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Abstract

Polygenic risk scores, or PRS, are a tool to estimate individuals’ liabilities to a disease or

trait measurement based solely on genetic information. One commonly discussed poten-

tial use is in the clinic to identify people who are at greater risk of developing a disease.

In this paper, we investigate the suitability of three large PRS for coronary artery disease

(CAD) for clinical use. In the UK Biobank, the cohort which was used in the creation of

each score, we calculated the association between CAD, the scores, and population struc-

ture for the white British subset. After adjustment for geographic and socioeconomic fac-

tors, CAD was not associated with population structure; however all three scores were

confounded by genetic ancestry, raising questions about how these biases would impact

clinical application. Furthermore, we investigated the differences in risk stratification using

four different UK Biobank assessment centers as separate cohorts and tested how missing

genetic data affected risk stratification through simulation and comparisons to scores cal-

culated in French Canadians. We show that missing data impact classification for extreme

individuals for high- and low-risk, and quantiles of risk is sensitive to individual-level geno-

type missingness. Distributions of scores varied between assessment centers, revealing that

thresholding based on quantiles can be problematic for consistency across centers and

populations. We highlight three criteria that a genetic risk score must fulfill in order to

be used to stratify patients in the clinic: 1) it must be robust to population structure 2)

scores must provide absolute thresholds for risk levels, and 3) there must be an approach

to compensate for missing genetic data. Finally, we propose potential avenues of improve-

ments for determining individual’s genetic liability to a complex trait such as CAD.

Introduction

In the last decades, the need for improvement of risk prediction for human disease has led

to the development of many genetic risk scores, which are metrics that use solely genetic

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2020.08.09.243287doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.09.243287
http://creativecommons.org/licenses/by-nc-nd/4.0/


data to predict the likelihood of an individual to develop disease. In this highly active area

of research, most papers cite the potential clinical value of genetic risk scores in identifying

individuals at high risk of developing the disease for early intervention1. With the prolifer-

ation of direct-to-consumer genotyping panels and as the cost of whole genome sequencing

continues to fall, we may not be far from the day where one’s genome sequence becomes a

standard part of one’s medical record.

In anticipation of this, a number of polygenic risk scores (PRS), which are the sub-

set of genetic risk scores that explicitly use a large number of genetic markers (thousands

or millions) from across the genome, have been published for many diseases, with coro-

nary artery disease seeming to be a popular and well-respected choice for potential clinical

use2,3. These PRS include variants that do not have well-established associations (either

through genome-wide association studies or functional studies) with the trait. PRS are

also used more and more as tools in research studies to help uncover links between traits

and mechanisms of disease susceptibility. For instance, they have been used as the ge-

netic instruments in Mendelian randomization studies to establish the causal relationship

between an exposure and an outcome. They also have a potential clinical application—

namely the stratification of individuals according to their risk of disease as predicted by

their genetics, allowing for those at high risk to be monitored more closely or to be given

medical interventions before the onset of the disease4,1. Guidelines are now being put for-

ward5 for appropriate clinical application and reporting of these scores.

Population structure is a concern in medical and statistical genetics, as it may lead

to spurious results in association studies, and PRS inherit this problem. It has been pre-

viously established that health outcomes in the UK Biobank (UKB) are associated with

the population geographic distribution, as are their corresponding PRS6. It has also been

shown that PRS can be biased by recent demographic history and environmental struc-

ture that cannot be corrected for using PCs7. Additionally, differences in technologies (se-

quencing, genotyping), quality control (QC) pipelines, imputation pipelines and need for
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lift over from a genome assembly to another, are all sources of potential missing data in

genetic data sets. This may result in the removal of markers that are defined in the score,

especially of low-frequency variants8. Because these values are calculated within a cohort,

markers that are kept to construct a score will vary between cohorts.

PRS are often assessed by testing how well they predict the phenotype (with or with-

out other covariates in the model) or by dividing individuals according to quantiles, with

the lowest and highest quantiles being of particular interest. They are also usually normal-

ized within the cohort to assess the mean effect on risk per standard deviation increase in

the score. These scores are generally touted for their ability to identify “high-risk” indi-

viduals for early intervention, however it is hard to define what the appropriate threshold

would be for the PRS in order to determine who these high-risk people are. Therefore,

important questions about data completeness, population stratification and appropriate

threshold definition arise, highlighting the need for careful examination of what is exactly

captured by the proposed scores, before their translation into clinical care can become a

reality.

In this paper we examine three scores for coronary artery disease (CAD): the meta-

GRS by Inouye et al.3, the K2018 score by Khera et al.2, and the E2020 score by Elliott et

al.9. All three scores tuned parameters in subsets of the UKB, and then validated on the

rest of the cohort. The subset and the validation set of UKB used to develop the meta-

GRS and the E2020 scores included all UKB participants, while the K2018 score was re-

stricted to the white British subset (81.45% of the cohort). For the metaGRS, random

linkage disequilibrium (LD) pruning was used to generate candidate sets of markers in

training data from the UKB (1000 randomly selected prevalent CAD cases and 2000 con-

trols) and the set that had the highest hazard ratio in the training set was selected. Weights

were chosen by combining the weights from three previously published CAD PRS plus the

effect size estimate of the marker on CAD in the UKB. The K2018 score was constructed

using the algorithm LDpred10, while the E2020 score used the software lassosum11. Both
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pieces of software were used to generate candidate scores, and in both cases, the authors

selected the score with the highest predictive value, measured by area under the curve

(AUC) of the receiver operating characteristic (ROC) curve in a logistic regression model

with CAD as the outcome.

Since all three scores were built using the UKB12, we revisited these scores in this

cohort to investigate three important aspects that any genetic risk score should demon-

strate robustness for before it could be successfully implemented for clinical use: popula-

tion structure, absolute thresholding for high-risk/low-risk individuals, and missing data.

We show that all three scores demonstrate limitations on the basis of these criteria and ex-

plain why one should be careful in applying PRS in clinical practice to identify future out-

comes. If these scores are fundamentally biased by both biological and technical features

intrinsic to the genetic data they use, then this demands methods that account for the ef-

fects we describe. We also discuss potential avenues of improvements for PRS methodolo-

gies before they should be cleared for clinical use.

Results

Robustness to Population Structure

Throughout time and evolution, all populations’ genetic makeup is subject to change due

to mutational events, genetic drift, natural selection and demographic events such as ex-

pansion or bottlenecks, migration and admixture13. These events lead to systematic dif-

ferences within and between populations due to variations in patterns of genetic diversity,

such as allele frequency14 or LD15. This is known as population structure, and it can in-

duce spurious results in association studies of genetic markers and traits16,17,18. Specifi-

cally, if one population (or subpopulation) has a different prevalence of a trait or different

mean phenotype measurement than the other, then the genetic markers that differentiate

the two groups can be found to be associated with the trait, even if they do not have any

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2020.08.09.243287doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.09.243287
http://creativecommons.org/licenses/by-nc-nd/4.0/


biological relationship to it. A common method of examining population structure is prin-

cipal component analysis (PCA)19,20. PCA is a statistical procedure which uses orthogonal

transformation to a set of genotypes into a set of values of linearly uncorrelated variables

called principal components21, which are used as low-dimension summaries of the original

genetic data. This method can be used in population genetics to visualize distance and re-

latedness between populations/individuals14,22 relative to other populations/individuals

included in the analysis. PCs are frequently included as covariates in genome-wide asso-

ciation studies as a way of accounting for population structure. Like PRS, PCs are sum-

maries of genetic information. An individual’s PC coordinates describe where individuals

sit on axes that are constructed to preserve as much variance as possible.

Fine-scale population structure in the white British subset

By far the largest group in the UKB are those who self-identified as “British” on the eth-

nicity question (UKB field 21000) and who clustered together in the PCA provided by the

UKB. These individuals, henceforth known as the “white British”, comprise 81.45% of the

data set. We performed a principal component analysis specific to this group (Figure 1a).

We see some separation of those born in Wales from those born in Scotland/Ireland. The

participants who were born in England are the overwhelming majority of the cohort, and

they appear throughout the plot.

Unsurprisingly, the first three PCs are all associated with the geographic distribution

of individuals, both at birth and at the time of assessment. For a description of these and

other variables used in our analyses, see Section M1.8. Both the home location at assess-

ment variables as well as the place of birth ones were associated with each PC at a level

of p < 2 × 10−16 for all univariate associations and for multivariate associations fitting all

three PCs at once. These PCs were also associated with each PRS (Table S4).

A relationship between a PRS and a PC is not inherently problematic if it reflects

true differences in disease risk across the population. Indeed, CAD is associated with the
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Figure 1: First two principal components of PCAs conducted in (A) the white British subset of the UK
Biobank, where individuals are colored by their country of birth (England, Scotland, Wales, Ireland, or un-
known), or (B) CARTaGENE, where individuals are colored by the region in which they were recruited.

first three PCs, however, several CAD risk factors, such as age, smoking behavior, and

indices of deprivation are all with the PCs and could be responsible for association with

the disease. Additionally, CAD prevalence shows an association with individuals’ places of

birth as well as their home locations, which are also associated with the first three PCs.

Since population structure arises non-random mating within a population, often due to

geographical and social barriers (for example, social class or religious sectarianism), it is

unsurprising that the PCs are associated with these environmental variables. The question

is whether or not the population differentiation captured by the PCs is a risk factor for

CAD independently of these environmental factors, including geographic coordinates.

After adjustment for age, sex, place of birth, home location, Townsend deprivation

index, income, age when completed full time education, and smoking status, we see that

in all cases, at least one PC remains associated with each PRS at a significance level of

p ≤ 1.5 × 10−7, while none of the PCs is even nominally associated with CAD itself (Ta-

ble S3). In Figure 2, we plot the p-value of association between the PCs and the different

risk scores (Panels A, B, and C) under different linear regression models. The simplest

model (on the far left in each panel) uses just the PCs, and progressively we add age and
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sex, and various social, environmental, and geographic variables to the model. In all cases

at least one PC remains strongly associated with each PRS, even after these adjustments.

In contrast, in Panel D, we perform the same analysis, but as a logistic regression of CAD

on these same models, again starting with just PCs and progressively adding more covari-

ates. In this case, once all of these variables are added to the model, none of the PCs is

even nominally associated with CAD. These results are also reported in Table S2, along

with the Akaike information criterion, which shows that the addition of social and environ-

mental coviarates improves the model fit. Therefore, the direct associations we observe be-

tween the PRS and the PCs (Table S4) do not reflect a true population cline of CAD risk

along the PC axes. These results indicate that the scores capture differences in susceptibil-

ity to CAD within the white British population due to the correlation between population

structure and environmental risk factors for the disease, rather than differences in the fre-

quencies of alleles that directly affect genetic predisposition.

What we are highlighting is that all three PRS predict statistically significant dif-

ferences across the white British population on the basis of genetic ancestry captured by

PCs, even after adjustment for environmental variables. However, these PCs do not ap-

pear to be associated with the target trait, CAD, once these same environmental variables

are accounted for, and as we observe in Table S2, it appears that the models that account

for environmental effects fit the data better, according the the AIC. This suggests that the

differences across the population predicted by the scores are spurious and this association

between the scores and genetic PCs will result in the misclassification of individuals’ ge-

netic risk, as whose genetic PCs are in the extremes of the distributions are more likely to

have scores that put them in the high- or low-risk category according to the PRS.

Risk scores in subpopulations of the UK Biobank

To date, most genetic research has been conducted in individuals of European ancestry,

and so most genetic risk scores have been built based on data from European populations.
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Figure 2: Significance of association between specific PCs (depicted by color) and A) the metaGRS, B) the
K2018 score, C) the E2020 score, and D) CAD. − log10 (P -values) are shown for different regression models,
each successively adding covariates to the one that preceded it. The first model regressed the score or CAD
on just the first three PCs; the second included the first three PCs and added sex and age; the third added
smoking status (current, previous, or never); the fourth added socioeconomic variables (Townsend deprivation
index, income, their interaction effect, and age completed education, adapted to include university); the fifth
added home location at assessment (northern and eastern coordinates); and the sixth model added place of
birth in the UK (northern and eastern coordinates). All regressions were performed on the same 334,181 white
British individuals who had no missing data on any of the potential covariates.
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For the three scores under investigation in our study, we observe that non-European sub-

populations of the UKB (South Asian; Black British, African, or Caribbean; and Chinese)

show different distributions of each CAD risk score compared to the European ones (white

British, Irish, and other white) (Figure S1).

Furthermore, it has been demonstrated that PRS have much lower correlations with

their target traits in African and East Asian populations than they do in Europeans23,24.

We tested if these findings are replicated for the PRS under investigation (Table S1). We

noticed that while the non-European subpopulations (especially the Chinese) are under-

powered compared to the European ones, the point estimates for the effect sizes of each

score are consistently lower for the non-Europeans than for the Europeans, except for the

E2020 score, where South Asians have a higher point estimate and lower p-value than for

the “other white” group. We also noticed that the estimated effect sizes on the scores are

considerably lower in the Black, African, and Caribbean group than in all the others.

Population structure in CARTaGENE

It was shown that scores developed in UKB were also confounded by population structure

when applied to other European populations, such as the Finnish population25. Whether

this result is generalizable to other CAD scores and in other populations of European an-

cestry, which were not used in the development of these scores, remained to be demon-

strated. To investigate this, we calculated each of these scores for 9,447 French-Canadian

individuals with genetic data in CARTaGENE26. There are over 6 million French-Canadians

today, most of whom are descended from a small founder population of 8,500 who colo-

nized the province of Québec between the early seventeenth century and the mid eigh-

teenth. In addition to this initial bottleneck, founder effects can be detected at the re-

gional level due to the patterns of settlement around the province27.

All three scores were strongly associated with CAD (defined following the definition

from Wünnemann et al.28), with p = 8.03×10−15 for the E2020 score, and p < 2×10−16 for
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the other two. Additionally, all three scores showed strong associations (p ≤ 7.12 × 10−16)

with PC1 which, in this cohort, differentiates individuals from the Saguenay-Lac-St-Jean

(SLSJ) region from the rest of the population (see Figure 1b). SLSJ is a region of Québec

whose population has gone through multiple bottlenecks and a rapid population expan-

sion29,30. These results suggest that all three scores would assign a higher genetic risk of

CAD to people whose ancestors come from this region. However, there is no association

between this PC axis and CAD risk in this cohort, both before and after adjustment for

age, sex, income, and educational attainment. We note, however, that the prevalence of

CAD in this cohort is small, with only 292 cases (244 men, 48 women), and so may be un-

derpowered to discover a true signal. It is however worrying that associations between the

PRS and population structure appear even in a cohort that was not part of the scores’

derivations.

Thresholds for risk

PRS are usually evaluated within a cohort, by dividing individuals according to quantiles

of their PRS, with the lowest and highest quantiles being of particular interest. The abil-

ity to identify “high-risk” individuals for early intervention is often used as a selling point

of these scores, although there is often no indication given on what an appropriate thresh-

old would be for the PRS in order to determine who these high-risk people are. Further-

more, if scores vary across the population in relation to population structure and geogra-

phy, then each institution will have a unique mean and standard error, as we observe in

Table 1, where we calculated the means and standard deviations for each score in white

British individuals who attended four different UKB assessment centers, and for the white

British cohort as a whole. Additionally, we calculated the empirical thresholds for the

top 10 and 5% of risk scores at each center. As expected from our examination of these

scores and population structure, we see that each center has a subtly different distribu-

tion of each of the scores from the others, whose statistical significance we tested using

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2020.08.09.243287doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.09.243287
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kolmogorov-Smirnov tests between each pair of centers for all three scores. We indicate

the ones that were significantly different (p < 2.78 × 10−3, to account for multiple testing)

in Table 1 and report the p-values of these tests in Tables S8, S9, and S10.

Table 1: Sample size, mean, standard deviation (SD), and thresholds for the top 10% and top 5% of risk
scores among white British participants from four different UK Biobank assessment centers, as well as the
whole subset (“All”). For each center and each score, we calculated the mean and SD for the subset of white
British participants who attended a given assessment center. We also calculated these values for the full cohort.
We report significant difference of distributions (P-values of Kolmogorov-Smirnov tests < 0.00287, which is
the Bonferroni-corrected 0.05 threshold) compared to Reading (r), Cardiff (c), Newcastle (n) and Glasgow (g)
assessment centers. All P-values of Kolmogorov-Smirnov tests of the pairwise equivalence of the distributions
between assessment centers are reported in Tables S8, S9 and S10.

Score Reading Cardiff Newcastle Glasgow All

Size 22,635 15,462 28,053 14,205 408,567

metaGRS

Mean n,g-0.7127 n,g-0.7115 r,c-0.6675 r,c-0.6617 -0.6907

SD 0.4478 0.4501 0.4474 0.4479 0.4483

10% -0.1380 -0.1329 -0.0893 -0.0871 -0.1153

5% 0.0257 0.0453 0.0724 0.0753 0.0500

K2018

Mean n18.0323 18.0332 r18.0363 18.0330 18.0340

SD 0.0850 0.0856 0.0844 0.0848 0.0849

10% 18.1406 18.1432 18.1456 18.1407 18.1427

5% 18.1719 18.1747 18.1772 18.1736 18.1746

E2020

Mean n,g-3.0219 g-3.0186 n-3.0152 r,c-3.0138 -3.0193

SD 0.1453 0.1446 0.1450 0.1456 0.1451

10% -2.8346 -2.8332 -2.8300 -2.8264 -2.8330

5% -2.7843 -2.7763 -2.7773 -2.7739 -2.7806

Where differences in the distributions of the scores exist, they appear between the

two northern cities (Glasgow and Newcastle) and the two southern ones (Cardiff and Read-

ing). The metaGRS shows the strongest and most consistent differences between these

groups. In contrast, the K2018 score has the most consistent distributions across the four
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centers, with a statistically significant difference between Reading and Newcastle only,

which may be detectable due to the relatively larger sample sizes in these two assessment

centers. Finally, the E2020 score shows the strongest differences between Reading and the

two northern cities, though there is also a statistically significant difference between Glas-

gow and Cardiff.

These differences are problematic because a person’s genetic make-up is constant and

so their PRS and the subsequent characterization of their genetic risk ought to be as well.

In other words, a person’s genetic predisposition does not change when they move to a

new city. Additionally, normalizing within the available data means that individuals who

are assessed at institutions where people are disproportionately high-risk may miss out on

interventions that could be helpful to them. Conversely, people who are assessed at insti-

tutions where people are disproportionately low-risk may be given medical interventions

inappropriately, exposing themselves to side-effects for minimal potential benefit.

Concordance of the scores

Because PRS tend to be defined in relative terms, one natural question when looking across

multiple ones is how consistent the results are—that is, given a cohort, do different scores

identify the same individuals as high-risk? To answer this question, we calculated the

Spearman rank correlation between each of the three pairs of CAD PRS investigated here

in the white British subset of the UKB. The highest correlation is between the metaGRS

and the K2018 score, which is 0.7676. The next highest was between the K2018 and the

E2020 score, at 0.6713. Finally, the correlation between the metaGRS and the E2020 score

was 0.5797. These correlations are not as high as one might expect, suggesting that there

is a good deal of variation among the scores who is identified as high- or low-risk.

Another way to interrogate this question is to look at the high- and low-risk individ-

uals for each score to evaluate their overlap. The proportion of overlap of white British

UKB participants who scored in the highest and lowest 10% of each score is reported in
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Table S5. In the best case scenario, when comparing the metaGRS to the K2018 score,

a little over half (55.30%) of individuals are identified as being in the top 10% of risk by

both scores. The proportion of overlap among all three scores was 0.2917 for the low-risk

group and 0.2912 for the high-risk one.

While there is some consistency across the scores in who is identified as high- or low-

risk, the agreement among the scores is not as strong as we might expect or want for in-

dividuals in the extremes of the distribution. Additionally, there are a small number indi-

viduals who are defined by one score as being high-risk and by another as low-risk (highest

or lowest decile of risk score), reported in Table S6. Consistent with the Spearman corre-

lation results and the results in Table S5, the largest discrepancies were observed between

the metaGRS and the E2020 scores. These analyses raise questions about which score is

the most accurate or appropriate in a clinical setting; however assessing this is beyond the

scope of this paper.

Impact of Missing Data

Genotyping chips, imputation pipelines, and quality control filters will vary between co-

horts, which may cause difficulties in calculating PRS because of the removal of markers

that are defined in the score, creating differences in genotyping data across cohorts, even

when they use the same technology. In Table S11, we show this for UKB and CARTa-

GENE, in relation to the markers used in each PRS. Both cohorts were imputed using

the Haplotype Reference Consortium31 as the reference population, and in both cases, we

used imputed markers with a genotype probability of at least 0.9 and removed all mark-

ers with a missingness rate greater than 0.01 across the cohort. We see that the imputed

data that passed our QC for the UKB contains at least 99.7% of the markers used in each

of the PRS. However, the imputed data for CARTaGENE contains between 73.9% and

86.0%. This leads to markedly different distributions of the scores (Figure 3). When we

calculate the scores on the set of markers available in both cohorts, the distribution of
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Figure 3: Distributions of raw risk scores for the three risk scores, calculated in the French Canadians of
CARTaGENE (CAG) and the white British of the UK Biobank (UKB) on two different sets of markers in each
cohort: the intersection of markers genotyped or imputed in both cohorts with high (> 0.9) genotype certainty
(overlapping), and the full set of these markers available in each cohort individually (all).

scores for both cohorts are more similar to each other (though small, but statistically sig-

nificant differences in their means remain). Since CARTaGENE contained information on

fewer markers than UKB, the distributions on the overlapping marker set resemble that of

CARTaGENE more than they do that of UKB. These results show how the set of mark-

ers available to calculate a PRS can drastically change the values of the raw scores, which

will, in turn, affect the interpretation of the score. This problem is surmountable if suit-

able thresholds have been previously developed in a cohort that is similar in terms of pop-

ulation and data collection pipeline.

In addition to cohort-wide missing genotype data, most QC pipelines tolerate some

amount of missing genotype data for each individual. This means that most, if not all,

participants are missing genotypes at a small set of random markers, which changes from

person to person. To handle this type of missingness when calculating the risk scores in

each cohort, the mean effect allele dosage calculated in the rest of the cohort is often used.

This discounts the effect of the marker on the score of that individual, but has downstream

consequences on the interpretation of individuals’ levels of risk.

To investigate the effect of individual missingness, for each PRS, we identified the

200 people with the most extreme scores (the highest 100 and the lowest 100). We then
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randomly removed their genotypes at markers used in the scores. We repeated this process

10 times and took the average of these new scores over all replicates for these individuals.

For a more detailed description of this process, see Section M1.7. In Table 2, we report

how many individuals still had the 100 highest or 100 lowest scores for each level of miss-

ingness.

Table 2: Number of people who originally had the highest and lowest 100 scores for each risk score who, after
setting a random group of genotypes missing, still have the most extreme risk scores.

Missingness Extreme metaGRS K2018 E2020

0.01
Highest 89 92 91

Lowest 96 94 91

0.02
Highest 82 87 85

Lowest 90 85 86

0.05
Highest 60 69 64

Lowest 71 70 66

0.10
Highest 35 49 39

Lowest 45 45 35

Predictably, as individual missingness increases, the number of people whose scores

remain in the extremes drops. In practice, it is unlikely that anyone with a genotype miss-

ing rate as high as 10% would be retained in analysis, but it is useful to see the trajectory.

The reason for this phenomenon is illustrated in Figure S2, which shows that for each

score, as missingness increases, the scores tend towards the mean.

When allele frequency data from a wider cohort is not available, there is no way to

calculate a mean effect allele dosage. In this case, missing markers are effectively removed

from the score, which is the equivalent of treating individuals as though they are homozy-

gous for the non-effect allele at the missing marker. For scores that are defined solely in

terms of risk increasing alleles—as is the case with the K2018 score—this will result in in-
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dividuals with high missing genotype rates having lower risk estimates than those whose

missing genotype rates are lower. When the score is defined as a mix of risk increasing and

decreasing alleles—as the metaGRS and E2020 scores are—then individuals with higher

missingness rates will tend to have less extreme scores. These results demonstrate that in-

dividual variation in missingness rates will impact the stratification of disease risk in the

cohort.

Discussion

As a result of our findings, we propose that all GRS should fulfill the following criteria be-

fore being put into clinical use. Specifically, scores should

• demonstrate robustness to population structure.

• provide absolute thresholds for high-risk vs normal or low-risk.

• have a way of compensating for missing data.

It remains highly problematic that current PRS predict genetic differences in CAD

risk across the PC axes that do not appear to exist in reality. In a clinical setting, this

could lead to unintentional and erroneous pathologizing of genetic ancestry. There is also

a risk that social problems, such as poverty and unequal access to quality education, food,

and medical care remain unresolved due to the perception that the groups who suffer dis-

proportionately from these problems are simply genetically more prone to disease. It is

vital that authors of PRS investigate the degree to which their scores are associated with

genetic population structure in their target populations. Ideally, they would demonstrate

that any association between population structure and the PRS is in proportion to the as-

sociation between population structure and the trait itself. However, in practice it may

not be possible to completely separate a markers’ effect on the trait from an effect it has

that is mediated through social or environmental factors.

As with most other studies of PRS, we have neglected gene × gene and gene × envi-
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ronment interactions. While one’s genetic make-up does not change when one moves from

one city to another, the interaction between one’s environment and one’s genetics might.

Mostafavi et al. have previously demonstrated that PRS have varying predictive values

across various social and environmental strata32, which suggests that there may indeed be

gene × environment effects that alter the interpretation of scores across different environ-

ments, but we have not investigated this in our own work.

We also advocate for absolute thresholds for risk, which would bring these scores in

line with traditional CAD risk factors, such as measures of obesity (waist-hip ratio and

body mass index), blood pressure, cholesterol levels. All of these have absolute thresholds

that differentiate between low, normal and increased risk, even if some of those thresholds

are not constant across ethnic groups or the sexes. To our knowledge, no one has ever ad-

vanced an argument for why genetic risk scores should be the exception to this. Further-

more, the current practice of normalizing within a cohort means that the score cannot be

compared across cohorts or populations. This introduces a problem raised by Martin et

al.24: where PRS can be used only in the majority ethnic group served by the institution,

such that members of minority ethnic groups will miss out on the potential benefits, which

will create or exacerbate existing healthcare disparities between these groups. Finally, ab-

solute risk thresholds would make PRS more accessible to patients, since it means they

could know their raw score and its interpretation the same way they do for measures like

LDL cholesterol or BMI.

Missing data are an inevitability, and PRS—which incorporate such a large number

of markers—need to provide ways of accounting for that. The imputation problems out-

lined in this study will be ameliorated somewhat once whole genome sequencing becomes

standard, but sequencing data will still need to pass through quality control pipelines

which will unavoidably lead to a loss of data at the cohort level, as well as for each indi-

vidual. As a result, authors of PRS need to provide some guidance on how to deal with

missing genetic data. For small genetic risk scores, it may be possible to use proxy mark-
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ers in LD with the missing position, which are highly correlated with those in the risk

score. However, as LD structure can vary even between closely related individuals (eg.

French-Canadians vs. other European populations) this is a challenging endeavour. Fur-

thermore, this becomes harder to do for larger scores where the best available proxies may

also be included in the score. One possible area of future work could be in the develop-

ment of algorithms that can readjust a score’s weights based on markers are available.

We believe that improvement on current scores is possible. Part of the reason why

the problems we have outlined arise is because of the way these scores are constructed and

assessed. There is an implicit assumption that people who show a phenotype must have

an increased genetic predisposition for it. While this is true for some traits—for example,

eye color33—there is a large environmental component to CAD which could potentially

overwhelm the underlying genetic predisposition. These environmental factors can create

cases out of people at low genetic risk for the disease and prevent those at elevated ge-

netic risk from developing it. The process of creating and validating these scores focuses

on their ability to predict phenotypes from genotypes. For CAD, this might be a perverse

incentive, since it rewards the PRS for including loci whose associations with the trait are

mediated through a social or environmental covariates—that is, genetic artifacts of social

and environmental risk. This means that if two individuals have the same true underly-

ing genetic risk, but one of them develops CAD and the other does not, a potential score

that assigns a higher value to the individual that develops CAD will be favored over on

that assigns them the same value. One way of avoiding this problem may be to restrict

the genetic risk scores only to loci with well-validated associations with CAD. These scores

would use a much smaller number of markers, allowing for proxy SNPs to be used when

genotype data is missing, and may show less spurious association with population struc-

ture.

Finally, it is worth questioning whether building a PRS for CAD itself is the best

way of capturing the genetic liability for it, and whether it makes sense to have a sin-
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gle score for both men and women. Traditional risk factors were highly associated (p <

2 × 10−16 with all three of our scores and a high PRS for any of the scores predicted hy-

pertension, high cholesterol, diabetes, and obesity (measured by BMI and waist-hip ra-

tio). Clearly the scores use markers associated with these risk factors, and it may make

sense to build separate PRS for each of them, and then combine them into a risk model,

as discussed previously34. One advantage of these approaches would be that pleiotropic

effects could be accounted for. For instance, if a variant increases adiposity, but decreases

HDL cholesterol, then these effects can both contribute to the final estimation of CAD via

the separate scores, whereas in a single score for CAD, one of these effects may mask the

other, or they might cancel each other out. Additionally, there might be more scope in us-

ing multiple scores to incorporate environmental and non-genetic biological effects, and

specifically the effects of age and sex.
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M1 Methods

Except where otherwise noted, all analyses were performed in R version 4.0.2.35.

M1.1 Study populations

M1.2 UK Biobank

The UK Biobank (UKB) is a prospective cohort of of about half a million individuals from

the United Kingdom, recruited between the ages of 40 and 6912. The full dataset is mul-

tiethnic, but our analyses were concentrated on the subset of “white British” individu-

als, that were defined as those who identified as “British” on the ethnicity question (field

21000) and who clustered together in the UKB principal component analysis (PCA) on

PCs 1 and 2, for a total of 409,308 individuals. These people were also identified as “Cau-

casian” in field 22006 (genetic ethnic grouping). We selected this subset as we wished to

avoid confounding due to systemic biases affecting access to and quality of healthcare in

the UK36. Given that it represents 81.45% of the whole of the UKB, the genetic architec-

ture of a given trait in this population will have a heavy influence on the results of genetic

analyses that use the full UKB cohort. The analyses shown here were conducted under

UK Biobank project number 49731.

M1.2.1 CARTaGENE

CARTaGENE is a Québec-based biobank of 43,000 participants, aged 40-60, and chosen

to be representative of the general population of the province26. About 12,000 of these

individuals have genotyping information available, and of this group, the majority (9,447)

self-identified as “French-Canadian”. It is in this group that we performed our analyses.

The analyses shown here were conducted under CARTaGENE project number 406713.
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M1.3 Principal component analysis of the white British subset

of the UK Biobank

We used flashPCA37 to calculate the top 50 PCs on the unrelated white British UKB par-

ticipants, using the imputed genotype data, QCed so that all SNPs had a minor allele

frequence (MAF) ≥ 0.01, have genotypes available for at least 99% of samples, a poste-

rior probably of at least 0.9 on the imputed genotype, and whose p-values for being out of

Hardy-Weinberg equilibrium were ≥ 10−6. We removed the four regions of high LD/known

inversions suggested by the authors of flashPCA and used the --indep-pairwise function

in Plink v1.9b 5.238,39 to prune the SNPs using the suggested parameters of a 1000 kilo-

base window, a step size of 50 variants, and an r2 of 0.05.

In order to create this subset of unrelated people for the PCA, we removed one indi-

vidual from each pair of related individuals identified in a file provided by the UKB, yield-

ing 335,088 unrelated participants. We then used the loadings to project all 409,308 white

British onto these 50 PCs. We computed the Pearson correlation coefficient between the

top 40 principal components provided by the UKB over the whole dataset and our PCs

computed on the white British, with strong correlation between our PC 1 and the UKB’s

PC 5 (correlation coefficient -0.961) and between our PC2 and the UKB’s PC 9 (correla-

tion coefficient of 0.917).

M1.4 Principal component analysis of the French Canadians in

CARTaGENE

We used flashPCA37 to calculate the top 20 PCs on unrelated (IBS sharing proportion

< 0.03 using King40) French-Canadian participants in CAG, using genetic data that had

been imputed using the Haplotype Reference Consortium31 as a reference panel. The re-

sulting data was QCed so that all SNPs had a minor allele frequence (MAF) ≥ 0.01, have

genotypes available for at least 99% of samples, a posterior probably of at least 0.9 on the
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imputed genotype, and whose p-values for being out of Hardy-Weinberg equilibrium were

≥ 10−4. We removed the four regions of high LD/known inversions suggested by the au-

thors of flashPCA and used the --indep-pairwise function in Plink v1.9b 5.238,39 to

prune the SNPs using the suggested parameters of a 1000 kilobase window, a step size of

50 variants, and an r2 of 0.05.

M1.5 Calculating genetic risk scores

We selected three polygenic risk scores (PRS) from the literature, each predicting the

risk of coronary artery disease (CAD)3,41,9. All three PRS are available at The Polygenic

Score (PGS) Catalog42, where we accessed the necessary information on the SNPs used in

the scores, including their respective effect alleles and weights. We downloaded the data

contained in this repository and calculated both scores in Plink v1.9b 5.238,39 with the

--score function using the imputed UKB genetic data for each individual from the white

British subset.

Unlike the other two scores, a high Elliott score is associated with a decreased risk of

CAD. To aid in the comparison across scores, we used the negative of the Elliott score in

all our analyses.

M1.6 Trait definitions

In the UK Biobank, Coronary artery disease was defined in the same way as it was in In-

ouye et al.’s paper3, using UKB fields 6150, 20002, and 20004. In the linked medical and

death records, we looked for ICD9 codes 410-412, ICD10 codes I21-I24 and I25.2. Among

the surgical procedure data, we looked for OPCS-4 codes K40-K46, K49, K50.1, and K75.

In the self-reported data, the relevant surgical procedures were recorded as 1087, 1095, and

1581. Unlike the study’s authors, we did not differentiate between incident and prevalent

cases. Of the 408,729 white British individuals for whom these data were available, 23,375

(5.72%) met the above criteria for CAD.
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In CARTaGENE, we followed the definition of Wünnemann et al., where CAD was

defined by history of myocardial infarction and a keyword search among surgical proce-

dures and other medical history fields for percutaneous coronary intervention or coronary

artery bypass grafting.

M1.7 Simulating missing genotype data in the UK Biobank

For each score, we identified the people with the highest 100 and the lowest 100 scores.

For each of these individuals, a random selection of genotypes at markers used by the

score was set to missing so that. The score was then recalculated. This process was per-

formed 10 times each for different rates of genotype missingness: 1%, 2%, 5%, and 10%.

For each rate, we took the mean score for each individual across all 10 runs as their new

score. These new scores replaced the individuals’ original scores, and were renormalized

with the rest of the cohort’s original scores.

M1.8 Covariates used in regression analyses

We see in our regression analyses that the p-values of association between the PCs and

CAD increase further with the addition of variables such as pack years of smoking (field

20161), measures of alcohol consumption, and exercise. However, the inclusion of these

variables means the exclusion of increasing numbers of individuals, who are not evenly dis-

tributed throughout the dataset with respect to all the relevant variables. For instance,

the individuals for whom there is no data on pack years of smoking are disproportionately

from the “previous smoker” category. They are also older on average by almost a full year

(0.9740) than the group for which these data are available. The variables included in the

models in Table S2 were chosen specifically to retain as much of the data as possible and

checked to ensure that biases (especially in the distribution of the PCs) were not intro-

duced due to missing data.

It is for this reason that we approximate socioeconomic status using Townsend depri-
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vation index, income, and age when completed full time education. The UK Biobank con-

tains a number of potential measures, including indices of multiple deprivation that were

calculated within each of England, Scotland, and Wales (fields 26410, 26427 and 26426, re-

spectively), which were tempting to use, but whose inclusion altered the PC distributions

of the remaining sample relative to the original. We report the full list of covariates in Ta-

ble S7.
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Data availability

All data used in this paper are available through the UK Biobank and CARTaGENE.

Scripts for analysis can be made available upon request.
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and Jean-Christophe Grenier for their comments on our work. RT and JH are Fonds de
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Supplementary Information

Figure S1: Distributions of raw risk scores for the three risk scores: (A) metaGRS, (B) K2018 score, and (C)
E2020 score for different subsets of the UK Biobank (UKB).

Table S1: Effect size estimates and p-values of association of each risk score with CAD, calculated for each
subpopulation. Scores were normalized within each subpopulation and included with age, sex, and the first 10
principal components provided by the UK Biobank.

Population Size metaGRS β̂ (p) K2018 β̂ (p) E2020 β̂ (p)

white British 408,572 0.527 (< 10−100) 0.514 (< 10−100) 0.404 (< 10−100)

Irish 12,669 0.544 (1.1 × 10−42) 0.515 (2.5 × 10−39) 0.430 (3.5 × 10−28)

other white 16,210 0.555 (2.3 × 10−36) 0.481 (1.5 × 10−30) 0.310 (2.4 × 10−14)

South Asian 7,628 0.464 (5.0 × 10−27) 0.405 (1.2 × 10−21) 0.394 (7.4 × 10−21)

Black, Afr.,
or Carib. 7,648 0.230 (0.001) 0.187 (0.011) 0.084 (0.250)

Chinese 1,503 0.319 (0.070) 0.350 (0.047) 0.313 (0.058)
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Table S2: Strength of association between PCs and CAD in the white British subset of the UK Biobank.
We provide the p-values and the Akaike information criterion (AIC) for each model of each PC in a logistic
regression of the score (normalized within the white British subset) on the first three PCs calculated within
the 334,181 white British individuals for whom all the relevant covariates were available, sequentially adding
environmental covariates to the model—that is, the model described in each row includes the covariates listed
in the preceding rows as well. SES variables were the Townsend deprivation index, income, and age when
completed full time education.

Model PC1 p-val PC2 p-val PC3 p-val AIC

PCs 2.2 × 10−10 2.1 × 10−10 4.5 × 10−11 144,801.2

" + sex + age 3.6 × 10−25 3.2 × 10−10 1.7 × 10−9 130,894.4

" + smoking status 7.9 × 10−21 3.8 × 10−10 3.5 × 10−8 129,636.0

" + SES variables 1.6 × 10−12 2.0 × 10−5 0.0009 128,001.1

" + home location (north and east) 0.0001 0.1340 0.0085 127,946.5

" + place of birth (north and east) 0.0827 0.6827 0.0562 127,917.5

Table S3: Strength of association between PCs and scores as well as the association between the PCs and
CAD in the white British subset of the UK Biobank. We provide here the p-values of each PC in a linear
regression of the score (normalized within the white British subset) on the first three PCs calculated within
the white British subset, age (defined using fields 32 and 34), sex (field 31), place of birth coordinates (fields
129 and 130), home location coordinates (fields 20074 and 20075), smoking status (field 20116), Townsend
deprivation index at recruitment (field 189), income (field 738 converted into numeric values), and age when
completed full time education (field 845), supplemented by qualifications (field 6138), where people who indi-
cated they had a university or college degree were assumed to have completed their degree at 22). The results
for CAD were from a logistic regression that used the same set of covariates.

Outcome PC1 p-val PC2 p-val PC3 p-val

metaGRS 0.0555 4.6 × 10−42 3.8 × 10−32

K2018 1.1 × 10−11 0.0141 0.0030

E2020 7.1 × 10−6 1.5 × 10−7 0.0344

CAD 0.0741 0.6689 0.0594

Table S4: Strength of association between PCs and scores in the white British subset of the UK Biobank. We
provide here the p-values of each PC in a linear regression of the score (normalized within the white British
subset) on the first three PCs calculated within the white British subset.

Score PC1 p-val PC2 p-val PC3 p-val

metaGRS 2.0 × 10−20 3.8 × 10−117 2.6 × 10−61

K2018 1.5 × 10−11 3.0 × 10−10 9.5 × 10−6

E2020 5.5 × 10−17 1.5 × 10−18 2.9 × 10−5
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Figure S2: Mean normalized PRS for different rates of random missingness. The positive barplot shows the
mean of the individuals who were identified in the original “full” score as having the highest 100 scores, and
the negative shows the mean for those with the lowest 100 scores. The red bars show the values using the
original “full” scores. Subsequent bars show the values of the scores after setting 1%, 2%, 5%, and 10% of the
genotypes of these individuals at markers used in each score to missing.

Table S5: Proportion of overlap among the white British individuals identified by each score as being in the
top 10% of CAD risk (upper triangle) to the bottom 10% (lower triangle).

metaGRS K2018 E2020

metaGRS – 0.5530 0.3894
K2018 0.5381 – 0.4520
E2020 0.3906 0.4597 –

Table S6: Number of people who are assigned by the score in the left-most column a level of risk (highest or
lowest decile) who were placed in the opposite extreme risk category by the other two scores. For example, the
first line tells us that there were 17 people who were in the highest decile of metaGRS scores who were also in
the lowest decile of K2018 scores. Similarly, there were 105 people who were in the highest decile of metaGRS
scores who were in the lowest decile of E2020 scores. The next line tells us the inverse: how many people were
in the lowest decile of risk for the metaGRS who were also in the highest decile of risk for the other two scores.
For reference, each decile contains 40,858 individuals.

Score Decile K2018 E2020

metaGRS
Highest 17 105
Lowest 0 90

K2018
Highest – 37
Lowest – 18
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Table S7: Description of variables used in our regression analyses.

Variable Description

Age

Participants’ ages (in years) at analysis. This is calculated
from the month of birth provided by field 52 and year of birth
from field 34. The day was set as the 15th of the month. The
number of days between this date and 2020-08-31 (August
being our most recent download of the UK Biobank data) is
calculated and then divided by 365.25. In the case of deceased
individuals, the age at death was used.

Sex From field 31.

Smoking status
From field 20161. Possible statuses were “Never”, “Previous”,
and “Current”.

Townsend
deprivation index From field 189.

Income

From field 738 (average total household income before tax).
Participants could choose among: “Less than 18,000”, “18,000
to 30,999”, “31,000 to 51,999”, “52,000 to 100,000”, “Greater
than 100,000”, “Do not know”, “Prefer not to say”. We set the
last two responses to NA and converted the remaining ones to
levels 1-6, where 1 was the lowest salary band and 6 was the
highest.

Age completed full
time education

Participants were asked to indicate their educational
qualifications in Field 6138. Those who did not indicate a
university degree were asked when they stopped their full time
education in Field 845. We used Field 845 and, those who
indicated they did have a university degree were assigned (by
us) an age of 22 for this variable, in order to keep them in the
analysis.

Place of birth in
the UK

Fields 129 (north coordinate) and 130 (east coordinate).
Coordinates are given in metre-grid map units.

Home location
Fields 20074 (east coordinate) and 20075 (north coordinate).
Coordinates are given in metre-grid map units.
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Table S8: P-values of Kolmogorov-Smirnov tests of the pairwise equivalence of the distributions of the meta-
GRS scores calculated for white British individuals who attended one of the two indicated assessment centers.
Low p-values indicate a rejection of the null hypothesis that the metaGRS score distributions are the same for
the two assessment centers.

Cardiff Newcastle Glasgow

Reading 0.9590 < 2.2 × 10−16 < 2.2 × 10−16

Cardiff – 1.55 × 10−15 1.78 × 10−15

Newcastle – – 0.2426

Table S9: P-values of Kolmogorov-Smirnov tests of the pairwise equivalence of the distributions of the K2018
scores calculated for white British individuals who attended one of the two indicated assessment centers. Low
p-values indicate a rejection of the null hypothesis that the K2018 score distributions are the same for the two
assessment centers.

Cardiff Newcastle Glasgow

Reading 0.5549 0.0004 0.9053
Cardiff – 0.0075 0.9708

Newcastle – – 0.0126

Table S10: P-values of Kolmogorov-Smirnov tests of the pairwise equivalence of the distributions of the E2020
scores calculated for white British individuals who attended one of the two indicated assessment centers. Low
p-values indicate a rejection of the null hypothesis that the E2020 score distributions are the same for the two
assessment centers.

Cardiff Newcastle Glasgow

Reading 0.0485 7.17 × 10−6 4.96 × 10−6

Cardiff – 0.0639 0.0003
Newcastle – – 0.0490

Table S11: Number of markers used in each score (Total), the number of markers used in the score for which
we had genotypes in the UK Biobank (UKB), the number of markers used in the score for which we had geno-
types in CARTaGENE (CAG), and the number of markers that were genotyped or imputed with high certainty
in both UKB and CAG (Overlapping).

Score Total UKB CAG Overlapping

MetaGRS 1,745,179 1,742,121 1,291,113 1,290,327

K2018 6,630,150 6,619,599 5,698,895 5,694,174

E2020 40,079 39,960 33,034 32,994
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