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Motivation: As chromatin accessibility data from ATAC-seq experiments continues to expand, there is
continuing need for standardized analysis pipelines. Here, we present PEPATAC, an ATAC-seq pipeline
that is easily applied to ATAC-seq projects of any size, from one-off experiments to large-scale sequencing
projects.

Results: PEPATAC leverages unique features of ATAC-seq data to optimize for speed and accuracy, and it
provides several unique analytical approaches. Output includes convenient quality control plots, summary
statistics, and a variety of generally useful data formats to set the groundwork for subsequent project-
specific data analysis. Downstream analysis is simplified by a standard definition format, modularity of
components, and metadata APIs in R and Python. It is restartable, fault-tolerant, and can be run on local
hardware, using any cluster resource manager, or in provided Linux containers. We also demonstrate the
advantage of aligning to the mitochondrial genome serially, which improves the accuracy of alignment
statistics and quality control metrics. PEPATAC is a robust and portable first step for any ATAC-seq project.

Availability: BSD2-licensed code and documentation at https://pepatac.databio.org.

Introduction

Because cells package chromatin differently depending
on their function and phenotype, profiling chromatin
accessibility is a primary experimental approach for
understanding cell states (1-3). The number of chro-
matin accessibility experiments has grown dramatically
in recent years with the introduction of the assay for
transposase-accessible chromatin (ATAC-seq) (4). With
ATAC-seq now widespread, there is demand for analyt-
ical approaches (5, 6), including systematic processing
pipelines to facilitate the goal of reproducible research
and ease cross-study comparisons (7, 8).

To address this need we developed PEPATAC, a fast
and effective ATAC-seq pipeline that easily generalizes
across compute contexts and research environments.
This pipeline has been built over years of experience
analyzing chromatin accessibility experiments and
implements several concepts that make it effective.
These include ATAC-specific quality control outputs,
both nucleotide-resolution and smoothed signal tracks,
and a serial alignment strategy to deal with high mito-
chondrial contamination. Our serial alignment strategy,
or ‘prealignments’, allows the user to configure a series
of genomes to align to before the primary genome.
PEPATAC provides a framework that allows a user to
align serially in customized order to as many genomes
as desired, which will be useful for many situations,
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including species contamination, dual-species experi-
ments, repeat model alignments, decoy contamination,
or spike-in controls.

While numerous ATAC-seq pipelines exist (For more
in-depth coverage see: 5, 6), PEPATAC is designed
with modularity and flexibility as paramount design
considerations (Fig. 1a). PEPATAC is compatible with
the Portable Encapsulated Projects (PEP) format (9),
which defines a common project metadata description,
allowing projects that use PEPATAC to be easily ana-
lyzed using any PEP-compatible tool. It also provides
the possibility for a single project description to be
shared across pipelines, computing environments, and
analytical teams. PEPATAC is easily customizable, in-
cluding changing individual command settings or even
swapping specific software components by modifying a
few lines of human readable configuration files.

PEPATAC does not rely on any specific local or cloud
computing infrastructure, and it has already been
deployed successfully in various compute environments
at multiple research institutes to yield numerous peer-
reviewed studies (10-14). While all ATAC-seq pipelines
use several common bioinformatic tools (Fig. S1),
we simplify the creation of a computing environment
with the required command-line tools using conda
(15), or either docker or singularity with the bulker
multi-container environment manager (16).


mailto:nsheffield@virginia.edu
https://pepatac.databio.org
https://doi.org/10.1101/2020.10.21.347054
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.21.347054; this version posted September 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

PEPATAC includes a well-documented code base with de-
tailed installation instructions, tutorials, and example
projects, so it is useful for both the bench biologist and
bioinformatician alike. We anticipate that this pipeline
will provide a useful complete analysis for basic ATAC-
seq projects and serve as a unified starting point for more
advanced ATAC-seq projects.

Materials and Methods
PEPATAC configuration

The PEPATAC pipeline is divided into two major parts
(Fig. 1b): First, it processes each sample individually at
the sample level. Once sample processing is complete,
the project-level part aggregates, analyzes, and summa-
rizes the results across samples. PEPATAC is composed
of two primary Python scripts that may be run from
the command-line. Sample information and parameters
are passed to the pipeline as command-line arguments
(see pepatac.py --help), making it simple to use as
a standalone pipeline for individual samples without
requiring a complete project configuration. Project
level output is produced using the project level pipeline
(see pepatac_collator.py --help). PEPATAC is built
using the Python module pypiper (31), which provides
restartability, file integrity protection, copious logging,
resource monitoring, and other features. Individual
pipeline settings can also be configured using a pipeline
configuration file (pepatac.yaml), which enables a
user to specify absolute or relative paths to installed
software, change adapter input files for trimming, and
parameterize alignment and peak calling software tools.
This configuration file comes with sensible defaults and
will work out-of-the-box for research environments that
include required software in the shell PATH, but it also
may be configured to fit any computing environment
and adapt to project-specific parameterization needs.

Refgenie reference assembly resources

Like any genome analysis, PEPATAC relies on ref-
erence genome annotations. To ensure that results
are comparable across runs, it’'s important to use the
same reference assembly. To manage these assets
in a reproducible and robust manner, PEPATAC uses
refgenie. Refgenie is a reference genome assembly
asset manager that simplifies access to pre-indexed
genomes and annotations for common assemblies,
and also allows generating new standard reference
genomes or annotations as needed while maintaining
asset provenance (33, 34). For a complete analysis,
PEPATAC requires several refgenie-managed assets:
fasta, chrom_sizes, bowtie2_index, blacklist, refgene_tss,
and feat_annotation. These can be either downloaded
automatically or built manually, which require a genome
fasta file, a gene set annotation file from RefGene, and
an Ensembl gene and regulatory build annotation file.
Using PEPATAC with seqOutBias requires the additional
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Fig. 1: PEPATAC is feature-rich with a logical workflow. (a) We

compared features across 14 ATAC-seq pipelines (AIAP (17); ATAC2GRN
(18); ATAC-pipe (19); ATACProc (20); CIPHER (21); ENCODE (22);
esATAC (23); GUAVA (24); I-ATAC (25); nfcore/atacseq (26); pyflow-
ATAC-seq (27); seq2science (28); snakePipes (29); Tobias Rausch (30))
and PEPATAC stands out for being feature-rich . (b) Reads are prepro-
cessed, serially aligned to the mitochondrial genome, curated repeats, and
then the nuclear genome. PEPATAC generates both smooth and exact sig-
nal plots, called peaks, and QC output plots and tables.
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Fig. 2: Example PEPATAC QC plots for reads and peaks. (a) Library complexity plots the read count versus externally calculated deduplicated
read counts. Red line is library complexity curve for SRR5427743. Dashed line represents a completely unique library. Red diamond is the externally

calculated duplicate read count. (b) TSS enrichment quality control plot.

(c) Fragment length distribution showing characteristic peaks at mono-,

di-, and tri-nucleosomes. (d) Cumulative fraction of reads in annotated genomic features (cFRiF). Inset: Fraction of reads in those features (FRiF).
e) Signal tracks including: nucleotide-resolution and smoothed signal tracks. PEPATAC default peaks are called using the default pipeline settings for
MACS2 (32). (f) Distribution of peaks over the genome. (g) Distribution of peaks relative to TSS. (h) Distribution of peaks in annotated genomic

partitions. Data from SRR5427743.

refgenie tallymer_index asset built for the same read
length as the data. Many of these assets may also be
directly specified at the command line should a user
not have refgenie-managed versions available. The TSS
annotation file, region blacklist, and feature annotation
file may all be specified to use a local, user-specified
file. For example, while ENCODE provides a common
set of regions that are aberrantly overrepresented
in sequencing experiments (e.g. a blacklisted set of
regions) (35), a user may create their own version of
regions that should be excluded from consideration and
point to this file manually.

File inputs and adapter trimming

PEPATAC sequentially trims, aligns, and analyzes se-
quences (Fig. 1b). PEPATAC accepts sequence data
input in 3 formats: unaligned BAM, separated FASTQ,
or interleaved FASTQ format. The pipeline first con-
verts the input format into FASTQ (if necessary) for
adapter trimming. For adapter trimming, users may
select between skewer (36), trimmomatic (37), or an
included Python tool using command-line arguments or
the PEP configuration file. The pipeline stores quality
control results including the number of raw, trimmed,
or duplicated reads, and runs FastQC (38) if installed.
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Prealignments and mitochondrial DNA

Because ATAC-seq data can have a high proportion
of reads mapping to the mitochondrial genome (from
15%-50% in a typical experiment up to 95% in some
experiments (39)), we considered how to optimize
the pipeline to deal with abundant mitochondrial DNA
(mtDNA). High mtDNA exacerbates the alignment chal-
lenge caused by nuclear-mitochondrial DNA (NuMts),
which are mtDNA sequences that have integrated into
the nuclear genome throughout eukaryotic evolution
(41). NuMts represent nonfunctional, truncated, and
mutation-ridden copies of mitochondrial protein-coding
genes; therefore, we assume that ATAC reads mapping
to them are highly likely to be erroneous alignments.
The typical strategy is to align to the mitochondrial
and nuclear genomes simultaneously, and then remove
nuclear-mitochondrial DNA (NuMts) post-hoc using
a blacklist, but this suffers from three disadvantages:
First, it is inefficient to align lots of mtDNA to the
larger nuclear genome; second, reads that match both
NuMt and mtDNA will be (incorrectly) split between
the two, and third, this approach relies on an accurate
pre-constructed annotation of NuMt locations, which
may not be available for every reference genome.
Furthermore, due to mitochondrial genetic diversity
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within and across cells, some reads derived from true
mtDNA may in fact map better to the reference NuMt
than to the reference mtDNA sequence. Also, reads
that span the artificial breakpoint in the linear mtDNA
reference may find an adequate NuMt match, but would
never align to the mtDNA.

We found that by separately aligning first to the mi-
tochondrial genome, we alleviated the challenges with
simultaneous alignments. To capture NuMts that span
the artificial breakpoint induced by converting the circu-
lar mitochondrial DNA into a linear representation for
alignment, we use a doubled mitochondrial reference
sequence, which enables non-circular aligners to align
reads that span the breakpoint. By default, the pipeline
is configured to align reads first to the doubled mito-
chondrial reference genome, but may be easily config-
ured to perform any number of additional serial align-
ments.

Alignments, deduplication, and library complexity

For prealignments and primary alignment, PEPATAC em-
ploys bowtie2 by default (42). Bowtie2 settings are con-
figurable in the pipeline configuration file but come with
sensible defaults of -k 1 -D 20 -R 3 -N 1 -L 20 -i
S,1,0.50 for prealignments and --very-sensitive -X
2000 for nuclear genome alignment. Users may option-
ally use bwa (43) with settings similarly configurable
in the pipeline configuration file (default: -M). Follow-
ing alignment, reads with mapping quality scores below
10 and any residual mitochondrial reads are removed
and read deduplication is carried out using samblaster
(44), but picard’s MarkDuplicates (45), or samtools (46)
may also be utilized based on user preference. PEPATAC
utilizes preseq (47) to calculate and plot sample library
complexity at the current depth, and includes the num-
ber of independently calculated duplicates (Fig 2a). The
pipeline also projects the unique fraction of the library
at 10M total reads. These metrics provide an estimate of
library complexity and allow the user to determine the
value of subsequent sequencing.

Library QC metrics

For quality control, PEPATAC provides a TSS enrichment
plot, produced by aggregating reads present in regions
2000 bases upstream and downstream of a reference set
of TSSs (Fig 2b). Enrichment is calculated as the aver-
age number of reads in a 100 bp window around the
TSS divided by the average number of reads in the first
200 bases of the entire region. This yields low signals
in the tails with a peak in the center, which we take to
be the TSS enrichment score. PEPATAC also produces
a fragment length distribution plot (Figure 2c). A stan-
dard quality ATAC-seq library is expected to yield clearly
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defined peaks at open chromatin (<100bp), mononucle-
osomes (200 bp), and sequentially smaller peaks repre-
senting multi-nucleosomes at regular intervals. To eval-
uate the enrichment of all reads across genomic parti-
tions, PEPATAC plots both the fraction and cumulative
fraction of reads (FRiF, cFRiF respectively) in genomic
features (Fig 2d). A novel feature of PEPATAC includes
the plotting of the fraction of reads in any feature type,
not solely in peaks. This is plotted as the cumulative
sum of reads in each feature divided by the total number
of aligned reads against the cumulative sum of bases in
each feature. The relative proportion of each feature can
be then be directly compared. The standard feature an-
notation produced and managed by refgenie includes
Ensembl defined enhancers, promoters, promoter flank-
ing regions, 5’ UTR, 3’ UTR, exons, and introns in that
order. Users can specify an alternative annotation file,
either a custom one or simply a different sort order, us-
ing the --anno-name pipeline parameter. For a quality
sample, the proportion of reads in peaks should be the
most enriched, reflecting the specificity of the peak calls
for that sample.

Signal tracks and peak calling

Alignments are used to generate two signal tracks:
one that records the exact location of transposition
events, and one that is smoothed (Fig 2e). These
tracks may be used for different downstream analyses;
the exact track is useful for analysis that requires
nucleotide-resolution, while the smoothed version is
often preferred for visualization and peak analysis.
Reads, representing transpoase cut-sites, are extracted
from the deduplicated, low-quality removed, primary
genome mapped BAM file into a wiggle-like track. For
the exact signal track, these cut-sites are shifted +4
bases for positive strand reads and -5 bases for negative
strand reads. For the smooth signal track, we extend
the shifted exact sites +/- 25 bases to yield 50 bp
smoothed windows around the exact cut-site position.
seqOutBias is an optional tool that can be used to
correct for enzymatic (e.g. Tn5 transposase) bias and
generate tracks for visualization (48). The bias itself is
corrected using a k-mer mask for the plus and minus
strand Tn5 recognition sites and by taking the ratio
of genome-wide observed read counts to the expected
sequence based counts for each k-mer (48). The k-mer
counts take into account mappability at a given read
length using GenomeTools’ Tallymer program (49).

An earlier study found multiple peak callers worked well
with chromatin accessibility data (50), and PEPATAC
provides the option to use F-Seq (51), MACS2 (32),
Genrich (52), HOMER (53), or HMMRATAC (54)
for peak calling, with parameters customizable in
the pipeline configuration file. MACS2 is used by
default (--shift -75 --extsize 150 --nomodel
-—call-summits --nolambda --keep-dup all -p
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0.01). The default settings are intended to maximize
recall and sensitivity. More stringent settings can be
easily adopted by modifying the pipeline configuration
file. Called peaks are standardized by extending up
and down 250 bases (a tunable parameter, --extend)
from the summit of each peak to establish peaks 500
bases in width. Any peaks which then extend beyond
chromosome boundaries are trimmed. Utilizing fixed-
width peaks reduces bias towards larger peaks in both
count-based and motif analyses while simultaneously
improving the identification of consensus peak sets by
reducing the likelihood of extraordinary large peaks
created through the union and merging of multiple peak
sets. Finally, peak scores are normalized to score per
million by dividing by the sum of scores over 1M.

PEPATAC also produces several plots detailing enrich-
ment of reads in peaks including: the distribution of
peaks across the genome by chromosomal location (Fig
2f), the distribution of peaks relative to TSSs (Fig 2g),
and the distribution of peaks within genomic partitions
(Fig 2h). The TSS distance distribution shows the
distance of called peaks with respect to TSSs grouped
in log-scale bins. Finally, users may optionally employ
HOMER to calculate motif enrichments in called peaks
(55).

Running multiple samples with PEPATAC

To run the pipeline across multiple samples in a larger
project, the pipeline uses the job submission engine
looper (56), which employs the Portable Encapsulated
Project standardized definition of project metadata
(9)(Fig. S2). This standard project format enables a
pipeline to be run on any project that follows the format,
which is simple, standardized, and well-documented.
Looper enables the PEPATAC pipeline to be run in any
compute environment, including locally (the default) on
a single laptop or desktop, or with any cluster resource
manager. It also can be used with containers. Addi-
tionally, looper’s project format gives pipeline users
access to APIs written in Python and R for downstream
analysis of pipeline results.

For the user whose environment is set up to run con-
tainers, we enable container use with either Docker or
Singularity via a single image file or through the multi-
container environment manager, bulker (16). Using
bulker, PEPATAC may be run in containers across sam-
ples and compute environments, simplifying deployment
by requiring only bulker and the PEPATAC pipeline it-
self, eliminating the need to install each required pack-
age independently.

Aggregating results from multiple samples

To summarize and incorporate data across samples, the
second step in a PEPATAC analysis is to run a project-
level pipeline (pepatac_collator.py) that identifies
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consensus peaks across a project and calculates sample
coverage of those consensus peaks in a convenient table
for easy downstream analysis. To establish consensus
peaks, PEPATAC identifies overlapping (1 bp, a tunable
parameter: --min-olap) peaks between every sample in
a project and defines the consensus peak’s coordinates
based on the overlapping peak with the highest score.
Peaks present in at least 2 (parameter: --cutoff)
samples with a minimum score per million greater than
or equal to 5 (parameter: --min-score) are retained. A
peak count table is then provided where every sample
peak set is overlapped against the consensus peak set.
Individual peak counts for an overlapping peak are
weighted by multiplying by the percent overlap of the
sample peak with the consensus peak.

For navigating results, PEPATAC provides both sample
and project level reports in a convenient, easy-to-
navigate HTML report with project-level summary table
and plots, job status page, and individual sample pages
with sample statistics and QC plots all at your fingertips.
In addition, looper will produce summary plots from
individual sample statistics including the number of
aligned reads, percent aligned reads, TSS scores, and
library complexities. A user can produce the HTML
report during a run or after completion, with the job
status page providing information on whether a sample
has failed, is still running, or has already completed.

Results

To demonstrate PEPATAC’s default workflow and output,
we analyzed samples from the original standard ATAC
(4), fast ATAC (57), and omni ATAC (58) protocol pa-
pers. This dataset includes human ATAC-seq reads from
33 standard ATAC, 152 fast ATAC, and 139 omni ATAC
samples (Supplemental file 1). PEPATAC provides out-
put and quality control results both for individual sam-
ples and for the project as a whole. For each sample,
PEPATAC produces narrowPeak and bigWig files to visu-
alize nucleotide-resolution alignments, smoothed align-
ments, and peak calls. PEPATAC also produces summary
statistics files that report the number of reads, dupli-
cates, genome alignment rates, transcription start site
(TSS) enrichment score, number of called peaks, frac-
tion of reads in peaks (FRiP), and job runtime among
others for every sample in a project.

Performance

PEPATAC is designed to be computationally efficient. To
evaluate how PEPATAC scales with increasing numbers
of reads, we ran 430 ATAC-seq samples of varying
input size through PEPATAC (Supplemental file 4). We
then placed samples in 500MB input file size bins and
compared runtimes and peak memory usage (Fig. S3).
Runtime scales linearly with increasing file size, but
importantly, even samples with more than 150 million
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Fig. 3: PEPATAC prealignments increase mapped mtDNA reads, improve computational efficiency, and positively influences the fraction of
reads in peaks (FRiP) metric. (a) NuMTs represent a significant complication of simultaneous alignment. (b) At mtDNA percentages from 10-100%
at total read numbers ranging from 10-200M, using prealignments dramatically reduces run time. (c) Log ratio of prealignments runtimes versus no
prealignment runtimes yields significant savings. (d) There is a significant increase in the percent of reads mapped to mitochondrial sequence when
using prealignments versus not across standard, fast, and omni-ATAC protocols. (e) As reported for ChIP-seq (59), FRiP is positively correlated with
the number of called peaks. (f) With prealignments, the positive correlation between FRiP and the number of called peaks tends to increase ((d) ** =
p < 0.001; t-test (mu = 0) with Benjamini-Hochberg correction. (e-f):* = p < 0.0001; Kendall rank correlation coefficient).

reads completed in less than 8 hours (Fig S3a). We also
show that PEPATAC, with default settings, only utilizes
between 5-9 GB at peak memory use (Fig S3b).

Prealignhments

To evaluate the advantage of serially aligning to
the mitochondrial genome (Fig. 3a), we measured
the total alignment runtime of synthetic mixtures of
mitochondrial-aligning (mtDNA) and whole human-
aligning (hg38) sequences with and without prealign-
ments. We constructed libraries of mixed mtDNA:hg38
mapping ATAC-seq reads from 0% to 100% mtDNA in
increments of 10%, at 10 million, 20 million, and up
to 200 million total reads in increments of 20 million
reads, resulting in 121 different library combinations.
We recorded the alignment time for each input file with
and without prealignments (Fig. 3b). To determine for
which scenarios using prealignments is beneficial, we
calculated the log ratio of run times with prealignments
versus without prealignments and found that using
prealignments reduces the total time of alignment even
when mtDNA alignment rates are under 10% (Fig. 3c).
In addition to speed and efficiency gains, PEPATAC with
prealignment compared to without prealignment to
mtDNA yields higher alignment rates to mitochondrial
sequence than aligning to a combined human and
mitochondrial genome as is commonly performed (Fig.
3d). This is true for every sample tested no matter the
library preparation protocol nor percent mitochondrial
contamination (Fig. S4). This result indicates that
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the common approach of simultaneously aligning to
the nuclear and mitochondrial genomes systematically
underestimates the fraction of mitochondrial reads in an
experiment. We therefore propose that mitochondrial
alignment rates are generally underestimated by about
1-5% in published reports.

To show how prealignments successfully depletes
reads aligning to NuMTs, we ran a standard ATAC
(SRR5427804), fast ATAC (SRR2920492), and omni
ATAC (SRR5427806) sample through PEPATAC with
no prealignments, prealignment to mitochondrial se-
quence, and prealignment to mitochondrial, ribosomal,
and known repeat sequences. We then compared
the highest signal peaks between each prealignment
strategy across each ATAC-seq protocol. We used BLAST
(60) to annotate the highest signal peaks and then
intersected called peaks under each strategy with the
ENCODE blacklist (35), which normally is used to
filter results in PEPATAC by default. The omni ATAC
sample had the least number of aberrant high signal
peaks with only a single NuMT peak identified in the
top 10 highest signal peaks and only present when
analyzed without prealignments. Significantly, as soon
as mitochondrial prealignment is included, this peak is
excluded (Supplemental file 3, Fig. S5a). Of the top
100 omni ATAC peaks, there are fewer overlaps with
blacklisted regions, both overall, and as we increase
the number of prealignments. With no prealignments
there are 4 blacklisted regions in the top 100 and
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only 2 with prealignments (Supplemental file 3). As
omni ATAC is reported to reduce mitochondrial reads,
this result is expected. Furthermore, this difference is
highlighted as we compare both fast ATAC and standard
ATAC. Three of the top 10 peaks from the fast ATAC
sample without prealignments aligned to mitochondrial
sequence (Supplemental file 3). These are eliminated
with prealignments. Additionally, without prealign-
ments, 22 of the top 100 peaks intersect blacklisted
regions. Only 18 overlap with mitochondrial prealign-
ment, and significantly, only 3 of the top 100 overlap
blacklisted regions when prealigning includes ribosomal
and repeat regions (i.e. satellite DNA). This suggests
that a number of regularly identified peaks should
typically be excluded in the absence of prealignments.
While a blacklist does an excellent job at removing these
regions, prealignment achieves similar results while
also removing additional non-blacklisted regions that
are likely spurious (mapping to unmapped regions or to
different species, see Supplemental file 3). These results
are even more obvious with standard ATAC. Standard
ATAC without prealignment to mitochondria mapped
8 of the top 10 peaks to NuMTs (Supplemental file 3).
These are removed with prealignment to mitochondria.
Furthermore, the number of blacklisted regions drops
from 17 without prealignments to 7 with mitochondrial
prealignment and only 2 with mitochondrial, ribosomal,
and repeat region prealignment. Because prealignment
reduces spurious peak assignment (Supplemental file 3,
Fig. S5b) and it reduces total runtime in nearly every
scenario (Fig. 3c), prealignment is an effective strategy
to include in every pipeline run.

Peak caller comparison

To evaluate the difference in called peaks when using
different peak callers, we compared both the PEPATAC
determined consensus peaks and the peaks from a single
sample (SRR5210416) produced when using different
peak callers (Fseq, Genrich, HOMER, HMMRATAC,
MACS2 with variable peaks, and MACS2 with fixed
peaks). Similarity between the intervals was evaluated
with a modified Jaccard statistic (61) implemented in
the bedtools (62) package. At the single sample level
MACS2 with variable peak width is the most similar in
output to MACS2 with fixed peaks and Fseq (Fig. S6a,
see Supplemental file 2). Interestingly, the least similar
peak results are from Genrich and HMMRATAC, which
possibly reflects the goal of both tools being designed to
evaluate ATAC-seq data as opposed to originally being
developed for ChIP-seq (Fig. S6a). These differences
become more pronounced at the consensus peak level,
with HMMRATAC becoming more dissimilar (average
jaccard statistic = 0.31, Supplemental file 2) to the
other peak callers (Fig. S6b).

We also asked whether this difference was due to
an improvement in reduced peak calling at nuclear
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mitochondrial sequences (NuMTs), repeat regions, or
high signal regions. One way to evaluate this is to
determine the number of intersections of the individual
peak caller called regions against a known blacklist (35)
and to BLAST (60) the highest signal peaks. Indeed,
HMMRATAC overlaps the least number of blacklisted
regions (231 versus the maximum of 756 with HOMER,;
see Supplemental file 2) and it turns out a number
of both the blacklisted regions and the highest signal
peaks are NuMTs or repeat regions (Supplemental
file 3). While MACS2 remains the most commonly
employed peak caller across ATAC-seq pipelines, further
comparative studies may better illustrate the utility of
some of the more recently developed peak callers.

Library QC comparison

Several of the QC metrics (e.g. TSS enrichment score,
the fragment distributions, non-redundant fractions, and
the PCR bottlenecking coefficients 1 and 2) employed by
PEPATAC are near-universal in the field, and as such are
calculated in the same manner. To evaluate how differ-
ent annotations may affect the TSS score, we also com-
pared TSS annotations from Ensembl, Gencode, and Re-
fgene (PEPATAC default). Refgene produces higher TSS
scores (Fig. S7), which reflects the fact that Refgene
contains only the most commonly employed transcrip-
tion start sites for each gene whereas both Ensembl and
Gencode include all known sites, diluting the aggregated
signal.

Fraction of reads in peaks

It has also been reported that in ChIP-seq experiments,
but not specifically in ATAC-seq, that FRiP correlates
positively with the number of identified peaks (59)
(Fig. 3e). In libraries with significant mitochondrial
contamination, for example, from libraries produced
using standard-ATAC library preparation protocols,
this correlation is emphasized when using prealign-
ments (Fig. 3f). We next sought to understand how
the serial alignment strategy affects calculation of
Fraction of Reads in Peaks (FRiP). FRiP is a common
qualitative measure of enrichment and sample qual-
ity. However, FRiP calculations are poorly defined,
making it dangerous to compare FRiP scores among
different protocols and approaches. ENCODE defines
the denominator of the FRiP score to be total mapped
reads (ENCODE Terms). If only one genome is used
for alignment, then the calculation is clear, but for
a serial alignment pipeline, the FRiP score depends
on whether the denominator includes reads mapped
to the nuclear genome only, or to all genomes (Fig.
S8c,d). By default, PEPATAC uses the deduplicated,
low-quality removed, primary genome mapped BAM file
to calculate the fraction of reads in the final called peak
output file, which by default utilizes fixed width peaks
and has removed any blacklisted regions. This has the
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consequence of changing the FRiP calculation based on
whether prealignments were used (Fig. S8c,d). When
using prealignments, the default FRiP calculation will
significantly increase, because the number of reads
mapped to the primary genome is reduced due to reads
mapping more accurately to the mitochondrial genome
and thus being excluded from downstream analysis.
When FRiP is calculated using the total mapped reads
(prealignments and primary alignment), these rela-
tionships are inversed (Fig. S8c,d). In any scenario,
prealignments lead to more total mapped reads, due to
more efficient mitochondrial alignment. As more recent
ATAC-seq sample preparation protocols intentionally
reduce mitochondrial contamination, these differences
are most pronounced when using the original, standard
ATAC-seq protocol. Therefore, reliance on a specific
cutoff (e.g. 0.3 or greater) as indicative of a quality
sample must be relative to protocol and method.

Discussion

PEPATAC is an efficient, user-friendly ATAC-seq pipeline
that produces helpful quality control plots and signal
tracks that provide a comprehensive starting point
for further downstream analysis. Two key benefits of
the PEPATAC pipeline over existing pipelines are its
flexibility and modularity. PEPATAC is uniquely flexible,
for example, by allowing pipeline users to serially align
to multiple genomes, to select from multiple aligners,
peak callers, and adapter trimmers, while providing a
convenient, configurable interface so a user can adjust
parameters for individual pipeline tasks. Furthermore,
PEPATAC reads projects in PEP format, a standardized,
well-described project definition format, providing
a reproducible interface with Python and R APIs to
simplify downstream analysis.

Because PEPATAC is built on looper, it is easily deploy-
able on any compute infrastructure, including a laptop,
a compute cluster, or the cloud. It is thereby inherently
expandable from single to multi-sample analyses with
both project level and individual sample level quality
control reporting. This means that a user may submit
any number of samples using a single looper command
and corresponding PEP metadata file. Its design allows
for simple restarts at any step in the process should the
pipeline be interrupted. Due to its modular construc-
tion multiple software options for primary pipeline steps
are available, creating a swappable pipeline flow path
with individual steps adaptable to future changes in the
field. PEPATAC is a rapid, flexible, and portable ATAC-seq
project analysis pipeline providing a standardized foun-
dation for more advanced inquiries.

Documentation and links
* PEPATAC v0.9.16: pepatac.databio.org.
- PEP metadata standards: pep.databio.org.
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- Looper job submission engine: looper.databio.org.
* Refgenie reference genomes: refgenie.databio.org.

- Source code to reproduce output for this paper:
github.com/databio/pepatac_paper_data.
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Fig. S1: ATAC-seq pipelines universally require several common bioinformatic tools.

bioinformatic tools, PEPATAC offers the greatest flexibility and includes a number of the most popular tools.

Supplemental files
Supplemental _file_1.csv

While all pipelines require a

number of common

Supplemental file_1.csv is the PEP-formatted sample table for the primary dataset. Samples are defined by protocol,
whether standard, fast, or omni, and include accession numbers for access through the Gene Expression Omnibus
(63).

Supplemental _file_2.xIsx

Supplemental file_2.xlsx contains two sheets. The “jaccard_similarities” sheet includes tables representing the re-
sults of bedtools intersect between each independent peak caller software for 1) the PEPATAC derived consensus
peak set, and 2) for an individual sample (SRR5210416) between each peak caller. This sheet also includes the av-
erage jaccard statistic for each peak caller. The “blacklisted regions” sheet compares the number of peaks generated
by each peak caller that overlap blacklisted regions (35).

Supplemental _file_3.xlsx

Supplemental file_3.xlsx includes three sheets for a standard ATAC (SRR5427804), fast ATAC (SRR2920492), and
omni ATAC (SRR5427806) sample that has been run through PEPATAC with 1) no prealignments, 2) mitochondrial

11- PEPATAC ATAC-seq pipeline - bioRxiv


https://doi.org/10.1101/2020.10.21.347054
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.21.347054; this version posted September 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Raw ..... N
data é

Sample PrOJect » Environment

annotation config config
: PEP

\ local compute,

----- SLURM,
22 Iooper
PEPATAC yami cloud,
Pipeline etc.

interface

Fig. S2: Deploying PEPATAC across multiple samples using looper. The PEPATAC pipeline can be easily run across multiple samples in any

computing environment using looper.
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Fig. S3: PEPATAC is computational efficient. (a) Pipeline runtime scales linearly with input file size. (b) Pipeline memory use peaks between

5-9GB.

prealignment (rCRSd: the revised Cambridge Reference Sequence doubled genome), and 3) mitochondrial, human
repeats, and rDNA prealignments. In each sheet, for the highest scoring peaks, individual peak fasta sequences
(included) were aligned with BLAST (60) and top scoring annotations recorded. If the peak overlaps a known
blacklisted region (35), this is also marked.

Supplemental_file_4.csv

Supplemental_file_4.csv is the PEP-formatted sample table for the performance testing dataset. Accession numbers
for file access through the Gene Expression Omnibus (63) are included for each sample.
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Fig. S4: Prealignment increases mtDNA alignment. Within Standard (a), Fast (b), and Omni (c) ATAC-seq library preparation protocols, every
sample shows increased mtDNA alignment when utilizing prealignments (The gray lines represent the mean increase within each protocol. ** = p <

0.001; t-test (mu = 0) with Benjamini-Hochberg correction.)
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Fig. S5: Prealignment (and improved ATAC-seq library preparation protocols) successfully deplete signal from NuMTs, repeat regions, and
high signal regions. (a) Even where improved library preparation protocol leads to a NuMT annotated peak, prealignment successfully removes the
spurious signal. (b) Both omni ATAC and prealignment to mitochondria and repeats and ribosomal sequence successfully depletes a spurious signal.
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Fig. S6: Peaks are comparatively dissimilar between the five optional peak callers. (a) For a single sample, MACS2 derived peaks, both with
fixed and variable width peaks, are the most similar to Fseq called peaks. Genrich and HMMRATAC are the most unique among peak callers. (b)
After PEPATAC consensus peak generation, HMMRATAC becomes even more dissimilar from the results derived from alternative peak callers.
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Fig. S7: The TSS enrichment score is dependent on the annotation source. Refgene TSS annotations, which include the predominant TSS
annotation only, produces the highest TSS enrichment score.
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Fig. S8: Prealignment changes the relationship between primary genome and total aligned reads and the fraction of reads in peaks (FRiP)
is dependent on mapping strategy. (a) The number of primary, nuclear genome mapped reads is reduced when using prealignments. (b) However,
the total number of mapped reads is increased with prealignments due to more specific read mapping. (c) The FRiP is increased with prealignments
when using primary, nuclear genome mapped reads as the denominator. (d) In contrast, when using the total mapped reads the FRiP is reduced when
using prealignments due to a larger mapped read pool in the denominator (* = p < 0.01; ** = p < 0.001; t-test (mu = 0) with Benjamini-Hochberg
correction).
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