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Abstract 23 

Vision provides the most important sensory information for spatial navigation. Recent 24 
technical advances allow new options to conduct more naturalistic experiments in virtual 25 
reality (VR) while additionally gather data of the viewing behavior with eye tracking 26 
investigations. Here, we propose a method that allows to quantify characteristics of visual 27 
behavior by using graph-theoretical measures to abstract eye tracking data recorded in a 3D 28 
virtual urban environment. 29 
The analysis is based on eye tracking data of 20 participants, who freely explored the virtual 30 
city Seahaven for 90 minutes with an immersive VR headset with an inbuild eye tracker. To 31 
extract what participants looked at, we defined “gaze” events, from which we created gaze 32 
graphs. On these, we applied graph-theoretical measures to reveal the underlying structure 33 
of visual attention. 34 
Applying graph partitioning, we found that our virtual environment could be treated as one 35 
coherent city. To investigate the importance of houses in the city, we applied the node degree 36 
centrality measure. Our results revealed that 10 houses had a node degree that exceeded 37 
consistently two-sigma distance from the mean node degree of all other houses. The 38 
importance of these houses was supported by the hierarchy index, which showed a clear 39 
hierarchical structure of the gaze graphs. As these high node degree houses fulfilled several 40 
characteristics of landmarks, we named them “gaze-graph-defined landmarks”. Applying the 41 
rich club coefficient, we found that these gaze-graph-defined landmarks were preferentially 42 
connected to each other and that participants spend the majority of their experiment time in 43 
areas where at least two of those houses were visible. 44 
Our findings do not only provide new experimental evidence for the development of spatial 45 
knowledge, but also establish a new methodology to identify and assess the function of 46 
landmarks in spatial navigation based on eye tracking data.  47 

Author Summary 48 

The ability to navigate and orient ourselves in an unknown environment is important in 49 
everyday life. To better understand how we are able to learn about a new environment, it is 50 
important to study our behavior during the process of spatial navigation. New technical 51 
advances allow us to conduct studies in naturalistic virtual environments with participants 52 
wearing immersive VR-headsets. In addition, we can use eye trackers to observe the 53 
participant’s eye movements. This is interesting, because observing eye movements allows 54 
us to observe visual attention and therefore important cognitive processes. But, it can be 55 
difficult to analyze eye tracking data that was measured in a VR environment, as there is no 56 
established algorithm yet. Therefore, we propose a new method to analyze such eye 57 
tracking data. In addition, our method allows us to transform the eye tracking data into 58 
graphs which we can use to find new patterns in behavior that were not accessible before. 59 
Using this methodology, we found that participants who spend 90 min exploring a new 60 
virtual town used some houses as orientation anchors which we call gaze-graph-defined 61 
landmarks. Our further analysis revealed also new characteristics of those houses that were 62 
not yet associated with landmarks. 63 
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Introduction 64 

Having a sense of orientation and being able to navigate in the world that surrounds us is 65 
essential in everyday life. Specifically, the awareness of the own position in space combined 66 
with the ability to remember key locations to plan mental routes between them (1) is crucial. 67 
This enables efficient navigation to a location by using globally accessible knowledge of a new 68 
environment or previously acquired knowledge of a known environment. Overall, the ability 69 
to remember and use important locations and their relations is essential for spatial navigation.    70 

In classical research, spatial navigation depends on three types of knowledge (2). First, 71 
landmarks are characterized by their salience against their surrounding (3). Consequently, 72 
they may serve as anchors for localization and are memorized when exploring a new 73 
environment, thus forming landmark knowledge (2,4,5). Second, route knowledge refers to 74 
the ability to travel along paths and remember routes between landmarks. It is thought to be 75 
acquired during active navigation (6), but does not necessarily contain metric distance or 76 
direction information (4). Third, survey knowledge is described as a mental map-like 77 
representation developed by assembling landmark and route knowledge (4) including spatial 78 
relations between multiple landmarks (7,8). Additionally, survey knowledge is thought to 79 
contain information about metric properties and the relation to cardinal direction (9). Overall, 80 
knowledge of landmarks, routes and cognitive maps have been cornerstones for spatial 81 
navigation research for decades. 82 

In spite of their ubiquitous use, the concept of landmarks, routes and cognitive maps 83 
does not come without problems. Often, landmark based navigational learning is investigated 84 
in environments where single cues are introduced to serve as landmarks in an otherwise 85 
undifferentiated environment. For example, the Morris water-maze is a widely used task to 86 
study the physiological mechanisms of spatial learning in rodents (10–12). Similarly, 87 
adaptations of the Morris water-maze in virtual environments (13–15) and other maze tasks 88 
(16,17) have been used to investigate spatial navigation in humans. Moreover, performing eye 89 
tracking allows investigation of visual interaction with landmarks (13,16,18,19). Other studies 90 
investigating spatial navigation were conducted in real world natural environments using 91 
mobile eye tracking systems (20–25). However, with recent technological advances, the virtual 92 
environments used in spatial navigation research have become more complex and naturalistic 93 
(18,19). Some studies push for even more naturalistic virtual environments in combination 94 
with head mounted virtual reality headsets (6,26,27). This development creates the need to 95 
clearly define the concepts of landmarks, route knowledge and survey knowledge in such 96 
naturalistic environments.  97 

The increasing use of more realistic VR environments with freedom to move, creates 98 
new challenges for the analysis of eye tracking data. In classical visual exploration of static 2D 99 
images, fixations and saccades dominate. In a complex 3D environment vestibular-ocular 100 
reflexes and pursuit movements additionally occur on a regular basis. However, there is no 101 
established algorithm to differentiate this expanded set of eye movements in eye tracking 102 
data collected in a 3D environment. Thus, to identify characteristics of visual behaviour during 103 
free exploration of a virtual village and how they relate to spatial navigation, a new method is 104 
needed.  105 
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In this study, we propose a procedure to analyze eye tracking data and a data driven 106 
method to objectively define and quantify visual behavior with respect to spatial information. 107 
We use a graph-theoretical approach to access global navigation characteristics across 108 
participants and investigate the occurrence, connectivity, and navigation function of a subset 109 
of houses, consistently outstanding in their graph-theoretical properties. The approach is 110 
applied to eye tracking data recorded during exploration of a virtual town. Overall, our 111 
findings establish a new methodology to identify and assess the function of outstanding 112 
houses in spatial navigation based on eye tracking data.   113 

Results 114 

We collected eye tracking data of 22 participants (11 females, age: M = 22,86, SD = 2,59) 115 
during 90 min of free exploration in the virtual city Seahaven. All participants gave their 116 
written informed consent to participate. The study was approved by the Ethics Committee of 117 
the Osnabrück University following the Institutional and National Research Committees’ 118 
ethical standards. The participants wore a VR headset with an inbuild eye tracker. They moved 119 
using a controller and physically rotated their body on a swivel chair to turn in the virtual world 120 
(Fig. 1a). The virtual city was built on an island and comprised 213 houses (Fig. 1b). Colliders, 121 
i.e., transparent closely fit box-like structures, surrounded all houses, trees, and roads. We 122 
calculated the viewing direction based on the position of the participant in the VR, the rotation 123 
of the headset, and information from the eye tracker. After data collection, we cast a virtual 124 
ray in the viewing direction until it hit a collider, indicating that the participant viewed the 125 
respective object (28). This process was completed 30 times per second. Aggregated over all 126 
participants, this led to about 3.500.000 hit points that built the basis for our data analysis. 127 

Figure 1: Experimental Setup and Seahaven (a)The subject sits on a fully rotatable swivel 128 
chair wearing headset and controller. The experimenter’s screens in the background allow 129 
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monitoring the subject’s visual field of Seahaven (left) and the pupil labs camera images (right). 130 
(b) The island of Seahaven in aerial view. 131 

Defining gazes in VR 132 

Eye tracking in an VR environment provides several challenges for data quality. Compared to 133 
conventional desktop settings, VR environments allow increased freedom of movement. 134 
Under these conditions, subjects perform fixations, saccades, vestibulo-occular reflexes, and 135 
smooth pursuit movements. No general algorithm to classify these types of eye movements 136 
has been established yet. Thus, the development of appropriate processing algorithms for the 137 
eye tracking data is crucial. 138 

As a first step, we use the collider hit points to identify the object the participants 139 
focused their gaze on. Each collider corresponds to an entire object; thus, each hit point 140 
identifies an entire object. For our analysis, houses form the regions of interests (ROIs). The 141 
no house category (NH) summarizes all other collider hits except houses, e.g. grass, roads, 142 
trees, and the water. Samples that do not hit a collider, thus hitting the sky or the sun, are 143 
identified as “sky” category. We then combine directly consecutive hit points on the same 144 
collider to identify clusters. Please note that the clusters do not contain information on where 145 
in the participant’s visual field the viewed object occurred. This pre-processed data of 146 
combined consecutive hit points on the same collider serves as the basis for all following data 147 
processing.  148 

As a second step, we address the problem of missing data in individual subjects. We 149 
label all data samples that were recorded with a probability of correct pupil detection of less 150 
than 50% as “missing data samples”. Subsequently, we exclude two participants who had 151 
more than 30% of their eye tracking data classified as missing data. All further data analysis is 152 
conducted with the data of the remaining 20 participants. 153 

In the following we will need to differentiate between periods where participants 154 
could perceive the visual stimuli or not. Given that vestibulo-occular reflexes and smooth 155 
pursuit movements stabilize the retinal image in dynamic situations and allow perception in 156 
that period similar to fixations (29), here and in all following analysis we subsume these under 157 
the general term of fixations. In contrast, participants are blind to visual input during a 158 
saccadic suppression (29,30). While classical fixation detection algorithms often differentiate 159 
eye movements based on velocity, these eye movements also display a temporal disparity. 160 
Specifically, saccades usually range from a duration of 10 to 100 ms, while fixations typically 161 
occur from 150 to 600 ms with a mode around 250 ms (29). Therefore, we conjecture that 162 
with an appropriate temporal threshold, specifically the time scale of 266 ms which is 163 
equivalent to eight data samples, it is possible to identify data clusters containing fixations.  164 

However, since the data still includes a considerable amount of missing data points, 165 
we expect a significant number of clusters to be “cut” by missing data points, thus appearing 166 
to be of shorter duration. Consequently, using a fixed temporal threshold to identify clusters 167 
containing fixations creates the problem of falsely failing to identify these “cut” clusters as 168 
clusters containing fixations. Therefore, to counteract this effect, it is crucial to interpolate 169 
missing data samples if possible.    170 
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Therefore, as a third step in our pre-processing algorithm, we interpolate short 171 
intervals of missing data. If seven or fewer data points are missing, it is improbable that 172 
subjects had enough time to make a saccade to a different spatial area (ROI), finish a fixation, 173 
and make a saccade back to the same area. Consequently, we interpolate data if seven or 174 
fewer consecutive data points are missing and only if these occur between two clusters on the 175 
same collider (ROI) (Fig. 2a). In case these interpolation criteria apply, the interpolated data 176 
points are labelled with the collider name and combined with the two clusters surrounding 177 
the short interval of missing data. Larger gaps are not interpolated but treated as missing data. 178 
Furthermore, missing data points occurring between clusters of different colliders are not 179 
interpolated, independently of the duration of the gap. This procedure ensures to capture 180 
most fixations while minimizing false interpretations of missing data. 181 

 182 
Figure 2: Defining gazes. (a) We interpolate of missing data only if no more than 7 samples 183 
are missing consecutively (pupil detection with less than 50% probability) and if these samples 184 
occur between two clusters on the same collider. During the interpolation process, these 185 
samples are then unified with the two surrounding clusters to form a new cluster on the same 186 
collider. The first row shows three clusters of missing samples (marked noData), while the 187 
second row represents the result of the algorithm. In the first cluster (green box), both 188 
interpolation conditions apply: there are no more than seven consecutive missing data samples 189 
(#4) and they are surrounded by two clusters on the same collider. Consequently, these 190 
missing samples are interpolated and combined to a new cluster. In the second cluster (1st 191 
orange box) the first interpolation condition applies (#noData samples <= 7) but the cluster 192 
occurs between clusters on two different colliders (H103 and H54). Therefore, no interpolation 193 
is performed. In the third cluster (2nd orange box) only the second interpolation condition 194 
applies. Even though the missing data samples occur between two clusters on the same 195 
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collider (H55), the first interpolation condition is violated (#noData samples > 7). Consequently, 196 
no interpolation is performed. (b) Histogram of hit point cluster length distribution after 197 
interpolation. For better visualization all cluster durations longer than 1000 ms are combined 198 
in the last bin. The ordinate corresponds to the probability of each duration. Since previous 199 
work used gamma distributions to model the distribution of fixation durations or response 200 
latencies (31,32), we model the two partly overlapping gamma distributions for visualization 201 
only, fitting the distributions of the duration of fixations (green) and non-fixation events (grey). 202 
The dashed red line marks the separation threshold for gazes. (c) The pie chart shows the 203 
result of the gaze classification across all participants.  204 
 205 

As a fourth step, we finally apply the temporal threshold to identify clusters that 206 
contain fixations during which the participants could process the visual input. As described 207 
above, we adopt a threshold of eight samples, i.e. 266 ms, to identify clusters that contain at 208 
least one fixation (Fig. 2b). Using this approach, shorter clusters likely to be caused by samples 209 
during saccades, i.e., periods during which perception was suppressed, would be excluded 210 
from further analysis. In the following, we will define these clusters containing fixations as 211 
new meaningful “gaze” events and they will form the basis of our further analysis. 212 
 This procedure classifies on average 86% of the data samples as belonging to gazes 213 
(Fig. 2c). Previous studies reported that humans spent approximately 90% of viewing time on 214 
fixations (29). This indicates that our attempt to capture gaze events under dynamic 215 
conditions in VR is on the conservative side. 216 

How to create graphs from gazes 217 

To capture information gathered by the participants during exploration of the virtual town, 218 
we create gaze graphs based on the gaze events. In these graphs each node represents a 219 
house. Viewing two houses in the VR environment in direct succession gives information on 220 
their relative spatial location. Therefore, if anytime during the experiment a gaze event on a 221 
house is directly followed by a gaze event on another house the respective nodes are 222 
connected by an undirected edge. All gaze graphs are undirected and unweighted. Hence, 223 
they do not contain information about the directionality or frequency of their edges (i.e. 224 
direction and frequency of succession of gaze events). The completed gaze graphs capture the 225 
spatial information obtained by the visual exploration in the virtual town.  226 

The first 30 seconds of one participant exploring Seahaven serve as an example of the 227 
process to create a graph (Fig. 3a). The graph contains one node for each house (ROI), but 228 
does not consider the spatially unspecific no-house and sky category. The graph creation 229 
process starts with an edge between the first house viewed and the second house viewed (Fig. 230 
3b). If the gaze on a house is followed by a missing data cluster, then no edge is created. As 231 
stated above, the edges are unweighted, i.e. binary. That is, if the participant looked back to 232 
two houses already seen in sequence, an edge between these houses is already in place and 233 
the graph is not changed. The process of edge creation is iterated for all gaze transitions. 234 
Whenever, a new house is viewed, a new node is created in the graph. Fig. 3c shows a 235 
visualization of the result of applying this procedure to the complete data of the example 236 
participant.  237 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.462279doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462279
http://creativecommons.org/licenses/by/4.0/


8 
 

 238 
Figure 3: Graph creation. (a) Time line of gaze events by a participant. The abscissa 239 
represents the first 30 seconds (900 hit points) of the recordings. The ordinate contains all 240 
viewed houses viewed during that time line. We number houses and name them accordingly, 241 
e.g., H148 for house number 148. In this panel each house has a distinct color for visualization 242 
only. The grey bars represent clusters of the NH category, which are not considered during 243 
graph creation. The black bar identifies a remaining cluster of missing data samples. 244 
Therefore, no edge will be created at this moment in the time line. (b) The graph corresponding 245 
to the time line of panel A is visualized on top of the map of Seahaven. The colors of the nodes 246 
match the colors of the boxes in panel A. Edges are labelled according to the order they were 247 
created. (c) The complete graph of a single participant based on all gaze events during 90 min 248 
of exploration visualized on top of the 2D map of Seahaven. Note that in this visualization the 249 
locations of the nodes correspond to the locations of the respective houses they represent in 250 
Seahaven, however, this locational information is not contained in the graph itself.  251 

Is it a single city or multiple suburbs? – Graph partitioning 252 

To address questions on spatial cognition, we are interested whether the Seahaven should be 253 
treated as a loosely connected set of suburbs or as a coherent single city. The search for 254 
distinct clusters in the graph directly relates to the problem of graph partitioning. In the field 255 
of graph theory, partitioning is a well investigated problem as it divides a graph into smaller 256 
mutually non-overlapping subgraphs. Of specific interest are approaches that maximize 257 
within-cluster connections (those that are maintained) and minimize between-cluster 258 
connections (those that are cut). Thus, we use graph partitioning to classify Seahaven as a set 259 
of suburbs or one coherent city.  260 
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For graph partitioning, we employ the spectral graph analysis. This approach includes 261 
three steps: the calculation of the graph’s Laplacian matrix, finding the second smallest 262 
eigenvalue, and splitting the graph based on the corresponding eigenvector. First, we consider 263 
the adjacency matrix and the degree matrix of a graph. The former is a binary square matrix 264 
where each entry indicates whether an edge connects the two nodes / houses. The latter a 265 
square matrix that contains the degree of each node on its diagonal and is zero otherwise. We 266 
calculate the Laplacian matrix by subtracting the degree- from the adjacency matrix. Second, 267 
according to (33,34), the spectrum of a graph, i.e., the eigenvalues of the Laplacian matrix can 268 
be used as a measure of graph connectivity. We calculate these eigenvalues 𝜇𝜇𝑖𝑖 and sort them 269 
in increasing size. They have the properties that µ1 = 0 and µ2 ≥ 0. The second property is valid 270 
only if the graph is connected. As we eliminate all nodes/houses that were never viewed, this 271 
is given in our application (µ2 = 0.300+/-0.097). Third, we consider the eigenvector with the 272 
second smallest eigenvalue and map each node onto the corresponding entry. Sorting the 273 
adjacency matrix in this way, a modular structure of the graph would be visible in form of a 274 
block structure (Fig. 4a), which, however, is not the case in the present analysis. The 275 
partitioning of the graph is performed by splitting of the eigenvector into positive and negative 276 
parts (Fig. 4b) and assigning the corresponding nodes to the two separate groups. The larger 277 
the gap between positive and negative values, the fewer inter-cluster connections are 278 
present. In the present analysis, hardly any gap is visible. Fig. 4c visualizes the results of the 279 
graph partitioning by spectral analysis with the nodes of each cluster color coded and plotted 280 
onto the city map.  281 

Figure 4: Graph partitioning. (a) The sparsity pattern of the graph’s adjacency matrix sorted 282 
by its second smallest eigenvector. Color coded into two clusters obtained by the positive and 283 
negative parts of the eigenvector. (b) The second smallest eigenvector of the adjacency matrix 284 
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is sorted ascendingly and color coded into two clusters. (c) The two clusters are displayed onto 285 
the map of subject 35. 286 
 287 

To investigate the quality of the partitioning, we follow the definitions used in 288 
Schaeffer (2007). As a measure of cluster goodness, we consider the intra-cluster density and 289 
the inter-cluster density. The density of a graph is defined as the ratio of instantiated edges 290 
relative to the number of possible edges: 291 

𝛿𝛿(𝐺𝐺) =
𝑚𝑚
�𝑛𝑛2�

 292 

with 𝑛𝑛 =  | 𝑉𝑉 | as the number of nodes, and 𝑚𝑚 =  | 𝐸𝐸 | as the edge count. Furthermore, we 293 
define the intra-cluster density as the average of the densities of both clusters and the inter-294 
cluster density as the ratio of inter-cluster edges to the maximum possible inter-cluster edges.  295 

We analyze the graphs of individual participants based on 90 min exploration time. On 296 
average, the participants' graphs contain 883 edges. The mean density of the graphs is 297 
0.041+/-0.006. This means that on average 4.1% of all possible edges are instantiated. 298 
Furthermore, dividing the graphs into two parts would require on average a cut of at least 299 
9.3% of the edges. Specifically, a sufficient cut has to have 82.6 edges resulting in two clusters 300 
with approximately 400 edges each. After partitioning, the mean intra-cluster density was 301 
0.079+/-0.012, while the mean inter-cluster density was 0.0083+/-0.0020. These numbers 302 
indicate that the graph cannot be easily partitioned, without cutting a fair number of edges.  303 
 In conclusion, our results reveal that the graphs cannot be distinguished into large-304 
scale clusters. That is, the exploration of Seahaven does not show separate city blocks, but 305 
was rather well-balanced. Thus, the virtual environment can be treated as one coherent city. 306 

The distribution of gazes on houses - Node degree centrality 307 

We characterize the role of different houses during visual exploration by indices adapted from 308 
graph theory. The node degree centrality is the main and most basic graph-theoretical 309 
measure in graph-theoretical research. It is defined as the sum of all edges connecting a node: 310 

𝑐𝑐(𝑖𝑖) = �𝑥𝑥𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖

 311 

with 𝑖𝑖 being the node under consideration and 𝑥𝑥𝑖𝑖𝑖𝑖 the adjacency matrix. Here, the node degree 312 
of a house reflects the number of other houses a participant made a gaze to or from the house 313 
under consideration in direct succession. The node degree centrality in the gaze graph thus 314 
differentiates houses according to their importance during visual exploration in the virtual 315 
town.  316 

First, we use the node degree centrality to investigate the viewing behavior on an 317 
individual participant level. Fig. 5a shows the gaze graph of a participant with individual nodes 318 
color coded according to the respective node degree. Whereas many nodes have a degree 319 
centrality in the single digit range, a few houses reach rather high values. The variance of node 320 
degree for each subject ranged between 0 and 33. It is apparent that the range of node 321 
degrees is surprisingly large.  322 
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Figure 5: Node degree centrality. (a) The graph of one participant is visualized on top of the 323 
map of Seahaven. The nodes were colored according to their respective node degree 324 
centrality. (b) The mean node degree of all subjects (blue line) and their respective standard 325 
deviation (grey lines), sorted such that the average node degree increases along the ordinate. 326 
(c) A pseudo 3D plot color coding the node degree of every house (abscissa) for every subject 327 
(ordinate). The houses are sorted so that the average node degree value increases along the 328 
abscissa. Similarly, the participants are sorted, so that the average node degree increases 329 
along the ordinate. The marginals of this plot result in the panels b and e. (d) The distribution 330 
of the pairwise inter-subject correlation coefficients of the node degree values of all houses. 331 
(e) The mean node degree of each house sorted according to the mean node degree along 332 
the abscissa (blue line) and their respective standard deviations (grey lines).  333 

 334 
Next, we investigate the similarity of the node degree centrality distribution over 335 

subjects. We calculate the average node degree of each participant across all houses (Fig. 5b), 336 
which reveals limited variations only. The average node degree of each house across all 337 
participants (Fig. 5e) showed a monotonous linear increase. Both aspects are also combined 338 
in an image-scale visualization (Fig. 5c) that matches the order of the houses and the order of 339 
participants. Sorting the houses according to the average node degree centrality leads to a 340 
near monotonous increase on the individual participant level as well. This was quantified by 341 
the high correlation of 0.70 (+/- 0.06) of node degree centrality between participants (Fig. 5d). 342 
Thus, the node degree centrality in the gaze graph varies considerably while the values of 343 
individual houses are rather consistent across participants.  344 

The distribution of node degree centrality over houses reveals interesting aspects. Over 345 
a large range of houses the average node degree centrality increases only slowly. Only for the 346 
last few houses, we observe a steep increase. These houses stand out from the other houses 347 
and are viewed directly before or directly after viewing many other houses. Therefore, the 348 
high node degree centrality houses may serve as important reference points.  349 

In summary, the node degree is a simple yet powerful centrality measure that can be 350 
used to identify important nodes in the gaze graph, hence important houses in visual behavior. 351 
First results indicate that a small number of houses show an especially high node degree 352 
across all participants, setting themselves apart from the rest of the city. Interestingly, a small 353 
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number of houses with subject independent high node degree values, i.e. houses with many 354 
visual connections to other houses, would also be the characteristics that we would expect 355 
landmarks to display in gaze graphs.  356 

High node degree centrality houses – Hierarchy index 357 

o further investigate the houses with high node degree in respect to their distribution, we 358 
apply the graph-theoretical measurement of the hierarchy index. This index characterizes 359 
hierarchical configurations within networks. By applying it to the degree values above the 360 
subject’s respective median, we focus the index on the upper tail of the distribution of node 361 
degree centrality. Here, we fit in a bi-log plot of the node degree centrality with frequency 362 
against the node degree values (Fig. 6a), the slope of the regression line starting from the 363 
subject’s respective median. For the example participant reported already above this results 364 
in a slope of -2.6349. Performing this analysis for all participants results in a slope smaller than 365 
-2.00 throughout, with a mean of -2.91. Furthermore, the small standard deviation of 0.34 366 
showed, that the hierarchy index is similar across subjects (Fig. 6b). According to (35), 367 
networks with strong hierarchical configurations, i.e., with many low degree nodes and few 368 
high degree nodes, had a slope of below -2 (or above 2). Therefore, the hierarchy index reveals 369 
a clear hierarchical structure of the gaze graphs and emphasizes the importance of the few 370 
exceptionally high node degree centrality houses.   371 

Figure 6: Hierarchy index. (a) The frequency of occurrence of the node degree frequency for 372 
a single participant. The green line indicates the linear regression starting at the median of the 373 
distribution. (b) The distribution of the hierarchy index across all subjects.   374 
 375 

This observation triggers a detailed look at the mean node degree distribution over all 376 
subjects to identify those special high node degree houses. Plotting the mean node degree of 377 
houses averaged across subjects onto the map of Seahaven (Fig. 7c) highlights the scattered 378 
subset of high node degree houses. Furthermore, the mean node degree across all houses and 379 
all subjects measures 8.3 with a standard deviation of 3.98 (Fig. 7a). We select the value of 380 
the 2-sigma distance (16.25) as the threshold to identify the high node degree houses. This 381 
results in a set of 10 houses with node degree centrality values exceeding the threshold.  382 
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 383 
Figure 7: The high node degree centrality houses. (a) The mean node degree distribution 384 
across all subjects with mean, 1σ- and 2σ-thresholds.  (b) A box plot of the 10 houses with at 385 
least 2σ-distance to the mean node degree.  (c) A map plot with all nodes color coded with 386 
their respective average node degree across all subjects. (d) The 10 houses, which 387 
exceeded the 2σ-distance to the mean displayed on the map for our example subject with all 388 
their connections and color coded with their respective node degree.  389 
 390 

Next, we analyze these houses with respect to their interconnectivity and visibility in 391 
the city. The distribution of the node degree centrality over subjects for each of the 10 houses 392 
reveals considerable variance (Fig. 7b). However, all 10 houses for all participants have a node 393 
degree centrality of 9 or above. Plotting them jointly with all their edges onto the map of 394 
Seahaven for our example subject shows that they are located centrally within the city. 395 
However, these houses are connected to the outer areas of the city and together cover nearly 396 
the whole city (Fig. 7d). All in all, these 10 high node degree houses, are located centrally in 397 
the city and their connections reach out into outer areas, i.e. they are viewed from much of 398 
the city area.  399 

The characteristics of high visibility of a small number and similar use over participants 400 
would be expected in landmarks. Our results show that the node degree distribution is similar 401 
across subjects and that only a few houses have exceptionally high node degrees. This is 402 
supported by the hierarchical configuration of the network. The 10 houses with an average 403 
node degree distribution exceeding the a 2-sigma threshold are more centrally located and 404 
had viewing connections into the outer areas covering nearly the whole city. All things 405 
considered, these findings suggest the notion that this set of houses is exceptional across 406 
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multiple domains and displays the characteristics expected from landmarks. Therefore, in the 407 
following we will refer to these 10 buildings as “gaze-graph-defined landmarks”. 408 

The connections between the gaze-graph-defined landmarks – The rich 409 
club coefficient 410 

In this section we investigate whether the gaze-graph-defined landmarks serve as the core of 411 
a network that could be used for navigation in the city. For a quantitative investigation, we 412 
applied the concept of the rich club coefficient to our gaze graphs. The rich club coefficient is 413 
a frequently practiced graph-theoretical method in network theory and was initially applied 414 
in internet network analyses (36). Yet, the rich club coefficient has also been transferred to 415 
neuroscientific contexts. The approach has been used to map out both subcortical and 416 
neocortical hub regions and to show that those regions with high linkages are also highly 417 
connected between each other and, thus, indeed form a rich club (37). In this study, the rich 418 
club coefficient allows to quantify in how far gaze-graph-defined landmarks are preferentially 419 
connected to each other. 420 

We calculated the connectivity between nodes with a specific degree value using  421 

𝑅𝑅𝑅𝑅(𝑘𝑘) =
2𝐸𝐸≥𝑘𝑘

𝑁𝑁≥𝑘𝑘(𝑁𝑁≥𝑘𝑘 − 1) 422 

with 𝑘𝑘 as the set node degree of the rich club, 𝐸𝐸≥𝑘𝑘 as the number of edges between nodes 423 
with degree larger or equal to 𝑘𝑘, and 𝑁𝑁≥𝑘𝑘 as the number of nodes with degree larger or equal 424 
to 𝑘𝑘. Thus, the rich club coefficient is the fraction of edges instantiated between nodes of 425 
degree 𝑘𝑘 or larger and the total number of edges possible between nodes the same degree or 426 
larger.  427 

For the interpretation of the rich club coefficient, we need a baseline. For that purpose, 428 
we compare generated random graphs with similar statistics of node degrees and calculate 429 
their rich club coefficient. For each subject, we generate 1000 random graphs with the same 430 
number of nodes as the respective original graph. Of these we select the 10 graphs with the 431 
most similar, in terms of the two-sample Kolmogorov Smirnov test, distributions of node 432 
degrees to the original distribution. Subsequently, we divide the original rich club coefficient 433 
by the 10 random coefficients respectively and averaged. Thus, a value above 1 indicates the 434 
existence of a rich club with the respective node degree. 435 

As a final step we investigate the rich club coefficient as a function of the threshold 436 
node degree. Due to the strong hierarchy index, the number of nodes decreases drastically 437 
with increasing node degree, resulting in increasing uncertainty. Therefore, we cut off the plot 438 
at 1σ distance to the mean. With increasing threshold, the interconnectivity of the rich club 439 
steadily increases and reaches 1.5 for a node degree of 13 or higher (Fig. 8a). This 440 
demonstrates that these nodes are interconnected much more than expected by chance. We 441 
calculate the rich club for each subject and specifically mark the top 10 houses with the highest 442 
frequency of being part of the rich club across all subjects (Fig 8b). These houses had the 443 
averaged highest interconnectivity and were the same houses that were identified as the top 444 
10 node degree houses, i.e., gaze-graph-defined landmarks, earlier. This gives evidence for a 445 
highly interconnected network of gaze-graph-defined landmarks in the city, a rich club.  446 
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 447 
Figure 8: The rich club coefficient (a) The development of the rich club coefficient with 448 
increasing node degree. The dot-lines are the rich club coefficients of individual participants, 449 
while the green line is the mean across all subjects. (b) All houses displayed on the map both 450 
color coded and size coded according to their frequency of being part of the rich club across 451 
subjects.  452 

Spatial arrangement of the gaze-graph-defined landmarks - Triangulation 453 

To elucidate the role of the gaze-graph-defined landmarks in spatial navigation, we explore 454 
whether they could serve as a basis for triangulation. Triangulation is a method to infer the 455 
own location based on the viewing angle in respect to two location anchors. Our analysis has 456 
revealed that the gaze-graph-defined landmarks form a highly interconnected rich club. Thus, 457 
if the gaze-graph-defined landmarks are visible from most places in the city they could serve 458 
as a basis for triangulation.  459 

As a first step we determine the parts of the city where at least one or two of the gaze-460 
graph-defined landmarks were viewed by the subjects. We evaluate the spatial distribution of 461 
our participants during exploration of the virtual town and how many gaze-graph-defined 462 
landmarks were actually viewed from each location. This analysis is performed with a spatial 463 
resolution of 4x4m and an additional smoothing with a 3x3 unity kernel. Please note that this 464 
analysis depends on the actual gaze data and, thus, reflect from where participants actually 465 
did view the gaze-graph-defined landmarks. Next, we differentiated the locations in three 466 
categories: zero/one/two gaze-graph-defined landmark were viewed. The resulting map 467 
represents the potential of triangulation based on the gaze-graph-defined landmarks at 468 
different locations in the virtual city (Fig. 9). In 39.1% of the city areas that were visited by 469 
participants, two or more gaze-graph-defined landmarks were viewed from that location, 470 
providing the basis for triangulation. In an additional 32.7% of the city area, exactly one gaze-471 
graph-defined landmark was viewed. Only in 28.1% of the visited city area, none of the gaze-472 
graph-defined landmarks were viewed. Weighting the city areas with the absolute time 473 
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participants were located in, participants spend an even bigger fraction of the experiment 474 
time in areas where the theoretical basis of triangulation was given. Specifically, participants 475 
spent 53.2% of the experiment time in areas where at least two or more gaze-graph-defined 476 
landmarks were viewed, 19.4% of the time in areas where one gaze-graph-defined landmark 477 
was viewed and 27.4% of the time in areas where none was viewed. The latter regions were 478 
mostly at the fringes of the city map. Overall, our results indicate that triangulation based on 479 
gaze-graph-defined landmarks is possible in most parts of the city and participants spent the 480 
majority of their time located in these areas.  481 

 482 
Figure 9: Triangulation. Location data of all participants plotted on the map of Seahaven. 483 
The color code indicates how many of the gaze-graph-defined landmarks were viewed by 484 
participants at each location.  485 

Discussion 486 

In this study, we establish a method to quantify characteristics of visual behavior by using 487 
graph-theoretical measures to abstract eye tracking data recorded in a 3D virtual urban 488 
environment. We define gazes of subjects that freely explored the virtual city Seahaven, and 489 
use these to convert the viewing behavior into graphs. In these gaze graphs, nodes represent 490 
houses while edges represent their visual connection, i.e., gazes in direct succession on the 491 
respective houses. Thus, the gaze graphs capture relevant spatial information gathered during 492 
exploration. The node degree centrality graph measure reveals a surprisingly large variance. 493 
However, the values of individual houses were rather consistent across subjects, as shown by 494 
the high mean correlation. Additionally, we observed that the degree distribution across 495 
houses increased steadily, except for only a few high node degree houses. These houses may 496 
serve as import reference points, the so-called gaze-graph-defined landmarks. The analysis of 497 
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the hierarchy index demonstrates that the frequency of houses decreased drastically with 498 
increasing node degree, revealing a hierarchical graph structure. The set of identified gaze-499 
graph-defined landmarks were indeed preferentially connected, as demonstrated by the rich 500 
club coefficient. Finally, participants spent more than half their exploration time at locations, 501 
where at least two of the houses of the rich club were viewed, allowing triangulation for 502 
spatial localization. Thus, we presented a graph-theoretical approach for analyzing gaze 503 
movements supporting spatial cognition.  504 

In general, spatial navigation is based on multimodal sensory input. In the present 505 
study we employ a virtual reality that is more restricted, i.e., limited to visual and vestibular 506 
information. Recent literature highlights the importance of idiothetic and sensorimotor 507 
information about self-position and about self-motion (38,39). Nevertheless, the dominating 508 
sense of spatial perception is vision (40). Only this sense can gather reliable information of 509 
space and the environment independently of the physical distance and also allows to perceive 510 
topographic characteristics over large distances. Therefore, by observing visual attention and 511 
visual behaviour using the method of eye tracking, we could gather important insights about 512 
the usage of spatial cues, that indicate cognitive processes related to spatial navigation, 513 
specifically landmark usage.  514 

Basing our analysis on eye tracking data allows us to observe and investigate 515 
participants visual attention during spatial navigation processing. However, the combination 516 
of eye tracking and a head mounted virtual reality headset comes with several challenges. 517 
Accuracy of mobile eye tracking systems if often reduced compared to other systems (41). 518 
Specifically, in VR experiments, this is often due to the freedom of head movements and 519 
weight of the VR headset. Since typical errors due to slippage and head movements increase 520 
over time, we conducted a short validation and if necessary, a complete calibration validation 521 
procedure every 5 minutes during the experiment (28). Nevertheless, the mean validation 522 
error of 1.55° before experiment start and 1.88° during the experiment is rather high 523 
compared to classical lab-based eye tracking studies. However, unlike lab-based eye tracking 524 
studies, our preprocessing and analysis is based on hit point clusters that fell on the same 525 
collider in the VR environment. Thus, we summarized data points that were located in rather 526 
close proximity. Though the notion of close proximity must be taken with care since most 527 
colliders still corresponded to the size of a complete house, therefore making a small deviation 528 
in gaze location due to the validation error less problematic. All in all, considering that the 529 
preprocessing is based on the spatial distribution of the accumulated hit point clusters, a 530 
minor increase of validation error should not affect our data significantly. 531 

One major factor in the analysis of eye tracking data recorded in an VR environment is 532 
the algorithm differentiating the different types of eye movements and in our case the 533 
definition and creation of the data form “gaze”. Essentially, the four different types of eye 534 
movements expected to occur in such a natural setting, i.e. saccade, fixation, vestibulo-occular 535 
reflexes, and smooth pursuit movements, can be separated into two categories of visual input 536 
perception. On the one hand, we have fixations as the typical source of visual perception.  537 
Since vestibulo-occular reflexes and smooth pursuit movements stabilize the retinal image in 538 
dynamic situations, they lead to visual perception similar to the input during fixations (29). 539 
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Thus, we can classify fixations, vestibulo-occular reflexes, and smooth pursuit movements as 540 
the first category of visual perception. Saccades, on the other hand, render the participant 541 
blind to the momentary visual input, hence a hit point sample created during a saccade will 542 
not have been perceived by the participant (29,30). Consequently, it is essential to 543 
differentiate the data between the first category of visual perception and saccades. Usually, 544 
this is done either by velocity or gaze location-based algorithm. However, the virtual 545 
environment in Unity3D results in three impeding factors. First, the complexity of the VR 546 
environment in Unity3D only allowed for a 30 Hz sampling rate, thus it does not allow a 547 
saccade detection based on sudden changes in gaze velocity. Secondly, the gaze location 548 
calculated based on the ray cast process is limited to whole colliders, often covering the size 549 
of a house, therefore it does not allow to identify small changes in gaze location. And thirdly, 550 
depth perception is usually not accounted for in saccade detection algorithms, therefore 551 
making it questionable to apply to eye tracking data recorded in a 3D. Consequently, the 552 
available eye tracking data recorded in the VR environment did not provide the reliable 553 
information necessary in classical fixation detection algorithms that allow to cleanly separate 554 
the different eye movements. Therefore, defining the new data form “gaze” allows for a 555 
functional method to clean the data. This process did not allow the identification of single eye 556 
movements nor did it exclude all saccades from the data. However, by identifying the data 557 
clusters that contained at least one fixation and excluded the data clusters that very likely did 558 
not contain any fixation, we could clean the data from samples, that were unlikely to be 559 
visually processed by the participant. This is further supported by our data, since the process 560 
identified 86% of the data as gazes on average across all participants. With approximately 90% 561 
of viewing time being expected to be spend on fixations (29), the process identifying gazes 562 
appears to be on the conservative side. Overall, with higher sampling rates available in virtual 563 
environments, new options to identify saccades might become available. However, we believe 564 
that given the data we have available, defining the new data form “gaze” was the best option 565 
to differentiate between stray samples unprocessed by the participant and meaningful data 566 
carrying important information of the first category of visual perception including fixations, 567 
vestibulo-occular reflexes, and smooth pursuit movements. 568 

The process of spatial navigation is abundant in everyday life, therefore investigating 569 
the process of gathering spatial navigation under natural conditions is our goal. While there 570 
are some examples of studies in the field of spatial cognition conducted in natural 571 
environments (42,43), these studies typically rely on behavioral data, and lack physiological 572 
data recorded during the spatial navigation itself. With new mobile eye tracking systems 573 
available, more studies investigating spatial cognition under natural conditions were 574 
conducted in inside and outside environments. For example, Ohm et al. (2014) investigated 575 
the selection process of landmarks in large scale indoor environments via the visual attraction 576 
measured with mobile eye tracking (21) and evaluated pedestrian navigation systems based 577 
on indoor landmarks (22).  Kiefer et al. (2014) investigated self-localization based on 578 
participants matching maps to the urban environment they were located at (20). Furthermore, 579 
Wenczel et al. (2017) found differences in gaze behavior during incidental and intentional 580 
route learning in a natural outdoor environment with intentional learning leading to more 581 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.462279doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462279
http://creativecommons.org/licenses/by/4.0/


19 
 
fixations on landmarks (23). However, studies conducted with mobile eye tracking systems in 582 
natural environments are usually challenged with several disadvantages. In addition to the 583 
poor accuracy of mobile eye tracking systems, another major issue comes with identifying 584 
frames with areas of interest during the data pre-processing. Often, identification of regions 585 
of interests and therefore identifying the relevant fractions of the eye tracking data could only 586 
be solved by manual detection in each frame (20,21,23). Furthermore, the natural 587 
environment allows only limited control of the experimental conditions, especially regarding 588 
variances in light affecting the eye tracker systems (20), and variance in the environment due 589 
to other people or traffic (24,25). Depending on the system, eye tracking calibration can be 590 
distorted for some distances, therefore limiting the valid distance of gazed objects that can be 591 
analyzed (20). Consequently, most eye tracking studies struggle to be conducted under 592 
natural conditions and thus reduce the ecological validity of gathered information of viewing 593 
behavior under natural conditions. Instead, implementing experimental paradigms in VR 594 
allows maximal control of experimental conditions while still providing a more naturalistic 595 
environment and multisensory experience. Moreover, our analysis method using hit point 596 
clusters and gaze events allow a fast and precise analysis option, therefore providing a 597 
solution to the problem of detecting ROIs manually as observed in previous studies. Therefore, 598 
new experimental paradigms in VR in combination with the eye tracking analysis proposed in 599 
this paper provide a new option to investigate spatial navigation under naturalistic conditions. 600 

The graph-theoretical measures used in this study is crucial, since it leads to a large 601 
compression and abstraction of the data. Using this method, a few millions of gaze samples 602 
were condensed into a few graphs. In general, graph theory is used in many areas to make 603 
complex information of pairwise relations accessible (44–46). This process includes several 604 
decisions, which might critically influence the later analysis. First, the visibility of the houses 605 
depended on the participant’s location in the virtual world, which is not necessarily close to 606 
one of the respective houses. Accordingly, the participant might view two houses in direct 607 
succession leading to a visual connection, even though the houses themselves might not be 608 
visible from each other’s location. Second, the gaze graph did not contain any information 609 
about the order in which the two successive gaze events took place, consequently all gaze 610 
graphs were undirected. Third, the graph contained binary, i.e., unweighted, edges. 611 
Consequently, the gaze graphs only contained information about whether a visual connection 612 
took place at some point during the experiment, and not how often. Fourth, in case the data 613 
contained a cluster of missing data points no information about visual connections during this 614 
time was available and no edge could be created between nodes. Applying the above 615 
considerations for graph creation, our graphs represented the gaze data in a well-defined and 616 
meaningful way.  617 

Our results of the graph-theoretical analysis revealed a small subgroup of houses that 618 
seemed to correspond to several characteristics we expected landmarks to have in a gaze 619 
graph. Landmark knowledge refers to the knowledge of salient objects that serve as 620 
orientation anchors and are memorized when exploring a new environment. (2,4,5). Since the 621 
node degree is a common measure to investigate the importance of single nodes in the 622 
network (47), we expected landmarks to stand out in visual behavior compared to other 623 
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houses and therefore show high importance in the gaze graph visible in high values of their 624 
node degree centrality. The gaze graph represented the visual connections between houses, 625 
therefore, the node degree centrality measured how many different houses were visually 626 
connected with the house in question. If a house would serve as a landmark, we would expect 627 
participants to often create visual connections between the landmark house and other houses 628 
while trying to navigate, especially when they try to relate newly learned houses in respect to 629 
the landmark house. The results of our node degree centrality analysis showed a clear 630 
difference between the subgroup of the rich club compared to the other houses. Moreover, 631 
the average node degree values of the houses exceeded the mean node degree over two 632 
times the standard deviation. The rarity of these buildings is strengthened by the high mean 633 
hierarchy index. Taking all these findings into account, we decided to call this subgroup of 634 
houses gaze-graph-defined landmarks, since they fit the characteristics a landmark would 635 
display in a gaze graph. 636 

While it is undisputed that landmarks are important for spatial navigation, the details 637 
about their functionality are not yet completely understood. Commonly, it is assumed that 638 
landmarks form the basic building blocks of landmark knowledge that is then extended to 639 
route and survey knowledge by gradually connecting landmarks with routes and achieving 640 
knowledge about the relational information of the landmark locations (2). Others have 641 
proposed a more continuous and parallel development of landmark, route and survey 642 
knowledge (4,42). Nonetheless, especially the mechanisms of how landmarks relate to mental 643 
maps, how landmark knowledge is integrated into survey knowledge or which functions 644 
landmarks maintain when a map-like survey knowledge is already available remain unclear. 645 
By calculating the rich club coefficient of all gaze graphs, we found a causality between 646 
increasing node degree and increasing connectivity between the respective nodes. Gaze 647 
graph-defined landmarks were above chance level interconnected to each other. Moreover, 648 
the interconnected gaze-graph-defined landmarks of the city seem to form a network, i.e. a 649 
rich club, covering a large, mostly central part of the city. This could be a first indication that 650 
landmarks are not only used as orientation anchors, but could form an underlying network of 651 
orientation anchors that span out the framework of a mental map. Consequently, landmarks 652 
could anchor the mental map and thus, serve as an important feature of survey knowledge.  653 

Furthermore, our results revealed that participants spent a large fraction of their time 654 
in the areas where the theoretical basis of triangulation with gaze-graph-defined landmarks 655 
was given. Specifically, participants spend more than 50% or their experiment time in the 656 
locations where at least two of the gaze-graph-defined landmarks were visible. Interestingly, 657 
these areas were located at the more central regions of the city. This could be explained by 658 
several reasons. On the one hand, participants could prefer city areas in which they could 659 
triangulate based on gaze-graph-defined landmarks and consequently spend most of their 660 
time in these locations. On the other hand, this could also be related to the size of Seahaven. 661 
It was shown that within 90 min total exploration time participants explored all areas of 662 
Seahaven, central areas a slightly more often than peripheral areas (48). Furthermore, our 663 
results indicate that participants created a network of landmarks. This suggests that the 664 
subjects deliberately searched for houses that could serve as landmarks. The selection of 10 665 
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gaze-graph-defined landmarks constituted to less than 5% of all available houses located in 666 
Seahaven. Consequently, our results strongly indicate that participants were not only looking 667 
for landmarks, but also quite strategically chose landmarks as orientation anchors that 668 
provided a maximum amount of information on the basis of the rather small subset of less 669 
than 5% of all city buildings. Therefore, our results seem to support the notion that landmarks 670 
were not only selected based on saliency but seemed to follow a specific strategy maximizing 671 
the navigational benefits while minimizing processing expenses. 672 

This interpretation of our results was supported by further characteristics of the gaze-673 
graph-defined landmarks. In a navigational context, the term landmark usually refers to any 674 
type of object that is highly visible or easily recognizable in the environment and thus serves 675 
as a point of reference (49), although the overall saliency also depends on “a unique property 676 
of the trilateral relation between the feature itself, the surrounding environment and the 677 
observer’s point of view” (50). In addition, landmarks are often differentiated into local and 678 
global landmarks. Typically, global landmarks can be seen from far distances and provide a 679 
reference for directional and more compass-like orientation, whereas local landmarks might 680 
only be visible in a local area and are often located at road crossings (51). Looking at the visual 681 
appearance of the gaze-graph-defined landmarks, we found typical characteristics of 682 
landmarks including visual saliency due to size, color and location in the city. For example, the 683 
house with the highest average node degree across all participants is higher than most 684 
surrounding buildings and has a large distinct blue window front that sets it aside from its 685 
surrounding (Fig. 6b,7b). Additionally, it is located in the very center of the city making it visible 686 
from most parts of the city. The house with the second highest average node degree across 687 
all participants stood out due to its size regarding its surface area and location next to the 688 
main road that connects the most north and most south part of the city, even though it was 689 
only visibly in the south-east part of the city. In general, most of the gaze-graph-defined 690 
landmarks were located next to crossings of main roads in the city thus fitting a characteristic 691 
of local landmarks (51). Our results revealed that the gaze-graph-defined landmarks also had 692 
features of global and local landmarks. 693 

While the application of graph theory has enabled us to use a variety of already 694 
established graph-theoretical measures to analyze the gaze graphs and resulted in very 695 
promising results, only a small amount of the available graph-theoretical measures was 696 
applied during our analysis. For example, the node degree centrality is defined as the sum of 697 
connections of each node. Generally speaking, nodes with a lot of connections are likely to be 698 
important for most networks (45) which is why the node degree centrality is widely used in 699 
graph-theoretical analyses and serves as the basis of our gaze graph analysis (52). According 700 
to Sporns (2018), the usage of graph theory in neuroscientific studies has increased in the 701 
recent years and the node degree centrality can be a useful measure for network analyses. 702 
However, these analyses are mostly based on pairwise dyadic approaches and the full 703 
potential of graph theory has not yet been applied.  704 

A variety of graph measures is available for analyzing networks and node importance 705 
can be defined in different ways, exceeding the node degree-based analysis. A particularly 706 
important measure in social network analyses is the so-called betweenness centrality (53). 707 
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The measure counts how many shortest paths cross a particular node that is “between” a lot 708 
of nodes. In social network analyses, betweenness centrality is beginning to replace the node 709 
degree centrality to explain social network dynamics with respect to the importance of nodes 710 
with high node betweenness for attracting and strengthening new links (54). Consequently, 711 
the betweenness centrality could be a potential candidate for explaining spatial knowledge 712 
acquisition. As mentioned, the centrality measure gains importance within the field of social 713 
network analysis and is used to characterize the attraction and strengthening of connections. 714 
A person, represented by a node in a social network, would have a high betweenness 715 
centrality if the person connects a variety of other persons that themselves do not know the 716 
connecting person. By transferring this thought to spatial navigation, a house with high 717 
betweenness centrality would connect the views to two buildings that are not viewed in direct 718 
succession themselves. Thus, this building serves as an anchor point for these two buildings 719 
and forms a part of the route between them. Betweenness centrality could serve as a measure 720 
for characterizing the gathered route knowledge. Overall, graph theory offers a variety of 721 
different measures and has not yet reached its full potential within neuroscientific research.  722 

Overall, our results establish a new methodology to process eye tracking data in 723 
complex 3D environments and identify and assess the function of landmarks in spatial 724 
navigation. Applying this methodology provides a new and unique insight into behavioral data 725 
of visual attention processes during spatial navigation and opens the door for a novel 726 
approach to investigate spatial navigation. To fully unlock the potential of graph theory, we 727 
propose additional graph-theoretical measures to investigate gaze graphs in the future. 728 
Specifically, we consider the betweenness centrality that could help to understand the 729 
formation of spatial knowledge beyond landmark knowledge.  730 

Methods 731 

The virtual town of Seahaven 732 

The virtual town of Seahaven was built to investigate spatial learning during free exploration 733 
(28,48,55). In total, Seahaven contains 213 houses in varying size and shape. Furthermore, the 734 
city was designed as a connected urban space of roughly 216,000 m2 (48). The street structure 735 
consisted of winding, small and big roads and overall resembled a European city center. The 736 
entire virtual environment reflects natural spatial relations, with one Unity unit corresponding 737 
to one meter. The virtual height of the participant was set to 2 meters and was unified for 738 
every participant. To provide a better frame rate in Unity, a far clipping plane in a distance of 739 
160 meters was introduced. Consequently, no objects were visible to the participants that 740 
were located further than 160m away from current participant location.  741 

Structure of the experiment 742 

In total, 22 participants performed the complete experiment. This included three sessions 743 
within at most 10 days. Each session consisted of 5 parts: (1) a brief introduction to the 744 
experiment; (2) examples of the spatial tasks to be completed after the last recording session; 745 
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(3) preparation of the VR setup, including the adjustment of VR-headset with eye tracker, the 746 
calibration and validation of the eye tracker, and in the 1st session a movement training on the 747 
virtual island; (4) the main experimental phase, i.e. exploring the virtual town for 30 minutes 748 
while movements and eye tracking data were recorded; (5) three spatial tasks performed 749 
outside of the VR, which are covered in detail in (48). These data are, however, are outside 750 
the scope of the present paper and not further covered here.  751 

Laboratory setup 752 

Participants wore a head mounted HTC Vive virtual reality headset and were seated on a 753 
swivel chair. To prevent limitations on rotations as well as removing the tactile directional 754 
feedback due to hanging cables, a vertical cable solution was implemented. Participants 755 
moved using the HTC controller at walking speed. To decrease the risk of motion sickness, 756 
participants were instructed to only walk forward with the controller. If they wanted to switch 757 
directions or turn, they were instructed to stop walking and then rotate their entire body with 758 
the chair in the desired direction.  759 

Eye tracking 760 

A pupil labs eye tracker was directly integrated in the HTC Vive headset (refresh rate 120Hz, 761 
gaze accuracy 1,0°, gaze precision 0.08°, visual field 110°) (28). Both calibration and validation 762 
were executed in the virtual reality while the participants where still on a separate training 763 
island. For each subject, a 17-point calibration and a 9-point validation were conducted until 764 
the validation error was below 2° (on average 1.53°). During the experiment, a 1-point 765 
validation was performed every 5 minutes ensuring the correct tracking precision. If the error 766 
exceeded 2°, a complete 17-point calibration and 9-point validation was performed until the 767 
error was below the original threshold of 2° (mean 3.14°, median 2.11° before and mean 1.88°, 768 
median 1.28° after a new calibration). 55% of all 1-point validations had a validation error 769 
above 2° and had to be recalibrated, hence, highlighting the importance of regular validation 770 
control. When the calibration and validation process was performed during the exploration of 771 
Seahaven, the display of the virtual city disappeared until the validation was completed.  772 
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