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19 Abstract

20 Despite of the scientific and human efforts to understand COVID-19, there are 

21 questions still unanswered. Variations in the metabolic reaction to SARS-CoV-2 

22 infection could explain the striking differences in the susceptibility to infection and 

23 the risk of severe disease. Here, we used untargeted metabolomics to examine novel 

24 metabolic pathways related to SARS-CoV-2 susceptibility and COVID-19 clinical 

25 severity using capillary electrophoresis coupled to a time-of-flight mass spectrometer 

26 (CE-TOF-MS) in plasma samples. We included 27 patients with confirmed COVID-19 

27 early after symptom onset who were prospectively followed and 29 healthcare 

28 workers heavily exposed to SARS-CoV-2 but with low susceptibility to infection 

29 (‘nonsusceptible’). We found that the metabolite profile was predictive of the study 

30 group. We identified a total of 55 metabolites as biomarkers of SARS-CoV-2 

31 susceptibility or COVID-19 clinical severity. We report the discovery of new plasma 

32 biomarkers for COVID-19 that provide mechanistic explanations for the clinical 

33 consequences of SARS-CoV-2, including mitochondrial and liver dysfunction as a 

34 consequence of hypoxemia (citrulline, citrate, and BAIBA), energy production and 
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35 amino acid catabolism (L-glycine, L-alanine, L-serine, L-proline, L-aspartic acid and L-

36 histidine), endothelial dysfunction and thrombosis (citrulline, L-ADMA, 2-AB, and 

37 Neu5Ac), and we found interconnections between these pathways. In summary, in 

38 this first report of the metabolomic profile of individuals with severe COVID-19 and 

39 SARS-CoV-2 susceptibility by CE-MS, we define several metabolic pathways 

40 implicated in SARS-CoV-2 susceptibility and COVID-19 clinical progression that could 

41 be developed as biomarkers of COVID-19.

42 Keywords: SARS-CoV-2; COVID-19; biomarkers; metabolomics; disease susceptibility; 

43 clinical progression; metabolites; oxidative stress response.

44
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45 Introduction

46 Despite the effective response to the worst pandemic that humanity has faced in 

47 recent decades, the metabolic and biochemical processes during SARS-CoV-2 

48 infection remain poorly understood. Most studies that have thus far investigated the 

49 biochemical pathways affected by SARS-CoV-2 rely on powerful bioanalytical 

50 techniques. Using untargeted and targeted metabolomics, other groups have 

51 identified that disruption of lipid and amino acid metabolism, such as the kynurenine 

52 pathway, are potentially relevant pathways associated with COVID-19 pathogenesis 

53 (1–5). Other candidate pathways that could be involved in clinical progression include 

54 pyrimidine (1,2) and purine (1,6–8) metabolism, fructose, and mannose metabolism 

55 (1,7) and carbon metabolism (1,2,9), although the specific mechanism remains 

56 unclear. Overall, the necessity to elucidate the global snapshot of biochemical 

57 processes behind SARS-CoV-2 infection is still in progress.

58 Metabolomic profiling can be performed by mass spectrometry (MS) coupled to a 

59 separation technique such as liquid chromatography (LC-MS), gas chromatography 

60 (GC-MS) or capillary electrophoresis (CE-MS). CE-MS is used to study polar and 

61 ionizable compounds such as free modified amino acids (MAAs) and 

62 “epimetabolites”, which are side products of enzyme reactions. These MAAs or the 

63 appearance of epimetabolites has been associated with important alterations in 

64 cellular, physiological, and pathological processes(10–13). While CE-MS is a powerful 

65 method to characterize unknown mechanisms of disease progression, to our 

66 knowledge, it has not been used in individuals with COVID-19.

67 Here, we investigated novel metabolic pathways of SARS-CoV-2 susceptibility and 

68 COVID-19 clinical progression using CE-MS in longitudinal plasma samples from 

69 patients with COVID-19 with different disease severities and in a population of 
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70 healthcare workers heavily exposed to SARS-CoV-2 but with low susceptibility to 

71 infection.

72 Results

73 General characteristics of the study population

74 We included 63 adults, of whom 27 were in the COVID-19+ group and 36 were in the 

75 COVID-19- group, of whom 24 were nonsusceptible. COVID-19+ and susceptible 

76 patients were older and had a higher prevalence of comorbidities than COVID-19- 

77 and nonsusceptible patients. The general characteristics of the study population are 

78 described in Table 1.
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Table 1. General characteristics of the study population

 

COVID1

9- 

(N=36)

COVID1

9+ 

(N=27)

Mild 

disease 

(N=11)

Moderate 

disease 

(N=11)

Severe 

disease

 (N=5)

Non-

susceptible 

(N=28)

Susceptible 

(N=31)

p-value 

COVID19+ vs. 

COVID19-

p-value (susceptible 

vs. nonsusceptible)

Age, median (P25-P75)

42 (36-

51)

71 (55-

85)
57 (50-75) 85 (75-89) 71 (59-92) 43 (36-51) 66 (50-85) <0.001 <0.001

Sex, % women 26 (72) 14 (52) 5 (45) 6 (55) 3 (60) 22 (79) 17 (55) 0.097 0.054

Obese, N (%) 2 (6) 7 (26) 3 (27) 2 (18) 2 (40) 2 (7) 7 (23) 0.022 0.100

Hypertension, N (%) 2 (6) 14 (52) 6 (55) 5 (45) 3 (60) 1 (4) 14 (45) <0.001 <0.001

Previous lung disease, N 

(%)
2 (6) 3 (11) 1 (9) 2 (18) 0 (0) 2 (7) 3 (10) 0.841 0.698

Previous heart disease, N 

(%)
1 (3) 6 (22) 2 (18) 2 (18) 2 (40) 0 (0) 6 (20) 0.017 0.012

Days from onset of 

symptoms to 

hospitalization, median 

(P25-P75)

- 4 (2-7) 7 (4-10) 3 (2-7) 5 (3-6) - - - -
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80 Differences in metabolic profiles according to COVID-19 

81 disease status and SARS-CoV-2 susceptibility

82 Using an untargeted metabolomics approach and after data matrix filtration, 166 

83 features (pairs of m/z –RT) were obtained in plasma samples with proper 

84 reproducibility. We first evaluated the differences between the metabolomes of 

85 COVID-19+ and COVID-19- participants, as well as between susceptible and 

86 nonsusceptible individuals, by building principal component analysis (PCA) and 

87 partial least squares-discriminant analysis (PLS-DA) score plots. As shown in Fig S1 AB 

88 and Fig S2 AB, the metabolomes of COVID-19+ vs. COVID-19-, as well as susceptible 

89 vs. nonsusceptible participants, drastically differed, indicating that the metabolomic 

90 fingerprints predicted the study group. Then, we performed orthogonal partial least 

91 squares-discriminant analysis (OPLS-DA) and found that the separation was totally 

92 explained through PC1 (Fig 1). The p-values for the OPLS-DA models were 2.10 x 10-19 

93 and 4.20 x 10-17 for COVID-19 disease and COVID-19 susceptibility, respectively, 

94 corroborating previous observations. Using predefined statistical criteria for variable 

95 selection (VIP ≥ 1 and │p(corr)│ ≥ 0.5), we defined 10 metabolites predicting COVID-

96 19 status and 11 predicting SARS-CoV-2 susceptibility (Table S1).

97

98 Fig 1. Untargeted metabolomic profiles of COVID19+ vs COVID19- and susceptible vs. 

99 non-susceptible participants using supervised OPLS-DA models for CE-MS data. (A) Plot 
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100 A represents the comparison of COVI19+ and COVID19- individuals (R2 = 0.878, Q2 = 

101 0.813), and CV-ANOVA (p-value = 2.10 x 10-19). (B) Plot B represents the comparison of 

102 susceptible and non-susceptible participants with R2 = 0.902, Q2 = 0.817, and CV-

103 ANOVA p-value = 4.20 x 10-17. Models were validated by permutation testing and CV-

104 ANOVA(14,15). Hydroxychloroquine, initially found to be significant, was removed 

105 from all statistical analysis as it was empirically used to treat COVID19 at the time of 

106 sample collection.

107

108 Metabolic profile differences associated with COVID-19 

109 clinical severity

110 We then performed subgroup analyses separating COVID-19+ participants by clinical 

111 severity. While no differences in untargeted metabolomic profiles were found in the 

112 PCA (Fig S1 C), inspection of the PLS-DA score plots (Fig S2 C) showed clear clustering 

113 that did not meet the prespecified validation criteria. Pairwise comparisons of OPLS-

114 DA models of all 3 categories fulfilled the validation criteria, indicating that there were 

115 statistically significant differences in the metabolomes of mild vs. severe and between 

116 moderate vs. severe cases (Fig 2). Similar to other COVID-19 and susceptibility 

117 studies, a total of 8 metabolites, including creatine, citrulline and 6 unknown features, 

118 were identified as predictors of greater disease severity (VIP ≥ 1 and │p(corr)│ ≥ 0.5) 

119 (Table S1).
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120

121 Fig 2. Untargeted metabolomic profiles of participants with COVID19 according to 

122 clinical severity using supervised OPLS-DA models for CE-MS data. (A) Mild vs. moderate 

123 disease; R2 = 0.713, Q2 = 0.009, and CV-ANOVA p-value = 0.997. (B) Mild vs. severe 

124 disease; R2 = 0.929, Q2 = 0.675, and CV-ANOVA p-value = 0.010. (C) Moderate vs. severe 

125 disease; R2 = 0.897, Q2 = 0.636, and CV-ANOVA p-value = 0.027.

126

127 Longitudinal changes in the metabolomes of participants with 

128 COVID-19

129 We then sought to assess the effect of time on the metabolomes of participants with 

130 COVID-19 following a similar strategy. A clear separation between baseline and day 8 

131 was found for mild and moderate cases (Fig S1 D1-D3; Fig S2 D1-D2). For severe cases, 

132 the PLS-DA model could not be fitted due to the limited availability of paired samples. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.29.462326doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462326
http://creativecommons.org/licenses/by/4.0/


9

133 Validated OPLS-DA models (Fig 3) showed that the longitudinal differences detected 

134 for mild and moderate cases were statistically significant (CV-ANOVA p-value < 0.05 

135 and R2 - Q2 < 0.3). We found 10 metabolites whose abundance differed from baseline 

136 to day 8 in mild cases and 7 in moderate cases (VIP ≥ 1 and │p(corr)│ ≥ 0.5), see S1 

137 Table).

138

139 Fig 3. Untargeted metabolomic profiles at baseline and day 8 of participants with mild 

140 and moderate COVID19 supervised OPLS-DA models for CE-MS data. (A) Plot A 

141 represents the differences in mild cases (R2 = 0.816, Q2 = 0.596; CV-ANOVA p-value = 

142 0.062). (B) Plot B represents the differences in moderate cases (R2 = 0.961, Q2 = 0.716; 

143 CV-ANOVA p-value = 0.014). 

144

145 Complementary characterization of metabolomic predictors 

146 of COVID-19 disease status and susceptibility

147 To visually summarize the metabolite fingerprint associated with COVID-19 disease 

148 and SARS-CoV-2 susceptibility, we represented the abundance of the metabolites 

149 identified by univariate analysis followed by multivariate statistical analysis as 

150 predictors of each condition in heatmaps with hierarchical clustering (Fig 4, Fig S3 and 

151 Fig S4). As shown in the heatmap (Fig 4), COVID-19+ (mild, moderate, and severe 
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152 patients) had more similarities than COVID-19- individuals. The heatmap shows clear 

153 patterns of the distinct metabolic biomarkers for each group.

154

155 Fig 4. Heatmap with group average of statistically significant metabolites detected in 

156 human plasma samples by CE-MS modified by virus SARS-CoV-2 virus infection. In green, 

157 metabolites involved in TCA cycle. In purple, those involved in kynurenine pathway. 

158 In blue those compounds of the nitric oxide or are related with NO regulation.

159
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160 ANOVA-simultaneous component analysis (ASCA) identified age as the only factor 

161 significantly associated with the outcome. Thus, we further assessed the metabolites 

162 previously identified as predictors of COVID-19 disease severity or susceptibility 

163 controlling for age using ANCOVA (Tables S2 and S3). Of them, NG, NG’-dimethyl-L-

164 arginine (L-SDMA), L-cystine and L-carnitine lost statistical significance. L-Kynurenine 

165 and citric acid remained significantly predictive of COVID-19 disease and SARS-CoV-2 

166 susceptibility, respectively. The selection of metabolites that could be fully 

167 characterized and their size effects are summarized in Table 2.
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168 Table 2. Fold change of metabolite abundance in plasma samples associated with COVID19 disease status and susceptibility. 

Compound COVID19+ vs. COVID19- Susceptible vs. Nonsusceptible Severe vs. Mild COVID19+ day 8 vs baseline

L-Glycine nssd ↓ 0.86 nssd nssd

L-Alanine ↓ 0.85 ↓ 0.85 nssd nssd

N,N-Dimethylglycine nssd nssd nssd ↑ 1.21
2-Aminobutyric acid ↑ 1.37 nssd nssd nssd

3-Aminoisobutyric acid ↑ 1.66 nssd nssd nssd

L-Serine ↓ 0.86 ↓ 0.85 nssd nssd

L-Proline ↓0.83 ↓ 0.84 nssd nssd

Creatine nssd nssd ↑ 2.47 nssd

L-Aspartic acid nssd ↓ 0.87 nssd nssd

L-Histidine ↓ 0.81 ↓ 0.80 nssd nssd

N2-Methyl-L-Lysine nssd nssd nssd ↑ 1.5
L-Phenylalanine ↑ 1.16 nssd nssd nssd

Citrulline ↓ 0.81 ↓ 0.80 ↓ 0.56 nssd

Citric acid ↓ 0.80 nssd nssd nssd

NG,NG-Dimethyl-L-Arginine ↑ 1.17 nssd nssd nssd

L-Tryptophan ↓ 0.68 ↓ 0.67 nssd nssd

L-Kynurenine ↑ 1.53 nssd nssd nssd

N-Acetylneuraminic acid ↑ 1.81 ↑ 1.8 nssd nssd

169 Blue color denotes the fold change representing the increase of metabolite abundance and red color represents the decreases (see Table 

170 S1 for additional information). 
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171 Discussion

172 To our knowledge, this study is the first to evaluate the plasma metabolomic profile of 

173 individuals with severe COVID-19 and SARS-CoV-2 susceptibility by CE-MS. Our work 

174 demonstrates the potential of CE-MS to unveil new plasma biomarkers of COVID-19 and 

175 SARS-CoV-2 susceptibility and allows a deeper advancing of the metabolic consequences 

176 of SARS-CoV-2 infection (Fig 5).

177

178

179 Fig 5. A model of the metabolic pathways implicated in COVID19 pathogenesis. Impairment 

180 of blood oxygenation following SARS-CoV-2 damage results in 1) inefficient mitochondrial 
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181 metabolism in the liver, resulting in dysregulation of the urea cycle citrulline decreases, 

182 phenylalanine increases; 2) dysregulation of energy metabolism and amino acid 

183 metabolism, resulting in decreased L-serine, L-alanine, and L-serine; 3) activation of 

184 oxidative stress response, resulting in BAIBA accumulation, L-ADMA upregulation, and 

185 induction of the kynurenine pathway, which impairs mucosal immunity, allowing bacterial 

186 superinfections. Figure generated using biorender.com.

187 Among the significant metabolites, we found that the citrulline concentration decreases 

188 over the course of COVID-19 disease, but low levels early on in the course of the disease 

189 are associated with greater clinical severity. This finding is consistent with those reported 

190 in a recent work, where carbamoyl phosphate levels, a substrate for citrulline biosynthesis 

191 in the mitochondria of liver cells, decreased with greater disease severity (1). Because 

192 citrulline is an intermediate in the urea cycle and a byproduct of the enzymatic production 

193 of nitric oxide from arginine (16), these findings point to either dysregulation in the urea 

194 cycle or liver dysfunction as the underlying mechanism explaining the links between this 

195 metabolite and COVID-19. Furthermore, increased levels of circulating phenylalanine, 

196 which were found to be associated with COVID-19 in our study, have also been reported 

197 in patients with hepatic fibrosis, acute hepatic failure and hepatic encephalopathy as well 

198 as in COVID-19 disease (5).

199 Apart from phenylalanine, other amino acids (AAs) were found to be significantly different 

200 between the groups (Table 2). Among them, L-glycine, L-alanine, L-serine, L-proline, L-

201 aspartic acid and L-histidine were downregulated in patients. Previous studies have 

202 revealed that SARS-CoV-2 infection dysregulates pathways linked to energy production and 

203 amino acid catabolism (17,18). In a murine model of SARS-CoV-2, Li et al. found several 

204 genes commonly downregulated in multiple organs that led to significant enrichment in 

205 pathways related to oxidative phosphorylation and the electron transport chain (17). As the 

206 tricarboxylic acid (TCA) cycle is connected to the electron transport chain, they also 
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207 analyzed genes associated with the TCA cycle. They found that several TCA cycle genes 

208 were downregulated and that TCA cycle metabolites were decreased in animal serum (17).

209 Apart from the AAs that lead to intermediates of the TCA cycle that were downregulated in 

210 the COVID-19+ group, the significant downregulation of citrate also suggested that SARS-

211 CoV-2 results in inefficient mitochondrial metabolism (18,19), which can be interpreted as 

212 the metabolic response to impaired oxygenation secondary to lung damage (9). Citrate is a 

213 direct TCA cycle metabolite obtained by the action of citrate synthase from oxaloacetate. 

214 The gene encoding this enzyme exhibits decreased expression (17). Different genes, 

215 proteins and/or metabolites involved in the TCA cycle have been found to be suppressed 

216 or downregulated in individuals with COVID-19 (18,19).

217 An intriguing finding in our study is the upregulation of 3-aminoisobutyric acid (BAIBA) 

218 associated with COVID-19. BAIBA is a catabolite of thymine and valine metabolism that has 

219 been proposed as a novel regulator of carbohydrate and lipid metabolism associated with 

220 aerobic exercise (20). Although little is known about the implications of BAIBA in 

221 pathogenesis, the fact that two enantiomers of BAIBA (R-BAIBA and S-BAIBA) are ultimately 

222 metabolized in mitochondria further supports the idea that mitochondrial and TCA cycle 

223 abnormalities are a metabolic hallmark of COVID-19 pathogenesis, as also indicated by the 

224 abnormalities detected in amino acid and citrate metabolism (21). As BAIBA is primarily 

225 metabolized by mitochondria, the accumulation of BAIBA in patients with COVID-19 could 

226 be explained by a reduction in mitochondrial functionality and TCA cycle suppression 

227 following impairment of blood oxygenation. To our knowledge, BAIBA has never been 

228 proposed as a putative metabolite involved in COVID-19 disease. This result is of special 

229 interest not only to further investigate BAIBA as a novel biomarker for COVID-19 disease 

230 but also to elucidate its role in metabolism under physiological stress conditions or 

231 hypoxemia.
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232 We also found evidence that SARS-CoV-2 affects metabolic pathways implicated in 

233 endothelial dysfunction, thrombosis, and cardiovascular disease. First, nitric oxide synthase 

234 (NOS) is an enzyme that catalyzes the production of citrulline and nitric oxide (NO) from 

235 arginine. This enzyme is inhibited by asymmetric dimethylarginine (L-ADMA), which is 

236 upregulated in COVID-19 patients and is an endogenous competitor of arginine, the nitric 

237 oxide precursor (22). L-ADMA has been associated with elevated oxidative stress (23). The 

238 higher L-ADMA concentrations found in individuals with COVID-19 suggest inhibition of 

239 NOS activity, which would ultimately result in decreased levels of NO. Because NO is 

240 among the principal redox molecules exploited by the immune system as a defensive 

241 mechanism, NO has been implicated in the control of viral replication, including that of 

242 HIV, influenza A and B, and vaccinia virus (24,25). Because it is as-yet unexplained how 

243 SARS-CoV-2 produces severe endothelial injury, widespread thrombosis and 

244 microangiopathy (26), our findings offer a new mechanistic explanation for this hallmark of 

245 SARS-CoV-2 pathogenesis and point to the nitric oxide synthesis pathway as a potential 

246 therapeutic target. Second, 2-aminobutyric acid (2-AB) and N-acetylneuraminic acid 

247 (Neu5Ac) were also upregulated in the COVID-19+ group. 2-AB is a marker that seems to 

248 be a compensatory mechanism to oxidative stress (27) and has been implicated in the 

249 modulation of glutathione metabolism in the myocardium (28). This finding indicates that 

250 2-AB deserves further attention as a biomarker of the myocardial dysfunction associated 

251 with COVID-19 (29). Finally, Neu5Ac is the most widespread form of sialic acids and is a 

252 family of compounds with a broad range of implications in human physiology (30). Because 

253 Neu5Ac concentrations have been correlated with the development of cardiovascular 

254 disease via RhoA signaling pathway activation (31,32), the fact that we found higher Neu5Ac 

255 concentrations associated with COVID-19 provides a new pathway possibly linked to the 

256 excess risk of cardiovascular diseases associated with SARS-CoV-2.

257 Inflammation gained early attention as a crucial mechanism of SARS-CoV-2 pathogenesis 

258 (33). Indoleamine-2,3-dioxygenase-1 (IDO1), which is involved in tryptophan catabolism via 
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259 the kynurenine pathway, is correlated with epithelial barrier disruption, bacterial 

260 translocation and inflammation in other viral infections (34). Induction of IDO1 results in 

261 the production of kynurenine derivatives with immunosuppressive effects, impairing 

262 mucosal immunity and promoting bacterial translocation and higher mortality (35). 

263 Impairment of the kynurenine pathway, resulting in reduced tryptophan (Trp) and elevated 

264 kynurenine (Kyn) levels associated with COVID-19, has previously been reported (3,7,36). 

265 Our data reveal not only the same tendency for Trp and Kyn but also the increasing 

266 tendency of the Kyn/Trp ratio with severity. This ratio has previously been associated with 

267 renal insufficiency in patients with SARS-CoV-2 and in many other diseases, such as 

268 inflammatory lung disease (5,37). Strikingly, IDO activity is induced by interferon-gamma 

269 (IFN-γ), as well as other cytokines and mediators (38,39), and it is inhibited in oxidative 

270 stress conditions by NO (39,40). Considering the reduction in NO synthesis mentioned 

271 previously, the alterations observed in the kynurenine pathway could be a result of the 

272 aforementioned metabolic abnormalities and result in further impairment of mucosal 

273 immunity, providing an explanation for the significant rates of bacterial pneumonia 

274 associated with COVID-19 (35).

275 The major strengths of our study include 1) the inclusion of COVID-19 cases in an early 

276 phase since the onset of symptoms, 2) the assessment of a special population of 

277 nonsusceptible individuals, 3) the high-throughput CE-MS method used to characterize the 

278 metabolome of the study participants, and 4) the inclusion of follow-up samples to assess 

279 the longitudinal variations of the plasma metabolites in a subset of participants. Our study 

280 is also subject to some limitations. First, the samples were collected during the first COVID-

281 19 wave in Madrid. It is unknown yet whether the emerging SARS-CoV-2 variants could lead 

282 to different metabolic consequences. Second, as expected, cases in the severe group were 

283 older and had more comorbidities than milder cases, so we considered potential 

284 confounders in our statistical approach. Third, in the subgroup analyses separated by 
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285 clinical severity, the statistical power to detect differences in metabolite abundances was 

286 lower due to the smaller sample sizes.

287 In summary, in this work examining for the first time the metabolic changes associated with 

288 COVID-19 by CE-MS, we report the discovery of new plasma biomarkers for COVID-19 that 

289 provide mechanistic explanations for the clinical consequences of SARS-CoV-2, including 

290 mitochondrial and liver dysfunction as a consequence of hypoxemia (citrulline, citrate and 

291 BAIBA), energy production and amino acid catabolism (L-glycine, L-alanine, L-serine, L-

292 proline, L-aspartic acid and L-histidine), and endothelial dysfunction and thrombosis 

293 (citrulline, L-ADMA, 2-AB, and Neu5Ac), and we found interconnections between these 

294 pathways (Figure 5). These biomarkers deserve further attention as biomarkers of SARS-

295 CoV-2 susceptibility and COVID-19 clinical severity and as potential targets for 

296 interventions.

297 Material and methods

298 Reagents

299 All reagents, solvents and standards used for sample treatment and subsequent analysis are 

300 described in the Supporting Information.

301 Patient enrollment and sample collection

302 We analyzed data from adults recruited at Hospital Universitario Ramón y Cajal, Madrid, 

303 Spain. Participants had confirmed SARS-CoV-2 (COVID-19+ group) infection by PCR from 

304 nasopharyngeal swabs, sputum, or lower respiratory tract secretions within the first 7 days 

305 from the onset of symptoms and were classified according to clinical severity as follows: 

306 mild disease, defined as those without a need for supplemental oxygen and who were 

307 asymptomatic one week after diagnosis; moderate disease, defined as the presence of 
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308 bilateral radiologic infiltrates or opacities and clinical assessment requiring supplemental 

309 oxygen; and severe disease, defined as the development of acute respiratory distress 

310 syndrome (41). Hospitalized participants provided samples at baseline and 8 days later. 

311 Participants without SARS-CoV-2 (COVID-19- group) were asymptomatic subjects with a 

312 negative PCR from nasopharyngeal swabs. We considered adults to be “susceptible” when 

313 they had positive IgG for SARS-CoV-2 or previous COVID-19 confirmed by polymerase 

314 chain reaction (PCR) from nasopharyngeal exudate. Nonsusceptible adults were healthy 

315 healthcare workers who had been on duty for at least three months in COVID-19 wards or 

316 intensive care units and reported at least three high-risk exposures to SARS-CoV-2 (42) 

317 without having experienced symptoms suggestive of SARS-CoV-2 infection, were 

318 persistently negative for SARS-CoV-2 PCR testing and did not have SARS-CoV-2 IgM and 

319 IgG in plasma. The most frequent exposure was largely unprotected exposure to aerosol-

320 generating procedures or patient secretions and close contact without face masks with 

321 other confirmed cases of COVID-19. We measured SARS-CoV-2 antibodies by indirect 

322 chemiluminescence immunoassay (Vircell, Granada, Spain).

323 Cryopreserved plasma was processed for virus inactivation by adding 1500 µL of cold 

324 methanol:ethanol (MeOH:EtOH) in a 1:1 (v/v) proportion to 500 µL of plasma. Then, samples 

325 were vortex-mixed for 1 min, incubated on ice for 5 min and centrifuged at 16,000 x g for 20 

326 min at 4 °C to precipitate and remove proteins. The clean upper layer or supernatant, which 

327 contained the metabolites of interest, was transferred to Eppendorf tubes and stored at -80 

328 °C until analysis.

329 Sample treatment

330 Two hundred microliters of frozen supernatant was thawed on ice and evaporated to 

331 dryness using a SpeedVac Concentrator System (Thermo Fisher Scientific, Waltham, MA). 

332 Then, it was resuspended in 100 µL of 0.2 mM methionine sulfone (MetS) in 0.1 M formic 

333 acid. Samples were vortex-mixed for 1 min, transferred to a Millipore filter (30 kDa protein 
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334 cutoff) and centrifuged for 40 min at 2000 xg at 4 °C. Finally, the ultrafiltrate was transferred 

335 to a CE-MS vial for analysis. Quality control samples (QC) were prepared by pooling equal 

336 volumes of plasma supernatant from each sample and were treated as previously 

337 described. Finally, blank solutions were also prepared with MeOH:EtOH (1:1, v/v).

338 Nontargeted metabolomics by CE-MS

339 The plasma metabolome was analyzed by using a 7100 capillary electrophoresis (CE) system 

340 coupled to a 6230 time-of-flight mass spectrometer (TOF-MS) from Agilent Technologies 

341 equipped with an electrospray ionization (ESI) source. The analysis was performed using a 

342 previously developed method (43) with the analytical conditions described in detail in the 

343 Supporting Information. The prepared QCs were analyzed at the beginning of the run to 

344 condition the CE system and then every seven randomized samples to reduce any time-

345 related effect. The QCs were used not only to assess the reproducibility, stability and 

346 performance of the system but also to correct any signal deviation within the analytical 

347 sequence. A pair of blanks were injected at the beginning and end of the run to remove 

348 metabolites coming from the extraction solvent.

349 Data processing

350 CE-MS raw data were checked using MassHunter Qualitative software (version 10.0) to 

351 determine the data quality, the system mass accuracy and the reproducibility of the QC 

352 sample and IS injections. Then, raw data were aligned and processed with MassHunter 

353 Profinder software (version 10.0 SP1). Molecular feature extraction (MFE) and batch 

354 recursive feature extraction (RFE) algorithms, both included in MassHunter Profinder 

355 software, were used to obtain the list of mass-to-charge ratios (m/z) and their 

356 corresponding abundances (43). The resulting list was imported in Microsoft Excel, and the 

357 data matrix was filtered before statistical analysis by removing metabolites with a 
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358 percentage of coefficient of variation (% CV) greater than 30% in the QC samples. All the 

359 data processing steps are described in detail in the Supporting Information.

360 Statistics

361 Multivariate (MVDA) and univariate (UVDA) statistical analyses were carried out to 

362 determine differences among groups. Different comparisons were performed to evaluate 

363 COVID-19 disease, disease severity, disease progression, and susceptibility. For this 

364 purpose, samples were labeled based on the comparison as infected or noninfected for 

365 disease diagnosis; susceptible or nonsusceptible for disease susceptibility; mild, moderate 

366 or severe at day 0 (d0) for disease severity; or day 0 and day 8 for disease progression. Then, 

367 the filtered matrix obtained in the previous step was processed by SIMCA-P version 15.0.2 

368 (Umetrics, Umea, Sweden), MATLAB software (The MathWorks, Maticks, MA, USA), 

369 MetaboAnalyst 5.0 and SPSS version 24 (IBM SPSS Statistics) for different purposes. When 

370 needed, the intensity drop was corrected with the QC correction function included in the 

371 toolbox freely available online at https://github.com/Biospec/cluster-toolbox-v2.0. 

372 Statistical analysis is described in more detail in the Supporting Information. Briefly, 

373 unsupervised PCA was performed to visualize tendencies, determine the presence of 

374 outliers, and assess data quality by the explained variance (R2) and the predicted variance 

375 (Q2), considering as an appropriate value a difference between them of lower than 0.3 (15). 

376 Then, the supervised methods PLS-DA and OPLS-DA were performed followed by model 

377 validation. In those validated OPLS-DA models, variable selection was performed by using 

378 a variable influence on projection (VIP) and absolute value of p(corr) greater than 1.0 and 

379 0.5, respectively (14). Afterwards, UVDA was performed simultaneously to assess the 

380 significance of each metabolite separately. In short, nonparametric tests were applied for 

381 the comparisons previously mentioned as follows: a) the Kruskal-Wallis test for disease 

382 severity (mild, moderate, and severe patients at d0) followed by a multiple comparison test; 

383 b) the Wilcoxon signed-rank test for disease progression; and c) the Mann-Whitney U test 
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384 for COVID-19 disease and susceptibility. In all cases, the p-value had to be less than 0.05, 

385 and the false discovery rate at a level of α = 0.05 was controlled by the Benjamini-Hochberg 

386 correction test. Finally, ASCA was applied to study the influence associated with sex and 

387 age (44). When the ASCA model was not validated by permutation testing, analysis of 

388 covariance (ANCOVA) was carried out to eliminate the variability associated with age, sex 

389 or both (45).

390 Metabolite identification

391 The selected features in the statistical step by UVDA or MVDA were tentatively identified 

392 based on the m/z of the metabolites and the relative mobility time (RMT) (RTmetabolite/RTMetS) 

393 by using the CEU Mass Mediator (http://ceumass.eps.uspceu.es/mediator) (46), which is an 

394 ‘in-house’ useful tool for identification. This tool joins several databases, which are 

395 available online, such as METLIN (47), LIPIDMAPS (48), and KEGG (49), making the 

396 identification task faster and easier. Features assigned to metabolites have to fulfill an 

397 appropriate mass accuracy (maximum error mass of 15 ppm), as well as a comparable 

398 isotopic pattern distribution. Once metabolites were identified, confirmation was 

399 performed by injecting commercial standards, samples, and samples spiked with standards. 

400 Finally, for fragmentation pattern recognition, the QC sample was analyzed under the same 

401 analytical conditions as used in the previous analysis but applying different voltages in the 

402 MS fragmentor (150, 175 and 200 V) (50). It is important to point out that any drug associated 

403 with COVID-19 treatments that was identified among the significant metabolites was 

404 excluded from both MVDA and UVDA statistical analysis.

405 Study approval

406 The study was carried out at the Ramón and Cajal University Hospital in Madrid (Spain) and 

407 was approved by the local Research Ethics Committee (ceic.hrc@salud.madrid.org, 
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408 approval number 095/20). All subject unable to provide informed consent or witnessed oral 

409 consent with written consents by a representative were excluded.
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427 Participant’s metadata and abundances of the key metabolites are displayed in the 

428 supplemental table as a supplementary data file. 
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587  

588 Figure Legends

589 Fig 1. Untargeted metabolomic profiles of COVID19+ vs COVID19- and susceptible vs. non-

590 susceptible participants using supervised OPLS-DA models for CE-MS data. (A) Plot A 

591 represents the comparison of COVI19+ and COVID19- individuals (R2 = 0.878, Q2 = 0.813), 

592 and CV-ANOVA (p-value = 2.10 x 10-19). (B) Plot B represents the comparison of susceptible 

593 and non-susceptible participants with R2 = 0.902, Q2 = 0.817, and CV-ANOVA p-value = 4.20 

594 x 10-17. Models were validated by permutation testing and CV-ANOVA (14,15). 

595 Hydroxychloroquine, initially found to be significant, was removed from all statistical 

596 analysis as it was empirically used to treat COVID19 at the time of sample collection.

597 Fig 2. Untargeted metabolomic profiles of participants with COVID19 according to clinical 

598 severity using supervised OPLS-DA models for CE-MS data. (A) Mild vs. moderate disease; R2 

599 = 0.713, Q2 = 0.009, and CV-ANOVA p-value = 0.997. (B) Mild vs. severe disease; R2 = 0.929, 
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600 Q2 = 0.675, and CV-ANOVA p-value = 0.010. (C) Moderate vs. severe disease; R2 = 0.897, Q2 

601 = 0.636, and CV-ANOVA p-value = 0.027.

602 Fig 3. Untargeted metabolomic profiles at baseline and day 8 of participants with mild and 

603 moderate COVID19 supervised OPLS-DA models for CE-MS data. (A) Plot A represents the 

604 differences in mild cases (R2 = 0.816, Q2 = 0.596; CV-ANOVA p-value = 0.062). (B) Plot B 

605 represents the differences in moderate cases (R2 = 0.961, Q2 = 0.716; CV-ANOVA p-value = 

606 0.014). 

607 Fig 4. Heatmap with group average of statistically significant metabolites detected in human 

608 plasma samples by CE-MS modified by virus SARS-CoV-2 virus infection. In green, metabolites 

609 involved in TCA cycle. In purple, those involved in kynurenine pathway. In blue those 

610 compounds of the nitric oxide or are related with NO regulation.

611 Fig 5. A model of the metabolic pathways implicated in COVID19 pathogenesis. Impairment 

612 of blood oxygenation following SARS-CoV-2 damage results in 1) inefficient mitochondrial 

613 metabolism in the liver, resulting in dysregulation of the urea cycle citrulline decreases, 

614 phenylalanine increases; 2) dysregulation of energy metabolism and amino acid 

615 metabolism, resulting in decreased L-serine, L-alanine, and L-serine; 3) activation of 

616 oxidative stress response, resulting in BAIBA accumulation, L-ADMA upregulation, and 

617 induction of the kynurenine pathway, which impairs mucosal immunity, allowing bacterial 

618 superinfections. Figure generated using biorender.com.
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