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ABSTRACT 38 

 39 

Human monoclonal antibody (mAb) treatments are promising for COVID-19 prevention, post-40 

exposure prophylaxis, or therapy. However, the titer of neutralizing antibodies required for 41 

protection against SARS-CoV-2 infection remains poorly characterized. We previously 42 

described two potently neutralizing mAbs COV2-2130 and COV2-2381 targeting non-43 

overlapping epitopes on the receptor-binding domain of SARS-CoV-2 spike protein. Here, we 44 

engineered the Fc-region of these mAbs with mutations to extend their persistence in humans 45 

and reduce interactions with Fc gamma receptors. Passive transfer of individual or combinations 46 

of the two antibodies (designated ADM03820) given prophylactically by intravenous or 47 

intramuscular route conferred virological protection in a non-human primate (NHP) model of 48 

SARS-CoV-2 infection, and ADM03820 potently neutralized SARS-CoV-2 variants of concern 49 

in vitro. We defined 6,000 as a protective serum neutralizing antibody titer in NHPs against 50 

infection for passively transferred human mAbs that acted by direct viral neutralization, which 51 

corresponded to a concentration of 20 μg/mL of circulating mAb.  52 

  53 
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INTRODUCTION 54 

In the past decades, two pathogenic human coronaviruses, severe acute respiratory syndrome 55 

(SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV), have been reported to 56 

cause severe respiratory tract disease associated with high morbidity and mortality. In December 57 

2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, 58 

Hubei province, China (Wang et al., 2020). SARS-CoV-2 is the causative agent of the current 59 

worldwide COVID-19 outbreak. The pandemic caused by COVID-19 has made the development 60 

of countermeasures an urgent global priority (Chan et al., 2020; Chen et al., 2020a; Li et al., 61 

2020; Wu et al., 2020a; Zhou et al., 2020). Safe and effective vaccines and therapeutics are 62 

essential to combat this global pandemic. 63 

 64 

Initial work identified that SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) 65 

protein from bats, civet cats, swine, non-human primates, or humans as an attachment and entry 66 

receptor (Letko et al., 2020; Wan et al., 2020; Zhou et al., 2020). As with related coronaviruses, 67 

interaction with ACE2 is mediated principally through the viral spike (S) protein. Hence, S on 68 

the surface of the virion is the main target for neutralizing antibodies on these coronaviruses. 69 

This homotrimeric glycoprotein is anchored in the viral membrane and consists of two subunits, 70 

S1, containing the N-terminal domain (NTD) and host cell receptor binding domain (RBD), and 71 

S2, which contains the fusion peptide (Walls et al., 2020; Wrapp et al., 2020). The S protein 72 

RBD directly interacts with the peptidase domain of ACE2 (Letko et al., 2020; Wan et al., 2020; 73 

Wrapp et al., 2020; Zhou et al., 2020). Recent studies of the S protein structure have shown that 74 

the protein exists in different conformations (Cai et al., 2020; Walls et al., 2020). Initially, the 75 

RBD switches from a closed conformation to an open conformation to allow hACE2 interaction. 76 
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Upon interaction with the hACE2 receptor and TMPRSS2 priming, S2 undergoes a dramatic 77 

conformational change to trigger host membrane fusion (Fan et al., 2020).  78 

 79 

The RBD is the primary target of most potently neutralizing anti-SARS-CoV-2 antibodies 80 

identified to date (Cao et al., 2020; Ju et al., 2020; Pinto et al., 2020; Rogers et al., 2020; Shi et 81 

al., 2020; Wu et al., 2020b; Zost et al., 2020a). The RBD is also the main antigenic site for 82 

neutralizing antibody responses in current and experimental COVID-19 vaccines (Chen et al., 83 

2020b; Mulligan et al., 2020; Zang et al., 2020). Previous studies established a non-human 84 

primate (NHP) model for SARS-COV-2 infection (Chandrashekar et al., 2020; Yu et al., 2020) 85 

demonstrating protection from viral infection by transfer of a high-dose of ACE2-blocking 86 

monoclonal antibodies (Zost et al., 2020a). Currently available antibody therapeutics that have 87 

received EUA from the FDA were approved for post-exposure treatment, not for pre-exposure 88 

prophylaxis (FDA, 2020, 2021a, b). Prophylaxis with passive antibody therapy could be 89 

important as an option for individuals at high risk of disease from SARS-CoV-2 infection who 90 

cannot be adequately vaccinated, including immunocompromised individuals or others who 91 

respond poorly to vaccination (AstraZeneca, 2021; Loo et al., 2021).  92 

 93 

Here, we evaluated the prophylactic efficacy of low or moderate doses of two different human 94 

mAbs targeting non-overlapping neutralization epitopes in the RBD domain (Zost et al., 2020a; 95 

Zost et al., 2020b), which we assessed individually or in combination. It has been previously 96 

shown that antibody cocktails can limit the risk of viral mutations that escape antibody 97 

neutralization more efficiently than monotherapy (Baum et al., 2020b; Chen et al., 2021b; 98 

Greaney et al., 2021). The antibody COV2-2381 binds directly to the receptor-binding motif on 99 
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the RBD on an S protomer in the open position. In contrast, the antibody COV2-2130 binds a 100 

non-overlapping site on the RBD that is accessible in either the open or closed S protomer 101 

conformation. We engineered the Fc portion of these antibodies to contain mutations that extend 102 

half-life (M252Y/S254T/T256E, designated YTE) (Richards et al., 1999; Uppal et al., 2015; 103 

Wang et al., 2015) and also to reduce Fcγ receptor binding (L234A/L235A, designated LALA) 104 

(Lund et al., 1991; Wines et al., 2000; Xu et al., 2000). One conceptual advantage of this 105 

approach is that the use of these antibodies lacking Fc-mediated effects allowed us to assess the 106 

level of serum neutralizing activity needed in vivo to achieve efficacy in the absence of 107 

confounding variables. The resulting recombinant mAbs were designated mAb COV2-2130-108 

YTE-LALA and mAb COV2-2381-YTE-LALA, and a two-mAb cocktail that is a 1:1 mixture of 109 

the two was designated ADM03820. The results demonstrate that ADM03820 protects against 110 

challenge with SARS-CoV-2 in the lungs and nasopharynx in a dose-dependent manner, and 111 

define titers of passively-transferred neutralizing antibodies that are necessary for protection in 112 

NHPs. In addition, our results support the use of antibody cocktail that could be administered by 113 

either intravenous or intramuscular route and that neutralizes SARS-CoV-2 variants of concern. 114 

This work provides evidence for developing a cocktail of antibodies as prophylaxis against 115 

SARS-CoV-2 in high-risk individuals. 116 

 117 

RESULTS 118 

 119 

ADM03820 antibody cocktail is detected at primary sites of SARS-CoV-2 infection in NHPs 120 

when administered by IV or IM routes (Study 1). In this study, we used a rhesus macaque 121 

SARS-CoV-2 challenge model for pre-clinical development studies of a prophylactic cocktail 122 
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ADM03820 comprising two engineered mAbs, COV2-2130-YTE-LALA and COV2-2381-YTE-123 

LALA. We first assessed the human antibody concentration in serum and at primary sites of 124 

infection (e.g., upper and lower respiratory tract mucosa) after 11.7 mg/kg intramuscular (IM) or 125 

31.3 mg/kg intravenous (IV) administration of ADM03820 in rhesus monkeys (Figure 1A). 126 

Circulating human mAbs were detected at high levels in serum on day 0 after administration 127 

(median 193 μg/mL after IM or 520 μg/mL after IV administration) and persisted in serum for 128 

>80 days, exhibiting a slow and gradual decline. The median human IgG serum concentration 129 

was 9 μg/mL on day 84 after IM or 26 μg/mL after IV administration (Figure 1B). Notably, 130 

ADM03820 antibodies also were detected in respiratory tract secretions, including 131 

bronchoalveolar lavage (BAL) and nasopharyngeal (NP) swabs up to 60 days after 132 

administration and at concentrations ranging from 10 ng/mL (the assay limit of detection) to 270 133 

ng/mL (Figure 1C,D). The concentration of human antibodies in these secretions in vivo prior to 134 

collection is expected to be higher, given that specimen collection from the mucosa sites with 135 

saline washes resulted in antibody dilution.  136 

 137 

ADM03820 antibody cocktail potently neutralizes variants of concern. ADM03820 exhibited 138 

broad and potent neutralizing activity in vitro with half-maximal inhibitory concentration values 139 

<25 ng/mL, including potent neutralization of viruses representing wild-type SARS-CoV-2 140 

WA1/2020 with or without D614G mutation, authentic B.1.1.7 virus, authentic B.1.617.2 virus, 141 

and chimeric Wash-B.1.351 and Wash-B.1.1.28 viruses, which contain an S gene from B.1.351 142 

or B.1.1.28, respectively, in the backbone of WA1/2020 (Chen et al., 2021a) (Table 1). 143 

Collectively, these results showed prolonged persistence of administered human antibodies in 144 
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serum and respiratory mucosa at concentrations sufficient for neutralization of currently 145 

circulating viral variants.    146 

 147 

Protective efficacy of ADM03820 in nonhuman primates (Study 2). To evaluate the 148 

protective efficacy of ADM03820, animals received various doses of the ADM03820 by either 149 

IM or IV route followed by a viral challenge with 105 tissue culture infectious dose (TCID50) 3 150 

days later (Figure 2A). We then measured the circulating human antibody concentration in 151 

serum and serum neutralizing titers up to day 14 following IM or IV administration. While 152 

antibody concentration was below the limit of detection in the sham-treated group, animals in the 153 

antibody-treatment groups exhibited mAb levels proportional to the dose and route of 154 

administration of the combination product (Figure 2B). The antibody concentration in serum 155 

peaked approximately three days post-administration and remained constant throughout the 156 

remaining 14 days of the study.  157 

 158 

We observed high circulating neutralizing antibody titers by pseudovirus neutralization assays in 159 

all ADM03820 treatment groups but not in the sham-treated control group. However, sham-160 

treated control animals developed low-level neutralizing titers beginning around day 6, 161 

presumably due to the induction of natural host immunity (Figure 2C). In general, the overall 162 

neutralizing antibody titers were consistent with the pharmacokinetic data for the same treatment 163 

groups.  164 

 165 

We assessed the kinetics of viral loads up to day 14 following viral challenge in BAL and NP 166 

swab samples by determining the levels of SARS-CoV-2 sub-genomic RNA (sgRNA), which 167 
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distinguishes replicating virus from input challenge virus, using reverse-transcriptase-polymerase 168 

chain reaction (RT-PCR) (Chandrashekar et al., 2020; Wolfel et al., 2020; Yu et al., 2020). High 169 

levels of sgRNA were observed in the sham controls (Figure 2D-E) with a median peak of 5.0 170 

(range = 3.3 to 5.4) log10 sgRNA copies/mL in BAL fluid and 6.9 (range = 4.9 to 7.3) log10 171 

copies per swab of sgRNA in NP. As expected, peak viral loads occurred between days 1 to 4 172 

after challenge. All treatment groups showed nearly full protection from viral replication in the 173 

BAL fluid, although individual animals displayed low-level, transient viral replication on day 1, 174 

which was eliminated by day 2 (Figure 2D). Although somewhat higher sgRNA levels were 175 

observed in some animals in the NP swabs on day 1, similar to BAL fluid, most treated animals 176 

quickly eliminated detectable virus by day 2 (Figure 2E), with the exception of one animal in 177 

the group receiving the lowest dose (3.9 mg/kg IM) and one animal in the group receiving 11.7 178 

mg/kg dose.  179 

 180 

Protective efficacy of individual mAbs of the cocktail in nonhuman primates (Study 3). The 181 

next challenge study was conducted after prophylactic administration of the individual 2130-182 

YTE-LALA or 2381-YTE-LALA antibodies and was followed by quantitative serum antibody 183 

levels and virologic protection measurements as in the challenge study above (Figure 3A). As 184 

expected, the concentration of circulating human antibodies was below the level of detection in 185 

the sham-treated group. In contrast, animals that received either mAb demonstrated 186 

concentrations in serum proportional to the administered dose (Figure 3B). Peak antibody 187 

concentration was observed within three days of administration and remained constant 188 

throughout the study. Serum neutralizing titers of administered individual mAbs showed similar 189 

peak and kinetics to those seen with the ADM03820 cocktail (Figure 3C). Sham-treated animals 190 
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showed low levels of neutralizing antibody activity by day six due to the host immune response 191 

to SARS-CoV-2 infection (Figure 3C). 192 

 193 

As evidenced by sgRNA levels, viral infection again was observed in all the sham-treated control 194 

animals in both BAL fluid and NP samples (Figure 3D,E). For both treatment mAbs, most 195 

animals quickly cleared virus by day two post-challenge after transient viral replication 196 

regardless of dose or route of administration, except for one animal in the 1.95 mg/mL 2381-197 

YTE/LALA IM group (Figure 3D).  198 

 199 

Similar levels of viral protection were observed in NP samples with the 15.65 mg/mL dose of 200 

either individual antibody (Figure 3E) as was observed with similarly high tested doses of the 201 

ADM03820 cocktail (Figure 2E). However, higher median viral loads were observed in the NP 202 

samples for both antibody treatments at the low dose of 1.95 mg/mL. This dose is two-fold lower 203 

than the lowest dose tested for the cocktail and likely represents viral breakthrough due to 204 

insufficient neutralizing antibody levels. 205 

 206 

Protective efficacy of ADM03820 that administered by IM route at low doses (Study 4). To 207 

determine the minimally protective dose of the ADM03820 cocktail, animals were treated with 208 

two-fold decreasing doses of the antibody cocktail across four treatment groups from 3.91 mg/kg 209 

to 0.49 mg/kg by the IM route (Figure 4A). Circulating human antibody titers were not present 210 

in sham-treated animals and were consistent with the administered dose in the treatment groups 211 

(Figure 4B). The serum neutralizing antibody titer decrease was proportional to the administered 212 

ADM03820 dose and was observed across all four treatment groups but not observed in sham 213 
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group animals (Figure 4C). BAL fluid viral load measurement suggested protection in the lower 214 

airways at all tested antibody doses, including at the 0.49 mg/kg dose (Figure 4D). However, 215 

increases in NP swab viral loads were seen across decreasing dose conditions, with no protection 216 

observed in the 0.98 mg/mL or 0.49 mg/mL groups (Figure 4E). These results suggested that a 217 

higher antibody dose would be necessary to control viral replication in the upper airways 218 

following IM administration.   219 

 220 

Defining protective serum antibody concentration and neutralizing antibody titer in NHP 221 

SARS-CoV-2 challenge model. We next estimated a protective threshold for prophylaxis with 222 

potent YTE-LALA Fc-region engineered human Abs that acted principally via direct virus 223 

neutralization in vivo. We performed an overall analysis using data from challenge studies 2, 3 224 

and 4 above by comparing human mAb concentration in serum or half-maximal neutralizing titer 225 

values at the time of challenge to the time-weighted average values for the change of sgRNA 226 

viral load in BAL fluid or NP swabs from day 1 to day 10 after viral challenge (see Methods and 227 

Table S1-2). A threshold for virological protection in BAL fluid and NP was estimated to be 228 

equal or higher than 20 μg/mL for circulating human antibody concentration and equal to or 229 

higher than 6,000 for serum neutralizing antibody titer (NT50) (Figure 5A-D). Antibody levels 230 

above these thresholds conferred full protection in 83% to 93% of challenged NHP, which 231 

contrasted with 17% to 50% fully protected animals with antibody levels below these estimated 232 

protective thresholds (Figure 5E). Overall, our results suggested that high prophylaxis efficacy 233 

can be achieved with the cocktail of two YTE-LALA Fc-region engineered human Abs 234 

formulated as a cocktail ADM03820 and demonstrated the potential for IM delivery of human 235 

antibody-based therapeutics for COVID-19.        236 
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 237 

DISCUSSION 238 

These studies provide insights into both quantitative and qualitative aspects of the use of human 239 

mAbs as medical countermeasures for COVID-19.  First, we demonstrate the principle that 240 

prophylaxis against infection in NHPs can be achieved using neutralizing antibodies engineered 241 

to lack Fc-mediated functions. These data extend previous findings that demonstrated 242 

prophylaxis efficacy for neutralizing mAbs with intact Fc-mediated functions in NHPs (Baum et 243 

al., 2020a; Jones et al., 2021; Zost et al., 2020a; Winkler et al., 2021). Second, the data show 244 

excellent protection by antibodies acting only by direct neutralization of virus and define the 245 

protective level of serum neutralizing activity in the absence of confounding variables of Fc-246 

mediated effects. A threshold for virological protection in BAL fluid and NP secretions was 247 

estimated to be equal to or higher than 6,000 for serum neutralizing antibody titer (NT50), since 248 

antibody levels above these thresholds conferred full protection in 83% to 93% of challenged 249 

NHPs. This quantitative determination of a neutralizing titer as a direct mechanistic correlate of 250 

protection has implications for estimating the durability of protection conferred by passive 251 

immunization with antibodies (Loo et al., 2021) or active immunization with vaccines. The 252 

failure to achieve serum neutralizing titers above this threshold likely explains the lack of limited 253 

efficacy observed in most clinical trials of COVID-19 convalescent plasma (Begin et al., 2021; 254 

Bradfute et al., 2020; Janiaud et al., 2021). Also, this quantitative threshold for correlate of 255 

protection sheds light on the somewhat limited magnitude and durability of the humoral 256 

immunity component of protection following natural infection or immunization. Third, the 257 

studies also support a public health strategy of prophylaxis of high-risk individuals who cannot 258 

be adequately vaccinated by using administration of neutralizing mAbs instead. Engineering of 259 
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the Fc region with YTE mutations to accomplish long-half extends the prophylactic efficacy of 260 

the antibodies, predicted to last for at least several months. Fourth, we also assessed IM and IV 261 

administration and found that IM administration was effective, which could allow a much easier 262 

and more practical approach to administration of these antibodies at large scale in populations at 263 

risk.  264 

 265 

Numerous groups have reported the isolation of potently neutralizing antibodies from survivors 266 

that target the RBD of SARS-CoV-2 S protein (Brouwer et al., 2020; Cao et al., 2020; Robbiani 267 

et al., 2020; Rogers et al., 2020; Shi et al., 2020; Wec et al., 2020; Wu et al., 2020b). The studies 268 

here support the further development of a two-mAb prophylactic anti-SARS-CoV-2 cocktail 269 

(ADM03820) incorporating mAbs that target non-overlapping regions of the RBD (Zost et al., 270 

2020a; Zost et al., 2020b). The combination of engineered antibodies possesses desirable 271 

features consistent with the objectives above, including long half-life, an effective IM 272 

formulation, accumulation at respiratory mucosa following systemic administration, and a clear 273 

mechanism of action purely through direct virus neutralization. The combination was shown 274 

effective in a stringent rhesus macaque model for SARS-CoV-2 we previously developed with 275 

high viral loads in the upper and lower respiratory tract, cellular and humoral immune responses, 276 

and pathogenic evidence of viral pneumonia (Chandrashekar et al., 2020; Yu et al., 2020). In the 277 

present study, we demonstrated that prophylactic administration of the two-mAb cocktail 278 

ADM03820 for protection against SARS-CoV-2 infection in this animal model, reducing viral 279 

loads in the upper and lower airways and accelerating virus clearance. 280 

 281 
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These antibodies include the YTE mutations in Fc region, which increase the serum half-life of 282 

the mAbs (Dall'Acqua et al., 2006; Dall'Acqua et al., 2002; Yu et al., 2017) and the LALA Fc 283 

mutations that were designed to decrease the Fc effector function by reducing interaction with 284 

Fcγ receptors (Lund et al., 1991; Wines et al., 2000; Woodle et al., 1998; Yu et al., 2017) . 285 

Studies in murine SARS-CoV-2 challenge models have demonstrated equivalently high 286 

prophylactic efficacy by potently neutralizing RBD-specific mAb variants with intact or 287 

abrogated Fc region-mediated effector functions (Winkler et al., 2021). Previous studies in a 288 

similar NHP model have shown that COV2-2381 IgG with a conventional Fc region cleared the 289 

virus infection, and no virus was observed when given at 50 mg/kg (Zost et al., 2020a). Here, the 290 

addition of YTE and LALA mutations did not appear to reduce the ability of these mAbs to clear 291 

SARS-CoV-2 infection in either the BAL fluid or NP swabs in rhesus macaques when 292 

administered three days prior to challenge. 293 

 294 

A lower serum antibody neutralizing titer (>100) was associated with protection by vaccines in 295 

NHP SARS-CoV-2 challenge models (Corbett et al., 2020; McMahan et al., 2021; Yu et al., 296 

2020) and in human clinical trials (Anderson et al., 2020; Jackson et al., 2020; Khoury et al., 297 

2021) relative to the protective titer associated with mAbs (∼6,000) that we defined here. 298 

However, a similar protective titer against SARS-CoV-2 was identified in NHPs for a 299 

combination of another combination of two neutralizing human mAbs in clinical development - 300 

AZD7442 (Loo et al., 2021). Future studies are needed to determine if the lower serum 301 

neutralizing antibody protective titer for COVID-19 vaccines relative to that achieved by passive 302 

mAb transfer is due to targeting of multiple epitopes on the SARS-CoV-2 S, different anatomical 303 

distribution of antibody responses, a contribution of Fc-mediated effector functions in the 304 
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polyclonal response, or complementary mechanisms of protection that are mediated by vaccine-305 

induced T cells.   306 

 307 

The RBD sequence is highly variable in SARS-CoV-2, which may represent a selective 308 

adaptation (Demogines et al., 2012; Frank et al., 2020; MacLean et al., 2020; Starr et al., 2020). 309 

Our approach, to use a combination of two antibodies that do not compete for the same epitope, 310 

could prevent the selection of escape mutant viruses that are likely inherent in monotherapy 311 

approaches. Recent work in the context of SARS-CoV-2 has demonstrated that combinations of 312 

two antibodies that do not compete for binding to the same region of the spike protein offer 313 

higher resistance to escape mutations while protecting animals from SARS-CoV-2 challenge 314 

(Baum et al., 2020a; Baum et al., 2020b; Weinreich et al., 2020; Zost et al., 2020a; Chen et al., 315 

2021b).  316 

 317 

In prior NHP studies, mAbs typically were infused via IV administration. The studies presented 318 

here demonstrate the efficacy of these antibodies either administered as a combination or alone 319 

when administered by the IM route This approach could provide a more broadly deployable 320 

route of administration for these antibodies to patients in clinical settings. In addition, the doses 321 

that were efficacious in these studies translate to very low doses in humans compared to 322 

conventional antibody therapies. The data generated in these studies provides strong evidence for 323 

the continued development of these antibodies for clinical use. 324 

  325 
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MATERIALS AND METHODS 350 

 351 

Monoclonal antibodies 352 

The antibody COV2-2381 and COV2-2130 sequences have been previously described (Zost et 353 

al., 2020a; Zost et al., 2020b). The antibodies were produced and purified as previously 354 

described (Tomic et al., 2019). Briefly, stably transfected CHO cells expressing either COV2-355 

2130-YTE-LALA or COV2-2381-YTE-LALA were generated using Leap-In transposon vectors 356 

(ATUM) containing the respective antibody heavy and light chain genes and a glutamine 357 

synthetase gene as a selectable marker. Leap-In vectors were transfected into a CHO-K1 GS 358 

knockout cell line (HD-BIOP3; from Horizon Discovery) and stably transfected pools were 359 

selected using medium lacking L-glutamine. Manufacturing was performed under Good 360 

Manufacturing Practices using stably transfected pools in large scale bioreactors and antibody 361 

material was purified from harvested supernatants. The downstream processes consisted of 3 362 

chromatography steps: 3) viral inactivation, 2) filtered viral reduction (Planova), and 3) an 363 

ultrafiltration step to concentrate the product to the appropriate g/L. Both individual antibodies 364 

and the combination were generated as cGMP-grade drug substance and drug product materials, 365 

were provided at a concentration of 52 mg/mL and were stored at -80°C until day of 366 

administration. On the day of administration, the stock vials were thawed at room temperature 367 

(RT) and gently inverted 6 to 10 times to mix the contents. After thawing, the vials were stored 368 

at RT until use. Based on individual animal weights and dose required, the purified antibody 369 

stock for each NHP was diluted to 1 mL in 0.9% normal saline diluent (Baxter) for IM injections 370 

and 10 mL in the same diluent for IV infusions. IM injections were delivered bilaterally in the 371 
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upper quadriceps at 0.5 mL/quadriceps. IV infusions were performed at a rate of 1 to 2 mL/min 372 

over 5 to 10 min/animal for a total of 10 mL infused per animal. 373 

 374 

 375 

Animal studies 376 

All animals were maintained at Bioqual, Inc. (Rockville, MD) which is fully accredited by the 377 

Association for Assessment and Accreditation of Laboratory Animal Care International  378 

(AAALAC) and approved by the Office of Laboratory Animal Welfare (NIH/PHS assurance 379 

number D16-00052). Studies were conducted in compliance with all relevant local, state, and 380 

federal regulations and were approved by the Bioqual Institutional Animal Care and Use 381 

Committee (IACUC). Cynomolgus monkeys (Macaca fascicularis) (2.2 – 5.8 kg body weight; 6 382 

to 12 years old) were mixed male and female and randomly assigned to groups. In Study 1 383 

(n=3/group), experimental animals received the ADM03820 cocktail of COV2-2130-YTE-384 

LALA and COV2-2381-YTE-LALA at either 11.7 mg/kg IM or 31.3 mg/kg IV and were 385 

followed for 12 weeks for antibody pharmacokinetics only without any SARS-CoV-2 challenge. 386 

In Study 2 (n=4/group), sham control animals received no mAb while 12 experimental animals 387 

were administered the ADM03820 cocktail at varying doses and administration routes three days 388 

before challenge as described in Figure 2. Animals then were challenged with 105 TCID50 389 

SARS-CoV-2 USA-WA1/2020. These doses were administered as 0.5 mL per nare intranasally 390 

and 1 mL intratracheally on day 0. In Study 3, four sham-treated controls received no mAb while 391 

12 experimental animals (n=3/group) were administered three days prior to challenge with either 392 

COV2-2130-YTE-LALA or COV2-2381-YTE-LALA separately at varying doses and 393 

administration routes as described in Figure 3A. Animals were then challenged with 105 TCID50 394 

SARS-CoV-2 similarly as in the first study. In Study 4 (n=3/group), sham control animals 395 
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received no mAb while experimental animals were administered the ADM03820 cocktail IM at 396 

varying low doses three days before challenges performed similarly to studies 2 and 3 (Figure 397 

2,3). Macaques in all four studies were monitored daily with an internal scoring protocol 398 

approved by the IACUC. These studies were not blinded. 399 

 400 

Viruses 401 

The SARS-CoV-2 USA-WA1/2020 strain was obtained from BEI Resource (NR-52281; Lot 402 

#7003175). The viral stocks were expanded using Vero E6 cells and harvested on day 5 403 

following inoculation. To confirm the viral identity, complete genome sequencing was 404 

performed and was shown to be 100% identical to the parent virus sequence. The D614G virus 405 

was produced by introducing the mutation into an infectious clone of WA1/2020, and the 406 

B.1.351 and B.1.1.28 spike genes were cloned into the WA1/2020 infectious clone to produce 407 

Wash-B.1.351 and Wash-B.1.1.28 chimeric viruses, as described previously (Chen et al., 2021a). 408 

B.1.1.7 and B.1.617.2 were isolated from infected individuals. D614G, Wash-B.1.351, Wash-409 

B.1.1.28, B.1.1.7, and B.1.617.2 viruses were propagated on Vero-TMPRSS2 cells and subjected 410 

to deep sequencing. 411 

 412 

Quantification of circulating human mAbs and serum neutralization activity 413 

The quantification of infused/injected human SARS-CoV-2 mAbs in NHP serum at multiple 414 

time points was performed as previously described [20]. Additionally, the serum neutralization 415 

activities of infused or injected mAbs were also monitored at the same time points using a 416 

pseudovirus neutralization assay as previously described [24, 25]. 417 

 418 
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BAL and NP swab collection 419 

Collection of mucosal secretions was performed on sedated NHPs using cotton swabs (COPAN 420 

flocked swab) or nasosorption FX-I devices (Hunt Developments Ltd.). The swabs were inserted 421 

into the nasal cavity and rotated gently. Following collection, the swabs were placed into a 422 

collection vial containing 1 mL of phosphate buffered saline (PBS). All vials were stored at ≤ -423 

70°C until viral load testing (or antibody quantification if required).  424 

 425 

The bronchoalveolar lavage (BAL) collection procedure was performed on anesthetized animals 426 

by the “chair method”. In brief, each animal was placed in dorsal recumbency in a chair channel 427 

and a red rubber feeding tube inserted into the trachea via a laryngoscope during inspiration. A 428 

total of 10 mL PBS was flushed through the tube and the volume instilled and recovered from 429 

each animal recorded. The collected BAL samples were placed immediately onto wet ice and 430 

processed for isolation of fluid by centrifugation at 4°C followed by supernatant removal. BAL 431 

aliquots were stored at ≤ -70°C until viral load testing (or antibody quantification if required).   432 

Focus reduction neutralization test 433 

Serial dilutions of mAbs were incubated with 102 FFU of different strains or variants of SARS-434 

CoV-2 for 1 h at 37�°C. Antibody–virus complexes were added to Vero-TMPRSS2 cell 435 

monolayers in 96-well plates and incubated at 37�°C for 1 h. Subsequently, cells were overlaid 436 

with 1% (w/v) methylcellulose in MEM. Plates were collected 30 h later by removing overlays 437 

and fixed with 4% PFA in PBS for 20 min at room temperature. Plates were washed and 438 

sequentially incubated with an oligoclonal pool of SARS2-2, SARS2-11, SARS2-16, SARS2-31, 439 

SARS2-38, SARS2-57 and SARS2-71 anti-S (VanBlargan et al., 2021) antibodies and HRP-440 

conjugated goat anti-mouse IgG (Sigma, 12-349) in PBS supplemented with 0.1% saponin and 441 
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0.1% bovine serum albumin. SARS-CoV-2-infected cell foci were visualized using TrueBlue 442 

peroxidase substrate (KPL) and quantitated on an ImmunoSpot microanalyzer (Cellular 443 

Technologies). 444 

 445 

Subgenomic mRNA assay 446 

The subgenomic mRNA of SARS-CoV-2 was assessed by RT-PCR as previously described 447 

(Chandrashekar et al., 2020; Wolfel et al., 2020; Yu et al., 2020). The standard curve is based on 448 

the SARS-CoV-2 E gene. Prior to PCR, cDNA was generated from each animal using 449 

Superscript III VILO (Invitrogen) according to the manufacturer’s instructions. Using the 450 

sequences targeting the E gene mRNA, a TaqMan custom gene expression assay (Thermo Fisher 451 

Scientific) was designed (Wolfel et al., 2020) and reactions were carried out using a QuantStudio 452 

6 and 7 Flex Real-Time PCR system (Applied Biosystems) according to the manufacturer’s 453 

instructions. Standard curves were generated to calculate sgRNA/mL or per swab. Viral load for 454 

each timepoint tested per NHP was reported as the average of two replicates. The sensitivity of 455 

this assay was 50 copies per mL of BAL or per swab. 456 

 457 

Quantification and statistical analysis 458 

The average change in viral load (log10 sgRNA copies/mL or swab) was assessed from day 1 to 459 

day 14 (Study 2), or from day 1 to day 10 (Study 3 and 4). The time-weighted average (TWA) 460 

values for the change of sgRNA viral load in BAL or NP from day 1 to day 10 after viral 461 

challenge were calculated as the area under the curve (AUC) of the change in viral load in Prism 462 

(version 9.1.2; GraphPad) and then divided by 10 as described previously (Baum et al., 2020a) 463 

(Table S1). The TWA values of each treatment group were compared to those of the sham group 464 
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using Welch’s t-test. The significance level alpha of 10% was pre-specified, and estimated P-465 

values are indicated in the figures. TWA threshold was set up to ≤ 0.3 for full protection, ≤ 0.51 466 

(the lower sham point) for partial protection, and > 0.51 for no protection in BAL, and ≤ 0.3 for 467 

full protection, < 1.638 (the lower sham point), for partial protection, and > 1.638 for no 468 

protection in NP. To estimate protective antibody concentration or neutralizing titer in serum, the 469 

optimal thresholds that maximizes the sum of sensitivity and specificity for full protection were 470 

calculated and reported in Table S2. Sensitivity is the proportion above the threshold in the 471 

fully-protected subjects, and specificity is the proportion below the threshold in partially- or non-472 

protected subjects. The fitting curves and confidence intervals to visualize the relationship 473 

between TWA and antibody levels were estimated using Lowess curve smoothing method using 474 

ggplot2 in R software. The other data visualization was performed using Prism software. 475 
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FIGURE LEGENDS 476 

 477 

Figure 1. Pharmacokinetics and biodistribution of ADM03820.  478 

(A) Schema of study design. Different doses of antibody cocktail ADM03820 (containing 479 

COV2-2130/YTE-LALA and COV2-2381/YTE-LALA at a 1:1 ratio) were administered to 480 

rhesus monkeys (n=3 per group) by IV (11.7 or 31.3 mg/kg) or IM (11.7 or 31.3 mg/kg) route. 481 

Human antibody concentration was assessed by ELISA in (B) serum, (C) BAL, or (D) nasal 482 

swab eluate samples at indicated time points after ADM03820 administration. The dotted 483 

horizontal line depicts the assay limit of detection.  484 

 485 

Figure 2. Pharmacokinetics, antibody neutralizing titers, and prophylactic efficacy of 486 

ADM03820 mAbs in SARS-CoV-2-challenged NHPs.  487 

(A) Schema of study design. Different doses of ADM03820 were administered to rhesus 488 

monkeys (day -3) by IM (3.9 or 11.7 mg/kg) or IV (31.3 mg/kg) route (n=4 per group). One 489 

group of NHPs was left untreated (sham; n=4) and served as a control. Animals in all groups 490 

were challenged with 105 TCID50 SARS-CoV-2 by the intranasal and intratracheal routes on day 491 

0.  492 

(B) Human antibody concentration in serum was assessed by ELISA at indicated time points 493 

after ADM03820 administration and viral challenge.  494 

(C) Total neutralizing antibody titers were assessed in serum at indicated time points using 495 

pseudovirus neutralization assay. The red line indicates the median titer of neutralizing 496 

antibodies in each group. 497 
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(D) Subgenomic RNA (sgRNA) levels were assessed at various time points after viral challenge 498 

in bronchoalveolar lavage (BAL) samples using RT-qPCR. 499 

 (E) Subgenomic RNA (sgRNA) levels were assessed at various time points after viral challenge 500 

in nasopharyngeal (NP) swab samples.  501 

Each black curve shows the measurements from individual animals, with red lines indicating the 502 

median values of measurements for animals within each treatment group. Neutralization assay 503 

limit of detection = 50 copies/mL or 50 copies/swab for panels (D) and (E). For statistical 504 

analysis, refer to Methods section.  505 

 506 

Figure 3.  Pharmacokinetics, neutralizing titers, and prophylactic efficacy of individual 507 

mAbs of the cocktail in SARS-CoV-2-challenged NHPs.  508 

(A) Schema of study design. Individual mAbs COV2-2130/YTE-LALA or COV2-2381/YTE-509 

LALA (n=3 NHP per group) were administered to rhesus monkeys (day -3) at different doses 510 

(1.95 mg/kg or 15.65 mg/kg) and routes (IM or IV) as indicated. One group of NHPs was left 511 

untreated (sham; n=4) to serve as controls. Animals in all groups were challenged with SARS-512 

CoV-2 by the intranasal and intratracheal routes on day 0.  513 

(B) Human antibody concentration was assessed by ELISA in serum at indicated time points 514 

after indicated mAb administration and viral challenge. (C) Total neutralizing antibody titers 515 

were assessed in serum at indicated time points using a pseudovirus neutralization assay. Each 516 

black curve shows the measurements from an individual animal, with red lines indicating the 517 

median values of measurements for animals within each treatment group. 518 

(C) sgRNA levels were assessed after viral challenge at various time points in BAL samples 519 

using RT-qPCR. 520 
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 (D) sgRNA levels were assessed after viral challenge at various time points in nasopharyngeal 521 

swab samples.  522 

The red line depicts the median levels of sgRNA in each group. Each black curve shows an 523 

individual animal’s measurements, with red lines indicating the median values of measurements 524 

for animals within each treatment group. Neutralization assay limit of detection = 50 copies/mL 525 

or 50 copies/swab. For statistical analysis, refer to Methods section.   526 

 527 

Figure 4.  Pharmacokinetics, neutralizing titers, and prophylactic efficacy of ADM03820 in 528 

a dose de-escalation study and IM antibody administration in NHPs.  529 

(A) Schema of study design. Different doses of ADM03820 were administered to rhesus 530 

monkeys (day -6) by IM route (3.91, 1.95, 0.98, and 0.49 mg/kg; n=3 NHP per group). One 531 

group of NHPs was left untreated (sham; n=3) and served as a control. Animals in all groups 532 

were challenged with SARS-CoV-2 by the intranasal and intratracheal routes at day 0.  533 

(B) Human antibody concentration was assessed by ELISA in serum at indicated time points 534 

after ADM03820 administration and viral challenge.  535 

(C) Total neutralizing antibody titers in serum were assessed at indicated time points using a 536 

pseudovirus neutralization assay. The red line shows median titer of neutralizing antibodies in 537 

each group.  538 

(D) sgRNA levels were assessed at various time points after viral challenge in BAL samples 539 

using RT-qPCR. 540 

(E) sgRNA levels were assessed at various time points after viral challenge in  nasopharyngeal 541 

swab samples.  542 
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The red line depicts the median levels of sgRNA in each group. Each black curve shows 543 

measurements from an individual animal, with red lines indicating the median values of 544 

measurements for animals within each treatment group. Assay limit of detection = 50 copies/mL 545 

or 50 copies/swab. For statistical analysis, refer to Methods section. 546 

 547 

Figure 5. Human antibody concentration and antibody neutralizing titer in NHP serum 548 

associated with protection against viral challenge in BAL or NP samples. (A-D) The time-549 

weighted average (TWA) values for the change of sgRNA viral load in BAL or NP swabs from 550 

day 1 to day 10 after viral challenge were compared to antibody concentration in serum or serum 551 

NT50 value for each animal from studies 2, 3 and 4 described in Figures 2 through 7. The fitting 552 

curves were estimated using Lowess curve smoothing method and are shown in black, and grey 553 

shading indicates the confidence interval. Shapes indicate individual animals, colors indicate 554 

route of antibody treatment, and animals from separate studies are shown with different shapes 555 

as detailed in the figure. Horizontal black dotted lines indicate designated TWA thresholds for 556 

full (bottom line) and partial (top line) protection. Vertical dotted orange dashed line in the 557 

graphs indicates designated estimated optimal cut-off for protective antibody concentration or 558 

titer in NHP serum. For calculation of TWA and cut-off values, refer to Methods section. (E) 559 

Percent animals that fully protected, partially protected, or non-protected determined using the 560 

estimated thresholds for protection as in panels A-D. Gradient of green shading visualize % of 561 

protected animals in which dark green indicates higher % of protected animals and light green 562 

indicates lower % of protected animals for each described condition.    563 
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Table 1. Neutralization breadth of ADM03820 against SARS-CoV-2 variants of 

concern1 

[IC50 (ng/mL) against indicated virus]2 
 

WA1/2020 D614G 
 

B.1.1.7  
(Alpha) 

Wash-
B1.1.351 

(Beta) 

 
B.1.617.2 

(Delta) 

Wash- 
B.1.1.28  

(Gamma) 

28 21 20 19 25 8  

 850 

1Neutralizing activity of ADM03820 against authentic SARS-CoV-2 WA1/2020, authentic SARS-CoV-2 851 

WA1/2020 bearing D614G mutation, or authentic B1.1.7, authentic B.1.617.2, chimeric Wash-B1.351, 852 

and chimeric Wash-B.1.1.28 viruses was assessed using a focus reduction neutralization test (FRNT).  853 

 
854 

2Half-maximal inhibitory concentration (IC50) values are shown and represent the average of technical 855 

duplicates and two independent experiments. 856 
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