

phenotype. We thus refer to our method as cascading epigenomic analysis for GWAS (CEWAS). 

 

To test CEWAS, we first build the respective prediction models using imputed genotype17, DNA 

methylation (DNAm)18, and RNAseq19 data from the Religious Orders Study and Rush Memory 

and Aging Project (ROSMAP)20,21, which is the largest brain tissue dataset with all three data-

types. We then apply CEWAS to sixteen well-powered, brain-related GWAS22–36, and compare it 

against the closest state-of-the-art methods, namely MetaXcan9 and EpiXcan13. We show that 

CEWAS achieves higher gene detection rate, and is able to identify disease relevant genes and 

gene sets that are missed by the contrasted methods. CEWAS thus provides a novel multi-omic 

means for inferring disease mechanisms from the regulatory landscape of GWAS variants.  
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Results 
Data and model building 

CEWAS builds upon MetaXcan5 by additionally modeling the cascading effects of SNPs on 

gene expression through epigenomic marks. In particular, CEWAS entails learning a set of 

models for predicting DNAm levels from genotype data and a set of models for predicting gene 

expression from predicted DNAm levels (Fig 1a, Methods). The former set of models are applied 

to GWAS summary statistics to generate epigenomic level statistics, which are then combined 

using the latter set of models on a gene-by-gene basis. CEWAS is thus analogous to two-stage 

regression used in instrumental variable analysis in modeling the mediation effects of CpGs on 

gene expression with SNPs being the instrumental variables. To build the prediction models, we 

used imputed genotype17, DNAm18, and RNAseq37 data from ROSMAP20,21, which were all 

derived from dorsolateral prefrontal cortex (DLPFC) tissue of ~700 individuals. Both gene 

expression and DNAm data were corrected for hidden covariates and measured technical 

confounders (see Methods). For each CpG, we built a DNAm prediction model using elastic 

net38 with dosage level of SNPs within ±50Kb of that CpG as covariates. Similarly, for each gene, 

we built an elastic net expression prediction model with predicted DNAm level of CpGs within 

±500Kb of that given gene. Using these learned model weights, we applied CEWAS to a range 

of brain-related GWAS22–36 to find their implicated genes, as we describe next. 

  

Prioritizing disease-associated genes  

We applied CEWAS to sixteen well-powered, brain-related GWAS22–36 (Table S1), and 

compared it against MetaXcan and EpiXcan (which CEWAS is built upon) in terms of gene 

detection rate, defined as the proportion of expressed genes identified as significant at an α of 

0.05 with Bonferroni correction. MetaXcan and EpiXcan models were built using the same input 

SNPs and expression dataset as CEWAS. As shown in Fig 1b (the number of tested and detected 

genes summarized in Table S2), CEWAS achieved higher detection rate than MetaXcan 

(p=0.00074, Wilcoxon sign rank test across GWAS), which shows the benefits of integrating 

DNAm information. This trend remained for MetaXcan models built using SNPs within the 

typical window of ±500Kb from transcription starting site (TSS) of genes (denoted as 

MetaXcan1Mb). CEWAS also achieved higher detection rate than EpiXcan (p=0.00088), which 

demonstrates that using DNAm data to incorporate additional models, instead of weighting SNPs 

by epigenomic annotation, increases detection rate. The same trend was observed with EpiXcan 

models built using SNPs within ±500Kb from TSS of genes (denoted as EpiXcan1Mb). Since 

SNPs might be shared between models of spatially proximal genes, we further estimated 

detection rate based on the number of distinct signals (see Methods), and confirmed that the 

higher detection rate attained by CEWAS remains to hold with this analysis (Fig S1).  

 

A natural question is what gave rise to CEWAS’s higher detection rate. Since CEWAS does not 

directly model the associations between SNP dosages and gene expression levels, one would 

expect its accuracy in predicting gene expression (R2) to be lower than MetaXcan and EpiXcan, 

which was indeed what we observed (Fig S2-S3). This lower R2 rules out higher predictive 

accuracy as the reason for CEWAS’s higher detection rate. Instead, we hypothesized that the 

higher detection rate arises from the type of SNPs selected by CEWAS. Specifically, SNPs 

selected by CEWAS are largely mQTLs by construction, whereas SNPs selected by MetaXcan 
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and EpiXcan are primarily eQTLs. To test this hypothesis, we estimated the partitioned 

heritability of mQTLs against eQTLs using linkage disequilibrium score regression (LDSC)39. 

We examined mQTLs and eQTLs derived from the ROSMAP data15, but restricted to those 

where the mQTL SNPs are within a 100Kb window from CpGs (i.e. matching the window size 

used for CEWAS), and the eQTL SNPs are within a 1Mb window from TSS of genes (i.e. typical 

window size for eQTL analysis). The baseline SNP sets in LDSC corresponding to various 

regulatory attributes were included as background. As shown in Fig 1c, the enrichment for 

mQTLs is higher than for eQTLs (p<0.0084, Wilcoxon sign rank test across GWAS), and the 

same trend holds when we matched the window size of eQTLs to that of mQTLs, i.e. 100Kb, as 

well as matching the number of mQTL SNPs to the number of eQTL SNPs (Fig S4). Indeed, in 

support of our hypothesis, this higher enrichment for mQTLs over eQTLs was found to 

significantly correlate with the increase in detection rate achieved by CEWAS over MetaXcan 

and EpiXcan (Fig 1d). Also, mQTLs tend to be more replicable than eQTLs (Fig S5), hence 

CEWAS would presumably be more robust than MetaXcan and EpiXcan in selecting relevant 

SNPs across GWAS, which could further explain CEWAS’s higher detection rate. In fact, 

similar trends of higher GWAS enrichment and reproducibility with mQTLs over eQTLs have 

also been seen in blood40, which supports our observations, though whether these trends are 

generalizable to other tissues requires further investigation. 

 

The next question is whether modeling DNAm mediated effects on GWAS phenotypes alone, i.e. 

without using expression data, is already adequate to attain higher detection rate. To answer this 

question, we assessed DNAm mediated effects on GWAS phenotypes in three ways. First, we 

directly examined results from models used in the first stage of CEWAS, i.e. MetaXcan models 

built with each CpG taken as the response and SNPs within ±50Kb from that CpG as predictors. 

Detection rate of these DNAm MetaXcan models, defined as the number of detected CpGs 

among tested CpGs, is significantly lower than CEWAS (p=0.0004), MetaXcan (p=0.0013), and 

EpiXcan (p=0.0006) based on Wilcoxon sign rank test across GWAS (Fig S6, Table S2). Second, 

we mapped CpGs to genes without using expression data, by taking the DNAm MetaXcan p-

value of the closest CpG of each gene as the p-value of that gene. The gene level detection rate is 

significantly lower than CEWAS (p=0.0004), MetaXcan (p=0.0003), and EpiXcan (p=0.0004). 

Third, we mapped CpGs to genes by taking the DNAm MetaXcan p-value of the CpG with the 

largest R2 in terms of DNAm prediction among CpGs within ±500Kb from each gene as the p-

value of that gene. The detection rate is lower than CEWAS (p=0.1331) and EpiXcan (p=0.3808), 

and higher than MetaXcan (p=0.4235) but not significant. Based on these comparisons, mapping 

CpGs to genes without using expression data does not provide the same detection gain as 

CEWAS. Also, the highlighted genes are different from the expression-based models (i.e. 

CEWAS, MetaXcan, and EpiXcan) as assessed using cross-method area under the receiver 

operating characteristic curve (AUC). Specifically, for each GWAS, we ranked genes based on 

p-values from one of the expression-based models, took the top 1% of genes as reference, and 

estimated AUC with gene level p-values of the DNAm-based models (see replication AUC under 

Methods for details on AUC estimation). The cross-method AUC between DNAm models with 

mapping based on the closest CpG to each gene and expression-based models are 0.75±0.05, 

0.70±0.04, and 0.70±0.05 for CEWAS, MetaXcan, and EpiXcan, respectively. As for mapping 

based on the max R2 CpG of each gene, the cross-method AUC are 0.65±0.05, 0.64±0.04, and 

0.65±0.04 for CEWAS, MetaXcan, and EpiXcan. Hence, while mapping based on max R2 CpG 

resulted in higher detection rate than mapping based on closest CpG, the cross-method AUC 
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against expression-based models are lower, and these AUC are much lower than cross-method 

AUC between expression-based models, which are in the range of 0.93 to 0.99. In fact, the two 

non-expression-based CpG-to-gene mapping approaches themselves highlight quite different 

genes, with cross-method AUC being only 0.63±0.05. 

 

Calibration test 

Since CEWAS is built upon MetaXcan, which entails an approximation in its z-score estimation5, 

the increase in detection rate could potentially be due to artificial z-score inflation inherent in 

CEWAS’s mathematical formulation. To verify that the mathematical formulation is not the 

reason behind CEWAS’s higher detection rate, we performed simulations to test whether z-

scores estimated by CEWAS are calibrated (see Methods). As shown in Fig 2, with null input z-

scores having LD structure matched to the SNP covariance of the CEWAS models, CEWAS 

correctly returned null z-scores as output, which verifies that CEWAS z-scores are indeed 

calibrated when the input data match the model assumptions. However, in practice, the LD 

structure of GWAS genotype data might not match CEWAS’s model covariance. To test the 

effect of LD mismatch, we used the LD structure estimated from the 1000 Genome phase 3 

genotype data (European population) to generate null input z-scores. The resulting CEWAS z-

scores have standard deviation close to or less than 1 for majority of the genes except for some 

outliers, but the number of outlier genes is similar to MetaXcan (Fig 2). Thus, CEWAS’s higher 

detection rate is unlikely due to more false positive detections compared to MetaXcan and 

EpiXcan. Nonetheless, this result highlights the importance of LD matching for applying 

CEWAS (as well as MetaXcan and EpiXcan). We also note that CEWAS requires an estimate of 

the covariance between CpGs. Such covariance must be estimated using predicted DNAm levels 

since only the genetic component of DNAm is modeled in CEWAS. If the CpG covariance is 

estimated from the measured DNAm data, the resulting output z-scores would be inflated.  

 

Replication of CEWAS models 

To assess the generalizability of CEWAS, we built another set of prediction models using 

genotype and RNAseq data generated from DLPFC tissues of 592 subjects in the CommonMind 

Consortium (CMC) study41 in combination with mQTLs derived from DLPFC DNAm data of 

526 subjects in the DevMeth study42 (see Methods), and applied these models to the same set of 

GWAS22–36 as with the ROSMAP models. We needed to combine datasets from different studies 

since, to the best of our knowledge, no current brain tissue-based studies other than ROSMAP 

collected all three data-types from the same individuals. As the replication metric, we used AUC, 

as computed by ranking the genes of each GWAS based on p-values estimated with the 

ROSMAP models, taking the top 1% of genes as the reference, and estimating AUC with p-

values from the CMC models (see Methods). We opted to use the top 1% of genes since less than 

a handful of genes are statistically significant for some of the GWAS, which might be too few 

for robust AUC estimation. CEWAS achieved an average AUC of 0.76±0.04 (Table S3), which 

is significantly higher than the chance level AUC of 0.5 as confirmed with permutation test. For 

comparison, we repeated this analysis for MetaXcan and EpiXcan with their corresponding 

models built using ROSMAP vs. CMC data, which attained average AUC of 0.80±0.05 and 

0.87±0.03, respectively. Using the top 1% of genes detected by the CMC-based models as 

reference resulted in the same trend, with average AUC of 0.80±0.05, 0.82±0.04, and 0.86±0.03 

attained by CEWAS, MetaXcan, and EpiXcan, respectively. As one would expect, the 

replication AUC of CEWAS is lower than MetaXcan and EpiXcan since replication of CEWAS 
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requires combining two data sources (CMC and DevMeth) and matching more variables across 

datasets. Indeed, following up on this result, we assessed cross-method AUC (Table S3) by using 

the top 1% of genes from CMC-based MetaXcan and EpiXcan models as reference and p-values 

from ROSMAP-based CEWAS models for AUC estimation. The cross-method AUC are 

0.83±0.05 and 0.87±0.04 with MetaXcan and EpiXcan as reference, respectively, which are on 

par with replication AUC of MetaXcan and EpiXcan. Thus, the need to combine two disparate 

data sources for replicating CEWAS seems to be the key reason to its lower replication AUC.  

 

Genomic correlation between GWAS  

As another form of replication, we examined the correlation between CEWAS z-scores across 

the sixteen GWAS22–36 (Fig 3a), an idea that has been used for studying relationships between 

complex traits43. For the same phenotype examined in separate GWAS samples, the genomic 

correlations of CEWAS z-scores range from 0.44 to 0.93 (Fig 3b). For well-powered GWAS 

pairs of the same phenotype, coherent z-scores were observed (r>0.8, Figure 3b), while the cases 

of lower genomic correlation could partly be explained by large differences in sample size 

between the GWAS pairs (Fig 3c). When looking at genomic correlation between different 

phenotypes, for schizophrenia and bipolar disorder, a correlation of 0.4 between CEWAS z-

scores was found, which recapitulates previous findings44. Both disorders show correlations of 

~0.17 with depression. CEWAS found four genes that are common across these disorders (Fig 

3d): GNL3, SPCS1, TMEM110, and MCHR1. Fittingly, overexpression of GNL3 was previously 

shown to reduce the density of mushroom dendritic spines in rats, which might relate to dendritic 

spine pathology observed across patients with schizophrenia, bipolar disorder, and depression45. 

Similar to GNL3, SPCS1 and TMEM110 also lie in the 3p21.1 region, and their expression levels 

were previously shown to be associated with risk variants of schizophrenia, bipolar disorder, and 

depression45. In fact, CEWAS also detected GNL3, SPCS1, and TMEM110 for intelligence with 

z-scores having opposite signs compared to schizophrenia (Fig S7), which aligns with how risk 

alleles in these loci were previously shown to correlate with lower cognitive test scores45. Results 

obtained with MetaXcan and EpiXcan display the same trend, but only CEWAS found MCHR1 

to be common across schizophrenia, bipolar disorder, and depression. Specifically, while 

MCHR1 was also found to be significant for schizophrenia using MetaXcan and EpiXcan, their 

p-values for bipolar disorder and depression are an order of magnitude higher than the 

Bonferroni threshold. Fittingly, MCHR1 and limbic regions, such as amygdala and hippocampus 

in which MCHR1 is expressed, are modulators of stress response46. Also, although the genomic 

correlation between Alzheimer’s disease (AD) and Parkinson’s disease (PD) is only 0.05 (which 

matches the low genetic correlation of 0.08 observed in a previous study47), some shared genes 

were found (Fig 3d). In particular, all contrasted methods found C16orf93 and KAT8 to be 

common between AD and PD, but only CEWAS additionally found PRSS36 and ZNF668. These 

genes were also found by MetaXcan and EpiXcan for AD but not PD, with p-values being an 

order of magnitude higher than the Bonferroni threshold. Knockdown of ZNF668 has been 

shown to impair homologous recombination DNA repair48. Both PRSS36 and ZNF668 belong to 

the KRAB-ZFP cluster, which is involved with cell proliferation49, hence aligns with impaired 

hippocampal neurogenesis being a potential mechanism underlying memory deficits in AD50 and 

impaired precursor cell proliferation due to dopamine depletion in PD51.  

 

Method similarity and differential genes 
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We next assessed the similarity between methods by examining the correlation between their z-

scores for each GWAS. We observed an average correlation of 0.74 between CEWAS and 

MetaXcan (Fig 4a), which mirrors the reported overlaps between eQTLs and mQTLs from the 

same tissue15. As for CEWAS vs. EpiXcan, the average correlation is also 0.74, which might 

seem surprising since both CEWAS and EpiXcan use epigenomic information, whereas 

MetaXcan does not. The reason is that the average correlation between MetaXcan and EpiXcan 

is 0.93, suggesting that SNPs selected by EpiXcan are largely eQTLs analogous to MetaXcan.  

 

Contrasting the significant genes detected by each method (Table S4), we observed a larger 

number of genes that were exclusively found by CEWAS but not by the other methods (Fig 4b). 

A similar trend was observed when we assessed the number of distinct signals (Fig S8). To 

interpret the genes only found by CEWAS, we first grouped these genes into key shared 

mechanisms using Mammalian phenotypes and GO terms52, and then searched the literature for 

experimental evidence of their disease relevance. For schizophrenia (Fig 4c), only CEWAS 

detected DUS2, ENDOG, KIAA1279, LETM2, and ZMAT2, which are related to mitochondria 

functions, as well as ASPHD1, ENDOG, MPPED2, RC3H1, SLX1B, YPEL3, ZBED4, ZFYVE21, 

and ZMAT2, which are related to metal ion-binding. Detection of these genes aligns with how the 

presence of reduced metal ions promotes formation of highly reactive hydroxyl radicals from 

mitochondrial superoxide53, which could increase oxidative stress, resulting in behavioral and 

molecular anomalies seen in schizophrenia patients54. Also, only CEWAS found FAHD2B, 

HDAC5, MBTD1, NME2, and XPNPEP3 for bipolar disorder. These genes are again related to 

mitochondria and metal ion binding (Fig 4c), hence are linked to oxidative stress, which is a key 

process in the progression of bipolar disorder55. Among the unique genes found by CEWAS for 

AD, ADAM10 plays a prominent role in the cleavage of Alzheimer's precursor protein56, ERCC1-

XPF endonuclease is involved with DNA repair and accelerated aging57, and FAM63B is 

involved with cleavage of ubiquitin and abnormal ubiquitin aggregates are often seen in AD58. 

For PD, CEWAS detected PLEKHM1 and TTC19. PLEKHM1 is an effector that jointly binds 

LC3, Rab7, and HOPS complex for lysosomal protein degradation59, and Rab7 has been shown 

to induce clearance of α-synuclein aggregates60. The binding of TTC19 to mitochondrial 

respiratory complex III is required for UQCRFS1 fragment clearance, deficiency of which could 

result in neurological impairments61, and oxidative stress arising from mitochondrial dysfunction 

has been associated with dopaminergic neuronal death in PD62. For depression, CEWAS 

uniquely detected TNKS2 and ZDHHC5. TNKS2 is a poly-ADP-ribosyltransferase involved in 

Wnt/β-catenin signaling, and β-catenin has been shown to mediate antidepressant responses63. 

ZDHHC5 is a palmitoyl acyltransferase, and attenuated 5-HT1AR palmitoylation has been 

shown to induce depression-like behaviors64. Note that more than half of the genes exclusively 

found by CEWAS lie at least 100Kb away from any GWAS SNPs (Fig S9). These distal 

relationships are unlikely to be found using linear distance to map GWAS SNPs to target genes.  

 

Genes only found by MetaXcan and EpiXcan also suggest interesting disease mechanisms. For 

instance, DDHD2 was found for schizophrenia, which is a new candidate risk gene recently 

discovered based on its effects on RNA-binding protein dysregulation65. Also, HSD3B7 was 

found for AD, which is involved with bile acid synthesis, and altered bile acid levels in relation 

to cognitive decline in AD has not been observed and studied until recently66,67. SETD1A, which 

is a schizophrenia-susceptibility gene, was interestingly also found for AD. Mutation of SETD1A 
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has been shown to result in working memory deficit in mice68 and impaired excitatory synaptic 

transmission in pyramidal neurons within medial PFC69, which are indeed characteristics of AD. 

 

Gene set enrichment and brain region association 

To infer the biological processes captured by CEWAS, we applied MAGMA70 (see Methods) to 

assess the enrichment for known gene sets (CNS22 and MSigDB71) and brain regions (regional 

expression profiles from Allen Institute72). In brief, the top gene sets highlighted by CEWAS 

point toward similar biological processes as MetaXcan and EpiXcan (Fig S10, Table S5) but 

with some notable differences as we describe next. 

 

For psychiatric disorders (Fig 5a), only CEWAS highlighted CNS gene sets related to abnormal 

glial cell morphology and abnormal prepulse inhibition for schizophrenia (Fig 5b), bipolar 

disorder, and depression. Disruption of astrocytic functions arising from glial cell loss has been 

suggested as a potential cause for the neuronal abnormalities, such as reduced neuronal size, 

observed across major psychiatric disorders73, and decreased prepulse inhibition has been found 

in schizophrenia patients74, bipolar patients during manic state75, and depression patients to a 

lesser extent76. CEWAS also highlighted abnormal subventricular zone morphology for 

schizophrenia and depression, which aligns with how dysregulated neurogenesis has been 

posited as a mechanism for aberrant pattern separation and abnormal reward processing in 

schizophrenia and depression patients77. Fittingly, based on the Allen Institute data (Table S6), 

CEWAS highlighted the lateral nucleus of the amygdala for schizophrenia and bipolar disorder, 

parahippocampal gyrus, the CA4 field of the hippocampus, and basolateral nucleus of the 

amygdala for schizophrenia and depression, which aligns with the roles of these brain regions in 

emotion and reward processing as well as in startle reflex78 as used for prepulse inhibition. 

CEWAS also highlighted the dentate gyrus for schizophrenia and depression, which is the other 

main brain region, in addition to subventricular zone, where neurogenesis persists in adulthood79. 

Further, CEWAS highlighted raphe nuclei of medulla, reticular nucleus, and other thalamic 

nuclei for schizophrenia and depression. The raphe nuclei is the origin of most forebrain 

serotonin innervation, which aligns with the abnormal serotonin levels seen in psychiatric 

patients and how serotonin is used for treating psychiatric disorders80. The thalamic reticular 

nucleus (TRN) is largely composed of GABAergic neurons that express parvalbumin, and the 

reduction of these neurons in the TRN of psychiatric patients has been suggested to induce 

attentional, cognitive, and emotional deficits81. Moreover, CEWAS highlighted a CNS gene set 

related to dopaminergic neuron morphology for schizophrenia, which aligns with the dopamine 

hypothesis82, and genes found by CEWAS for depression are highly expressed in the ventral 

tegmental area, which is one of the main dopaminergic areas in the brain with projections to 

amygdala and hippocampus for emotion and reward processing as discussed, and reduced 

dopamine has been linked to depressed symptoms83.  

          

For neurodegenerative diseases, only CEWAS highlighted a CNS gene set related to abnormal 

spatial working memory for AD (Fig 5c), PD, and amyotrophic lateral sclerosis (ALS). Working 

memory deficit is a well recognized characteristic of AD84, and is also observed in PD85 and 

ALS86. Fittingly, genes found by CEWAS for AD, PD, and ALS (Table S6) are highly expressed 

in the parahippocampal gyrus, which relates to memory deficits seen in these conditions87,88. 

CEWAS also highlighted lateral medullary reticular group, cuneate nucleus, and gigantocellular 

nucleus for AD and PD, which aligns with how Lewy body accumulation in PD pathology starts 
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in the reticular zone of the medulla oblongata89 and various brainstem nuclei are implicated in 

neurodegenerative diseases90. In fact, CEWAS highlighted a CNS gene set related to abnormal 

dopaminergic neuron morphology for AD, which aligns with how hippocampal activity is 

modulated by dopaminergic signals from brainstem, and dopaminergic cell death has been 

shown to correlate with memory deficits in AD mouse model91. Further, genes found by CEWAS 

for AD are highly expressed in the middle temporal gyrus and precuneus, which belong to the 

posterior default mode network, whose connectivity is disrupted in AD92. Lastly, CEWAS 

highlighted substantia nigra pars compacta for PD, which is the signature region of PD pathology 

where dopaminergic cell death occurs, resulting in the observed motor symptoms. Also, CEWAS 

highlighted a CNS gene set related to abnormal subventricular zone morphology for PD, which 

aligns with how neurogenesis in the subventricular zone is modulated by dopamine51. 

 

Discussion 
We proposed CEWAS for integrating genotype, DNAm, and gene expression data to model the 

cascading effects of GWAS SNPs on DNAm, gene expression, and eventually phenotypes. We 

focused on this particular cascade of events since majority of GWAS SNPs lie in non-coding 

regions, hence their effects likely propagate from epigenome to transcriptome, as supported by 

previous mediation studies15,93. We built the CEWAS models using the largest brain tissue 

datasets comprising all three data types20,21. Higher detection rate was achieved by CEWAS 

compared to MetaXcan and EpiXcan, with high genomic correlation attained between well-

powered, related GWAS. Also, while high correlations in z-scores between methods were 

observed, CEWAS identified numerous genes that are distinct from MetaXcan and EpiXcan, 

though some of these genes might be detectable with other methods not compared in this work. 

Stemming from large-scale GWAS, the distinct genes found by CEWAS are likely high-value 

targets, especially given that they are enriched for biologically relevant gene sets, and 

congruently, are highly expressed in disease-relevant brain regions.  

 

Although CEWAS only captures epigenomic-mediated effects, this property could be useful for 

result interpretation. In particular, this property enables isolation of disease-relevant genes whose 

effects are regulated by a specific molecular mechanism, such as DNAm as in this study, which 

is the most widely examined molecular trait for gene regulation. As an example, YPEL3 and 

ZFYVE21 are significant for schizophrenia based on CEWAS but p>0.05 based on MetaXcan. 

CpGs selected by CEWAS include cg06985993 and cg08213375 for YPEL3 and ZFYVE21, 

respectively, whose DNAm levels are associated with schizophrenia GWAS SNPs: rs3814877 

and rs490059794. Based on data from the same study, these SNPs are not associated with 

expression, hence suggesting their effects on schizophrenia might be mediated by DNAm. This 

result is supported by another study based on summary data-based Mendelian randomization11 

that showed the effect of rs34813623 (LD = 0.84 with rs4900597) on schizophrenia is mediated 

by cg08213375 but not by expression. Though not pursued in this work, we can also isolate 

disease-relevant genes whose effects are regulated by histone acetylation, miRNA, and 

chromatin accessibility using the same approach. Hence, CEWAS could serve as a complement 

to existing methods that directly model genetic effects on gene expression in highlighting signals 

from the regulatory landscape of GWAS variants. Of note is that analogous to MetaXcan and 

other transcriptome wide association studies (TWAS), genes found by CEWAS might not be 

causal due to effects of LD between SNPs propagating to the predicted expression as well as 

shared GWAS variants across genes95. 
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CEWAS and EpiXcan might superficially appear to be similar, but the mechanisms being 

modeled and the actual information used are distinct. In CEWAS, we associate SNPs to CpGs 

and then CpGs to genes to explicitly model how certain GWAS SNPs affect gene regulation, 

which impacts gene expression and eventually the downstream phenotypes. In contrast, EpiXcan 

only weights SNPs based on epigenomic annotation during model learning. This distinction has 

two relevant implications. First, SNPs annotated to the same chromatin state are assigned the 

same sparsity weight in EpiXcan, whereas CEWAS estimates SNP-specific weights that reflect 

the association strengths between SNPs and CpGs. Second, a SNP selected by EpiXcan that 

resides on an annotated position might not necessarily be associated with epigenomic marks at or 

near that position, a property that CEWAS imposes. In fact, just using mQTL p-values as 

sparsity weights in EpiXcan, which captures the association strengths of SNPs on more distant 

CpGs, already increases detection rate over MetaXcan and EpiXcan but to a lesser extent than 

CEWAS (Fig S6). A plausible explanation for CEWAS’s higher detection rate compared to 

mQTL-weighted EpiXcan is that it enables more SNPs that are likely relevant to be modeled, 

since 543 samples are available per CpG for selecting relevant SNPs with elastic net and each 

gene is associated with 9.62 CpGs on average, whereas MetaXcan and EpiXcan have only 534 

samples per gene for SNP selection (Fig S11). 

 

Another method that is conceptually similar to CEWAS is MOSTWAS, but its focus is on 

incorporating trans genetic effects in predicting gene expression. Specifically, in addition to 

using cis SNPs, MOSTWAS uses trans SNPs associated with epigenomic mediators of each 

gene for expression model learning. Comparing the reported MOSTWAS z-scores (derived from 

models also built using ROSMAP data) against CEWAS, MetaXcan, and EpiXcan, correlations 

of 0.0691, 0.0949, and 0.1027 were found for AD2013, and correlations of 0.0159, 0.0061, and 

0.0094 were found for MDD2018. In contrast, correlations between z-scores of CEWAS and 

MetaXcan/EpiXcan were 0.70 for AD2013 and 0.74 for MDD2018. Hence, incorporating trans 

genetic effects seem to highlight very different genes. We opted to focus on cis effects due to 

their higher replicability than trans effects16. Nonetheless, CEWAS can be expanded to 

incorporate longer distance relationships by including more distal epigenomic mediators of each 

gene in the expression prediction models. The respective merits of cis vs. trans is a huge topic 

that is beyond the scope of this study, but we acknowledge the importance of this topic, which 

deserves more in-depth future investigation. 

 

Overall, we showed that CEWAS provides a simple yet effective way for integrating multi-omic 

data in estimating gene level z-scores from GWAS summary statistics. Numerous genes and 

gene sets highlighted by CEWAS point toward disease mechanisms that are promising but 

relatively less explored, e.g. mitochondria dysfunction in relation to metal ion binding and 

oxidative stress, neurogenesis impairment, and brain stem pathologies. All code and prediction 

models are made available (https://github.com/saramostafavi/CEWAS). This resource should 

prove useful for the research community to further investigate the regulatory landscape of 

GWAS variants in generating new research directions and finding new potential therapeutic 

targets for various brain-related disease and traits.  

 

Methods 
Genotype, DNA methylation, RNAseq, and GWAS data 
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For building the prediction models in CEWAS, we used genotype17, DNAm18 (Illumina 450K 

array), and RNAseq19 data from the ROSMAP study20,21. The genotype data were acquired 

from 2067 subjects. The DNAm and RNAseq data were derived from DLPFC tissue of 702 and 

698 subjects, respectively. 543 subjects have both genotype and DNAm data, 485 subjects have 

both DNAm and RNAseq data, and 534 subjects have both genotype and RNAseq data. The data 

preprocessing pipelines are as previously described15 except we used the reference panel from 

the Haplotype Reference Consortium (HRC) to impute the genotype data, and ~200 more 

subjects now have preprocessed RNAseq data available. We note that the top ten principal 

components (PC) were regressed out from the DNAm and RNAseq data as hidden confounders. 

 

For replication, we used imputed genotype and preprocessed DLPFC-derived RNAseq data 

from the CMC41 study in combination with mQTLs from another large DLPFC tissue 

sample42, since DNAm data were not collected in the CMC study. 592 subjects have both 

genotype and RNAseq data in the CMC study, and the mQTLs were generated from 526 

subjects. The DNAm data used in estimating the mQTLs were also acquired using Illumina 

450K array. 

 

For testing CEWAS, we used sixteen GWAS related to brain disease and traits22–36 (Table S1), 

namely schizophrenia (SCZ), bipolar disorder (BIP), AD, PD, ALS, depressive symptoms (DEP), 

major depressive disorder (MDD), wellbeing spectrum (wellbeing), insomnia, and intelligence 

(IQ). We refer to each GWAS by the disease/trait studied and the year at which the GWAS was 

performed, e.g. a schizophrenia GWAS performed in 2018 is referred to as SCZ2018.  

 

Cascading epigenomic analysis for GWAS 

Motivated by the observation that GWAS SNPs are enriched in enhancers and open chromatin 

regions2,96, we propose CEWAS (Fig 1a) to analyze the cascading effects of genetics from 

epigenome to transcriptome and eventually to phenome. We first build a model to extract the 

genetic component of DNAm for each CpG j: 

 

(1) Mj = ΣkϵSj wjk
cSk + εj

c, 

 

where Mj is a n×1 vector containing the DNAm levels of CpG j, Sk is a n×1 vector containing the 

dosage of SNP k, wjk
c is kth element of a lj×1 model weight vector, wj

c, to be estimated, and Sj is 

the set of lj SNPs within ±50Kb from the CpG j. Following MetaXcan9, we estimated wjk
c using 

elastic net regression by applying GLMNET38 with its default settings, i.e. 10 fold cross-

validation to set the sparsity parameter. To extract the epigenomic component of expression for 

each gene i, we modeled expression level in a similar manner: 

 

(2) Ei = ΣjϵCi wij
gMj

p + εi
g, 

 

where Ei is a n×1 vector containing the expression level of gene i from n subjects, Mj
p is a n×1 

vector containing DNAm levels of CpG j predicted using (1), and wij
g is the jth element of a mi×1 

model weight vector, wi
g, to be estimated with elastic net. Ci is the set of mi CpGs within 

±500Kb from the TSS of gene i. Note that window sizes were chosen so that SNPs selected by 

CEWAS would mostly lie within a typical 1Mb window from TSS as used in MetaXcan9 and 

EpiXcan13. Also, to estimate the R2 for each gene, we applied (1) and (2) sequentially and 
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computed the square of correlation between the predicted and measured expression levels97. 

Only genes with R2 > 0.01 were retained for analysis. 

 

Given wij
g

 and wjk
c, genetically-driven epigenomic effects at gene level can be estimated in a 

manner analogous to sequentially applying MetaXcan: 

 

(3) zi
g = ΣjϵCi wij

gσj
c/σi

g
 ∙ zj

c = ΣjϵCi wij
gσj

c/σi
g ∙ (ΣkϵSj wjk

cσk
s/σj

c
 ∙ zk

s)  

= ΣjϵCi wij
g ΣkϵSj wjk

cσk
s/σi

g
 ∙ zk

s, 

 

where zi
g is the z-score at gene level for gene i, zj

c is the z-score at CpG level for CpG j, zk
s is the 

z-score at SNP for SNP k. σi
g and σk

s are the variance of gene i and SNP k, respectively. We 

highlight that since only genetically-driven epigenomic effects are retained by (1), we must 

estimate σi
g based on the genetic component of DNAm. For this, we set σi

g to wi
gTcov(Mp)wi

g, 

where Mp is a n×mi matrix containing DNAm levels predicted using (1). As shown in the Fig 2, 

estimating σi
g with only the genetic component of DNAm is critical for zi

g to be calibrated.   

 

Gene detection and distinct signal estimation 

We applied (3) to sixteen well-powered, brain-related GWAS22–36. Genes were declared 

significant at an α of 0.05 with Bonferroni correction for the number of tested genes. Since some 

genes might have non-zero weights assigned to the same SNPs, we also estimated the number of 

distinct signals within the significant genes and within the tested genes to provide another 

estimate of detection rate (Fig S1). To estimate the number of distinct signals, we used an 

approach that combines permutation test with principal component analysis (PCA)98. 

Specifically, we first applied PCA to the predicted expression of queried genes (significant or 

tested) for each method, and recorded the percentage variance explained by each PC. We then 

permuted the predicted expression matrix along both rows and columns a thousand times to 

generate the null distribution of the percentage variance for each PC as used for estimating p-

values. PCs with p < 0.05 were declared significant.  

 

We note that due to difficulties in genotyping the MHC region, genes (defined as ±500Kb from 

TSS) that overlap with the MHC region were excluded from analysis. Also, although the 

ROSMAP subjects are of European descent, the reference allele for some SNPs could still be 

different from those of GWAS. We thus accounted for allele flips by inverting the signs of the 

GWAS z-scores, and removed all ambiguous SNPs, i.e. cases where A1 and A2 are 

complementary, e.g. A1=A, A2=T. For comparison, we applied MetaXcan with expression 

prediction models, wik
g, built using the same SNP sets as CEWAS as well as SNPs within 

±500Kb from TSS of each gene i. The former ensures the same SNPs as CEWAS are considered 

to test the effect of incorporating DNAm, while the latter follows conventions in the literature99. 

For comparison against EpiXcan, similar expression prediction models were built using elastic 

net except the sparse penalty was weighted based on epigenomic annotation of the SNPs13. Only 

genes with R2 > 0.01 were kept. 

 

z-score calibration test 

For the detected genes to be trustworthy, we need to ensure that zi
g generated by (3) is calibrated. 

In particular, applying (3) to null zk
s should output null zi

g. To test whether this criterion is met, 

special care is needed in simulating null zk
s. Specifically, in addition to requiring zk

s of each SNP 
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k to follow N(0,1), the LD structure of all SNPs involved in (3) must be accounted for. Otherwise, 

the correlations between CpGs would not be properly modeled. To satisfy these two conditions, 

for each gene i, we drew 10000 sets of zk
s from N(0,Ri), where Ri is the correlation between all 

SNPs in {Sj} for j ϵ Ci. Using correlation, as opposed to covariance, ensures the standard 

deviation of each zk
s is 1. For generating Ri, we used the ROSMAP imputed genotype data. To 

evaluate the resulting zi
g, we checked if each set of 10000 zi

g’s of each gene i follows N(0,1). In 

practice, the LD structure of GWAS genotype data might not match that of ROSMAP genotype 

data. To test the effect of LD mismatch, we further used Ri estimated from the 1000 Genome 

phase 3 genotype data (European population) to generate zk
s. 

 

Replication 
We used the CMC data41 and mQTLs from another large DLPFC tissue sample42 for replication. 

To align the allele across the CMC data, the mQTLs, and the GWAS, we matched the allele of 

all these datasets to that of the 1000 Genomes panel100. All regression coefficients, βjk
c, 

associated with each CpG j in the mQTL set were used as wj
c in (3). To estimate wi

g, we first 

multiplied βjk
c to the corresponding SNPs in the CMC data (with allele matched) to generate 

predicted DNAm levels. We then applied elastic net regression to these predicted DNAm levels 

and the CMC gene expression data to generate wi
g. σk

s was estimated using the 1000 Genomes 

data, and σi
g was estimated using the predicted DNAm levels. We applied (3) with these model 

parameters to the same sixteen GWAS22–36, and used area under the receiver operating 

characteristic curve (AUC) as the replication metric. To estimate AUC, we ranked the genes of 

each GWAS based on p-values estimated with the ROSMAP models, took the top 1% of genes 

as the reference, and computed true positive rate and false positive rate by applying a range of 

thresholds from 0 to 1 on p-values derived from the CMC models. We took the top 1% of genes 

as reference since less than a handful of genes are significant for some GWAS, which might be 

too few for robust AUC estimation. We further assessed statistical significance by estimating 

AUC on 10000 sets of permuted p-values and confirmed that chance level AUC is 0.5±0.02. For 

comparison, we evaluated the replication of MetaXcan99 and EpiXcan13 derived from ROSMAP 

vs. CMC data, with the latter being provided by the respective authors. ROSMAP models built 

with SNPs within ±500Kb from TSS were used to match the way the CMC models were built. 

We also examined the correlations between zi
g’s across related GWAS as another form of 

replication assessment. Note that well being spectrum is partly estimated based on depressive 

symptoms35, hence zi
g’s of wellbeing2019 are expected to be highly correlated with DEP2019, 

MDD2019, and MDD2018. 

 

We note that the lack of another large brain tissue dataset with genotype, DNAm, and gene 

expression data complicates replication. On the model learning side, we must first align the allele 

of the CMC genotype data and the mQTLs to the same reference for generating (predicted) 

DNAm data. This alignment process includes flipping signs of mQTLs and flipping dosage 

coding of CMC genotype data whenever allele mismatches occur, which is prone to errors 

especially for SNPs with allele frequency close to 0.5. Also, mQTLs of ambiguous SNPs need to 

be dropped, i.e. cases where A1 and A2 are complementary, e.g. A1=A, A2=T. On the z-score 

estimation side, we must align the allele of the GWAS SNPs to the same reference used for 

model learning, which is again prone to sign flip errors and variable mismatches.  

 

Gene set enrichment 
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To infer the biological processes captured by CEWAS, we examined gene set enrichment by 

adapting the contrastive analysis proposed in MAGMA70. Specifically, we used generalized least 

square to model the gene level z-scores: 

 

(4) zg = Cα + xlβl + ϵ, 

 

where zg is a q×1 vector containing the gene level z-scores, C is a q×d matrix containing d 

confounds, xl is a q×1 binary vector with 1 indicating genes that belong to gene set l, ϵ ~ N(0,Σ), 

and Σ is a q×q matrix to account for correlation between genes. We used C to account for the 

number of SNPs selected by CEWAS for each given gene (i.e. Σjk (wijwjk > 0)), and we applied 

oracle approximating shrinkage101 to the gene expression data to estimate a well-conditioned Σ 

that is closest to the unknown ground truth Σ in the least square sense. Having a well-

conditioned estimate of Σ is critical since Σ-1 is involved in the estimation of βl and se(βl). CNS 

gene sets22 as well as GO and canonical gene sets (MSigDB v7.171) having 10 to 200 genes102 

(that intersect with the tested genes of each method) were examined. Significance was declared 

at an α of 0.05 with FDR correction for the number of gene sets in the CNS set and in each 

MSigDB collection. 

 

Brain region association 

We also examined association with brain regions by applying (4) to the human brain microarray 

data from Allen Institute72. Given gene-by-region expression matrices derived from six post-

mortem brains, we first averaged the expression values corresponding to the same gene-region 

pairs for each subject. We then applied Student’s t-test to the average expression values of each 

unique gene-region pairs across subjects. The vector of t-values for each region was taken as xl 

in (4) to estimate brain region association. Only genes tested by CEWAS and available in the 

Allen Institute data were used in (4). The same analysis was performed with MetaXcan and 

EpiXcan z-scores. Significance was declared at an α of 0.05 with FDR correction for the number 

of regions. 

 

Software availability 

All results are generated using in-house MATLAB scripts. To increase portability, we have built 

a python software that interfaces with the widely-used MetaXcan software, and assembled all 

CEWAS models and parameters into the required format. The python software is available on 

our GitHub page: https://github.com/saramostafavi/CEWAS. CEWAS can be executed with a 

single command using this software and takes between 4-10 min to run for a typical GWAS 

dataset on a 4 core machine. Installation details with a sample test case are provided on the 

GitHub page.  

 

 

Accession Codes 
Genotype, RNA-seq, and DNAm data for ROSMAP samples are available from the Synapse 

AMP-AD Data Portal https://www.synapse.org/#!Synapse:syn2580853/discussion/default as 

well as RADC Research Resource Sharing Hub at www.radc.rush.edu. 
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Figure Legends 
 

Fig 1. CEWAS and gene detection. (a) For each CpG j, a DNAm prediction model is built 

using dosage levels of proximal SNPs, and for each gene i, a gene expression prediction model is 

built using predicted DNAm levels of proximal CpGs. Elastic net is used for model learning, 

where solid and dotted lines pictorially indicate non-zero and zero weights for the corresponding 

variable pairs. These models are applied in cascade to GWAS summary statistics to estimate 

gene level z-scores. (b) Bars show the detection rate (defined as the percentage of tested genes 

declared significant) for the examined GWAS. (c) Bars show the log p-value of enrichment of 

mQTLs and eQTLs assessed by LDSC for each GWAS. The baseline SNP sets in LDSC 

corresponding to various regulatory attributes are included as background. (d) Difference in 

mQTL vs. eQTL log p enrichment (from Fig 1c) plotted against difference in detection rate 

between CEWAS and a contrasted method (color of the points indicate which method is being 

contrasted with CEWAS). The size of a point is proportional to the polygenecity of the 

corresponding GWAS (approximated by the ratio of the number of reported GWAS loci over the 

sample size). As shown, enrichment for mQTLs over eQTLs significantly correlates with 

improvement in detection achieved by CEWAS over contrasted methods (p<0.05). 

 

Fig 2. Calibration test. (a) Testing CEWAS requires modeling the LD structure of SNPs when 

generating null input zk
s. Shown are probability density functions of zi

g for an exemplar gene 
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derived from 10000 sets of null zk
s under different input settings. Red curve: zk

s generated from 

N(0,1). Yellow curve: zk
s generated with LD of only SNPs proximal to each CpG modeled. For 

both input settings, zi
g are underestimated, i.e. not matching the blue curve corresponding to 

N(0,1). (b) By modeling LD of all SNPs proximal to CpGs of a given gene when generating null 

zk
s and using CpG covariance based on predicted DNAm levels when estimating zi

g, the resulting 

zi
g (yellow curve) are calibrated (i.e. matching blue curve), whereas using CpG covariance based 

on measured DNAm levels to estimate zi
g resulted in z-score inflation (red curve). In practice, 

the LD structure of GWAS genotype data might not match the SNP covariance of the CEWAS 

models. To test the effect of LD mismatch, we further used the LD structure estimated from the 

1000 Genome phase 3 genotype data (European population) to generate zk
s. The resulting zi

g are 

well calibrated for this exemplar gene (purple curve). (c) Standard deviation of 10000 zi
g’s for 

each gene i shown across all genes. A: zi
g drawn from N(0,1). B: input zk

s drawn from N(0,1). C: 

zk
s with LD of SNPs proximal to each CpG modeled. D and E: zk

s with LD of all SNPs modeled 

and using CpG covariance based on measured and predicted DNAm levels, respectively, when 

estimating zi
g. Standard deviation of zi

g in E is ~1 for all genes, confirming that CEWAS 

produces calibrated zi
g when LD of zk

s is matched to CEWAS’s model covariance. F and G: zk
s 

with LD estimated from 1000 Genome data, and zi
g estimated by CEWAS and MetaXcan, 

respectively. Standard deviation of CEWAS zi
g are close to or less than 1 for majority of genes 

except for some outliers, and the number of outlier genes is similar to MetaXcan. 

 

Fig 3. Genomic correlation across GWAS. (a) Correlation between CEWAS-derived z-scores 

for all GWAS pairs shown (values clipped at 0.1 to highlight higher correlation). (b) Correlations 

between gene level z-scores for GWAS pairs of the same phenotype displayed. Note that 

wellbeing spectrum is partly based on depressive symptoms, hence wellbeing2019 is expected to 

be highly correlated with DEP2019, MDD2019, and MDD2018. (c) Dissecting results in panel b, 

log ratio between sample size of GWAS pairs is plotted against differences in genomic 

correlation between CEWAS vs. a contrasted method. The size of a dot corresponds to the 

correlation between CEWAS z-scores of a GWAS pair. Two trends were observed: i. higher 

correlations between GWAS pairs with similar sample size (dots closer to 0 on x-axis are larger), 

ii. CEWAS typically yields higher genomic correlation than the contrasted methods (most dots 

above 0 on y-axis). (d) CEWAS z-scores of schizophrenia vs. bipolar disorder, schizophrenia vs. 

depression, and AD vs. PD shown as scatterplots. Genes detected across schizophrenia, bipolar 

disorder, and depression highlighted in bold. Although AD and PD show little genomic 

correlation, a few shared genes were found. 

 

Fig 4. Method similarity and differential genes. (a) For each GWAS, correlation between z-

scores estimated by the contrasted methods are shown. EpiXcan and MetaXcan tend to produce 

highly correlated z-scores. CEWAS z-scores are slightly more correlated with EpiXcan than with 

MetaXcan. (b) The darker shaded bars show the number of significant genes that were 

exclusively found by each method. The lighter shaded bars show the total number of significant 

genes found by each method. Only genes tested in all three methods were considered in 

computing the number of genes exclusively found by one method but not the other two. The 

number of genes exclusively found by CEWAS outnumbered MetaXcan and EpiXcan. (c) z-

scores estimated by CEWAS vs. EpiXcan for SCZ2018 and BIP2019 displayed. Genes related to 

mitochondria dysfunction and oxidative stress exclusively detected by CEWAS but missed with 

MetaXcan and EpiXcan annotated. 
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Fig 5. Gene set enrichment. (a) Top CNS gene sets enriched for schizophrenia, bipolar disorder, 

and depression as found by CEWAS displayed against genes belonging to at least one of these 

enriched gene sets and have CEWAS p<0.05 in at least one of the three psychiatric disorders. 

The color reflects the level of association between a given gene and a disorder. For each gene set, 

only genes belonging to that gene set have their –log10(p) displayed, with the rest of the genes 

masked to zero. (b) Top 25 CNS gene sets enriched for schizophrenia as found by CEWAS 

displayed. The binary representation of the gene sets are projected onto 2D space using UMAP, 

and the colors indicate the level of gene set enrichment. (c) Top 25 CNS gene sets enriched for 

AD as found by CEWAS displayed in 2D UMAP space. 
 

 

Supplementary Tables 

 
Table S1. Sixteen brain-related GWAS analyzed 

 

Table S2. GWAS and detection summary 

 

Table S3. Replication AUC 

 

Table S4. Gene detection statistics 

 

Table S5. Gene set enrichment 

 

Table S6. Brain region enrichment 

 

 

Supplementary Figure Legends 

 
Fig S1. Detection rate based on distinct signals. Ratio of the number of significant PCs 

extracted from the significant genes over the number of significant PCs extracted from the tested 

genes displayed. The number of significant PCs was used as an estimate of the number of 

distinct signals within a set of genes (see Methods). This analysis accounts for how some SNPs 

are shared between models of spatially proximal genes. The overall trend of CEWAS attaining 

higher detection rate than MetaXcan and EpiXcan remains with this analysis. 

 
Fig S2. R2 of gene models. (a) R2 estimated by correlating the predicted and measured 

expression levels in ROSMAP. CEWAS attained lower R2 as expected, since CEWAS is 

designed to extract a specific component of gene expression, namely the epigenomic component 

that is driven by genetic effects. In contrast, MetaXcan and EpiXcan are optimized for predicting 

gene expression. (b) R2 estimated by applying ROSMAP models to CMC genotype data and 

correlating the predicted expression levels with that measured in CMC. R2 appears similar across 

methods, but CEWAS actually attained slightly lower R2 if we zoom into the results (see Fig S3). 

 
Fig S3. Correlation between predicted and measured expression levels on CMC data. 
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Models trained with ROSMAP data were applied to CMC genotype data to predict gene 

expression. Correlation attained by CEWAS is slightly lower than MetaXcan and EpiXcan. 

 
Fig S4. Stability analysis of partitioned heritability. Bars show the log p-value of enrichment 

of mQTLs and eQTLs assessed by LDSC for each GWAS. (a) The enrichment for mQTLs 

remains higher than for eQTLs with the window size of eQTLs matched to that of mQTLs 

(p=0.0084, Wilcoxon sign rank test across GWAS). (b) The same trend holds but to a lesser 

extent when we matched the number of mQTL SNPs to the number of eQTL SNPs by taking 

mQTL SNPs that are closer to CpGs (p=0.1122, Wilcoxon sign rank test across GWAS; 

p=0.0269, paired t-test).  

 
Fig S5. Replication of mQTLs vs. eQTLs. Using mQTLs in Jaffe et al.35 as the reference, we 

first found the top mQTL SNP for each CpG, and ordered the resulting top mQTLs based on p-

values. Taking q% of the top mQTLs as “ground truth”, q = 5% to 50%, we computed AUC on 

mQTL p-values derived from the ROSMAP data. Since mQTLs from Jaffe et al. were estimated 

with a 20Kb window, we restricted the ROSMAP mQTLs to those within the same window. The 

same procedure was applied to estimate AUC for eQTLs, with eQTLs from CMC as the 

reference. Since eQTLs from CMC were estimated with a 1Mb window, we first examined 

ROSMAP eQTLs within a 1Mb window, but also examined CMC and ROSMAP eQTLs 

restricted to the same window size as the mQTLs, i.e. 20Kb. To estimate the null, we permuted 

the top eQTLs/mQTLs and repeated the procedure. 

 
Fig S6. Gene detection rate with DNAm mediated effects on GWAS phenotypes. We 

assessed DNAm mediated effects on GWAS phenotypes in four ways. First, we examined results 

from models used in the first stage of CEWAS, i.e. MetaXcan models built with each CpG taken 

as the response and SNPs within ±50Kb from that CpG as predictors. Detection rate of these 

DNAm MetaXcan models, defined as the number of significant CpGs among tested CpGs, is 

significantly lower than CEWAS (p=0.0004), MetaXcan (p=0.0013), and EpiXcan (p=0.0006) 

based on Wilcoxon sign rank test across GWAS. Second, we assessed CpG-to-gene mapping that 

does not use expression data, by taking the DNAm MetaXcan p-value of the closest CpG of each 

gene as the p-value of that gene. The gene level detection rate is significantly lower than 

CEWAS (p=0.0004), MetaXcan (p=0.0003), and EpiXcan (p=0.0004). Third, we took the 

DNAm MetaXcan p-value of the CpG with the largest R2 in terms of DNAm prediction among 

CpGs within ±500Kb from each gene as the p-value of that gene. The detection rate is lower than 

CEWAS (p=0.1331) and EpiXcan (p=0.3808), and higher than MetaXcan (p=0.4235). Fourth, to 

contrast using epigenomic annotation against explicitly modeling associations between SNPs and 

CpGs, we modified EpiXcan by weighting the sparse penalty using mQTL p-values. We first 

associated each CpG to SNPs that are within ±50Kb. We then found the smallest p-value, pk, 

across CpGs for each SNP k, and used 1010pk+0.5 (capped at 1) as the weight for its sparse 

penalty. Multiplying by 1010 accounts for the number of SNP-CpG pairs tested, and +0.5 

penalizes SNPs with the strongest mQTL effects by half the amount as SNPs with weak/no 

mQTL effects. The detection rate of mQTL-weighted EpiXcan is significantly higher than both 

MetaXcan (p=0.00006) and EpiXcan (p=0.00006), and lower than CEWAS on average 

(p=0.3881). 
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Fig S7. Genomic correlation between schizophrenia and IQ. Gene level z-scores estimated by 

CEWAS for schizophrenia vs. IQ displayed. A genomic correlation of -0.15 was observed. The 

genes that were detected by CEWAS across schizophrenia, bipolar disorder, depression, and IQ 

are highlighted in bold. Observing opposite signs in z-scores for the highlighted genes matches 

how risk alleles in these loci were shown to correlate with lower cognitive test scores37. 

 
Fig S8. Number of distinct signals among differential genes. Number of distinct signals (i.e. 

number of significant PCs, see Methods) among differential genes (darker shade) and significant 

genes (lighter shade) detected by each method. Only genes tested in all three methods were 

considered in extracting differential genes exclusively found by one method but not the other two. 

The overall trend of CEWAS finding more distinct signals than MetaXcan and EpiXcan remains. 

 

Fig S9. Comparison with spatially mapping GWAS SNPs. (a) The distance between TSS of 

differential genes exclusively found by CEWAS and their closest GWAS hits summarized. Each 

bar corresponds to the percentage of differential genes lying in a range of distance, e.g. a bar 

between 100 and 1000 corresponds to the percentage of differential genes with distance between 

100 and 1000 base pairs. More than half of the differential genes are >100Kb away from any 

GWAS hits. (b) The percentage of differential genes exclusively found by CEWAS but missed 

by spatially mapping GWAS SNPs to their closest genes shown. Note that no differential genes 

were found for ALS2018, hence why the percentage is zero. 

 
Fig S10. Correlation of gene set enrichment scores between CEWAS and contrasted 

methods. The average correlation over GWAS for each gene set category displayed. The 

observed correlation suggests moderate similarity in enriched gene sets between CEWAS and the 

contrasted methods, which we confirmed by manual inspection. 

 
Fig S11. Number of selected SNPs. (a) Number of SNPs selected per CpG by elastic net. (b) 

Number of SNP selected per gene by elastic net. CEWAS tends to have more SNPs selected 

since 543 samples are available per CpG for selecting relevant SNPs with elastic net and each 

gene is associated with 9.62 CpGs on average, whereas MetaXcan and EpiXcan have only 534 

samples per gene for SNP selection. 
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(a)

(b)

Figure 1

Figure 1. CEWAS and gene detection. (a) For each CpG j, a DNAm prediction model is built using dosage

levels of proximal SNPs, and for each gene i, a gene expression prediction model is built using predicted DNAm

levels of proximal CpGs. Elastic net is used for model learning, where solid and dotted lines pictorially indicate

non-zero and zero weights for the corresponding variable pairs. These models are applied in cascade to GWAS

summary statistics to estimate gene level z-scores. (b) Bars show the detection rate (defined as the percentage of

tested genes declared significant) for the examined GWAS. (c) Bars show the log p-value of enrichment of

mQTLs and eQTLs assessed by LDSC for each GWAS. The baseline SNP sets in LDSC corresponding to various

regulatory attributes are included as background. (d) Difference in mQTL vs. eQTL log p enrichment (from Figure

1c) plotted against difference in detection rate between CEWAS and a contrasted method (color of the points

indicate which method is being contrasted with CEWAS). The size of a point is proportional to the polygenecity of

the corresponding GWAS (approximated by the ratio of the number of reported GWAS loci over the sample size).

As shown, enrichment for mQTLs over eQTLs significantly correlates with improvement in detection achieved by

CEWAS over contrasted methods (p<0.05).

(c) (d)
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Figure 2

Figure 2. Calibration test. (a) Testing CEWAS requires modeling the LD structure of SNPs when

generating null input zk
s. Shown are probability density functions of zi

g for an exemplar gene derived

from 10000 sets of null zk
s under different input settings. Red curve: zk

s generated from N(0,1).

Yellow curve: zk
s generated with LD of only SNPs proximal to each CpG modeled. For both input

settings, zi
g are underestimated, i.e. not matching the blue curve corresponding to N(0,1). (b) By

modeling LD of all SNPs proximal to CpGs of a given gene when generating null zk
s and using CpG

covariance based on predicted DNAm levels when estimating zi
g, the resulting zi

g (yellow curve) are

calibrated (i.e. matching blue curve), whereas using CpG covariance based on measured DNAm

levels to estimate zi
g resulted in z-score inflation (red curve). In practice, the LD structure of GWAS

genotype data might not match the SNP covariance of the CEWAS models. To test the effect of LD

mismatch, we further used the LD structure estimated from the 1000 Genome phase 3 genotype data

(European population) to generate zk
s. The resulting zi

g are well calibrated for this exemplar gene

(purple curve). (c) Standard deviation of 10000 zi
g’s for each gene i shown across all genes. A: zi

g

drawn from N(0,1). B: input zk
s drawn from N(0,1). C: zk

s with LD of SNPs proximal to each CpG

modeled. D and E: zk
s with LD of all SNPs modeled and using CpG covariance based on measured

and predicted DNAm levels, respectively, when estimating zi
g. Standard deviation of zi

g in E is ~1 for

all genes, confirming that CEWAS produces calibrated zi
g when LD of zk

s is matched to CEWAS’s

model covariance. F and G: zk
s with LD estimated from 1000 Genome data, and zi

g estimated by

CEWAS and MetaXcan, respectively. Standard deviation of CEWAS zi
g are close to or less than 1 for

majority of genes except for some outliers, and the number of outlier genes is similar to MetaXcan.

(b)(a) (c)
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Figure 3

Figure 3. Genomic correlation across GWAS. (a) Correlation between CEWAS-derived z-scores for all GWAS

pairs shown (values clipped at 0.1 to highlight higher correlation). (b) Correlations between gene level z-scores for

GWAS pairs of the same phenotype displayed. Note that wellbeing spectrum is partly based on depressive

symptoms, hence wellbeing2019 is expected to be highly correlated with DEP2019, MDD2019, and MDD2018.

(c) Dissecting results in panel b, log ratio between sample size of GWAS pairs is plotted against differences in

genomic correlation between CEWAS vs. a contrasted method. The size of a dot corresponds to the correlation

between CEWAS z-scores of a GWAS pair. Two trends were observed: i. higher correlations between GWAS

pairs with similar sample size (dots closer to 0 on x-axis are larger), ii. CEWAS typically yields higher genomic

correlation than the contrasted methods (most dots above 0 on y-axis). (d) CEWAS z-scores of schizophrenia vs.

bipolar disorder, schizophrenia vs. depression, and AD vs. PD shown as scatterplots. Genes detected across

schizophrenia, bipolar disorder, and depression highlighted in bold. Although AD and PD show little genomic

correlation, a few shared genes were found.

(a) (b)

(c)

(d)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2021. ; https://doi.org/10.1101/859512doi: bioRxiv preprint 

https://doi.org/10.1101/859512
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4

Figure 4. Method similarity and differential genes. (a) For each GWAS, correlation between z-scores

estimated by the contrasted methods are shown. EpiXcan and MetaXcan tend to produce highly correlated

z-scores. CEWAS z-scores are slightly more correlated with EpiXcan than with MetaXcan. (b) The darker

shaded bars show the number of significant genes that were exclusively found by each method. The lighter

shaded bars show the total number of significant genes found by each method. Only genes tested in all

three methods were considered in computing the number of genes exclusively found by one method but not

the other two. The number of genes exclusively found by CEWAS outnumbered MetaXcan and EpiXcan.

(c) z-scores estimated by CEWAS vs. EpiXcan for SCZ2018 and BIP2019 displayed. Genes related to

mitochondria dysfunction and oxidative stress exclusively detected by CEWAS but missed with MetaXcan

and EpiXcan annotated.

(a) (c)

(b)
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Figure 5

Figure 5. Gene set enrichment. (a) Top CNS gene sets enriched for schizophrenia, bipolar

disorder, and depression as found by CEWAS displayed against genes belonging to at least one of

these enriched gene sets and have CEWAS p<0.05 in at least one of the three psychiatric

disorders. The color reflects the level of association between a given gene and a disorder. For each

gene set, only genes belonging to that gene set have their –log10(p) displayed, with the rest of the

genes masked to zero. (b) Top 25 CNS gene sets enriched for schizophrenia as found by CEWAS

displayed. The binary representation of the gene sets are projected onto 2D space using UMAP,

and the colors indicate the level of gene set enrichment. (c) Top 25 CNS gene sets enriched for

AD as found by CEWAS displayed in 2D UMAP space.

(a)

(b) (c)
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