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Abstract 12 

Accurate discovery of somatic mutations in a cell is a challenge that partially lays in immaturity of dedicated analytical 13 

approaches. Approaches comparing cell’s genome to a control bulk sample miss common mutations, while approaches to 14 

find such mutations from bulk suffer from low sensitivity.  We developed a tool, All2, which enables accurate filtering of 15 

mutations in a cell from exhaustive comparison of cells’ genomes to each other without data for bulk(s). Based on all pair-16 

wise comparisons, every variant call (point mutation, indel, and structural variant) is classified as either a germline variant, 17 

mosaic mutation, or false positive. As All2 allows for considering dropped-out regions, it is applicable to whole genome 18 

and exome analysis of cloned and amplified cells. By applying the approach to a variety of available data, we showed that 19 

its application reduces false positives, enables sensitive discovery of high frequency mutations, and is indispensable for 20 

conducting high resolution cell lineage tracing. All2 is freely available at https://github.com/abyzovlab/All2.  21 

Introduction 22 
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With advances in sequencing technologies, analysis of the genome of a single cell is gaining traction owing to 23 

its multiple applications, including studying mutations in normal and cancer single cells, identification of driver 24 

mutations in cancer (1, 2), tracing cell lineages in human development (3, 4) and identification of sub-clones in 25 

cancer (1, 2), where mosaic mutations are used as barcodes to study cell lineages. For detection of mosaic 26 

mutations in single cells, the most frequently used approach is to compare single cell genomes to that of a 27 

matched reference bulk. While this approach works well to find private mutations in a cell, it misses mutations 28 

that are present at higher frequency, and consequently present in multiple cells in the reference bulk. It also 29 

requires one to have bulk data which might not be always available. Here we present a tool called All2 30 

(pronounced ‘all square’) which detects mosaic mutations without the need for a reference bulk by relying on 31 

comprehensive cell-to-cell comparisons. By consolidating information from all comparisons, every call is 32 

categorized as either a germline variant, mosaic mutation or noise/false positive. 33 

Results 34 

Concept 35 

All2 is an easy-to-use tool which extends and implements an algorithm initially proposed in Bae et al. 36 

2018 (5). All2 takes mutation calls from all pair-wise comparisons of N cells in the study and, for every non-37 

Figure 1. Conceptual overview of All2 approach and scoring. A) A tissue/sample is made up of different cells (ovals) carrying various 
mosaic mutations (reflected by different colors). Post single cell clonal expansion, rare mosaic mutations (in red) can be easily 
detected by comparing the clone to the bulk tissue. However, frequent mutations (in blue) will be missed by this approach. B-D) 
Each mutation in clone-to-clone (which is cell-to-cell) comparison can be represented by a NxN matrix of pairwise clone 
comparisons, where each box represents the call between a clone in the row versus a clone in the column. B) In case of a true 
mosaic mutation, the calls are arranged as rows in the matrix. The pattern in the matrix shows that the mutation is called in clone 
2 and clone 5 when comparing them to other clones.  C) In case of a germline variant, the calls are arranged in a column in the 
matrix. The displayed pattern suggests that the mutation is present in all clones except clone 3. D) The pattern has a sporadic 
distribution of calls in the pairwise matrix and does not suggest either mosaic mutations or germline variants. Such call is deemed 
as a false positive or noise. E) Distribution of mosaic and germline scores for calls (the size of the dot/circle corresponds to the 
number of calls with the same scores). The plot can be divided into four areas: mosaic mutations (where the mutations have high 
mosaic scores and low germline scores), germline variants (where the mutations have high germline and low mosiac scores), high 
frequency mosaic mutations (where calls have high both mosaic and germline scores) and, lastly, noise or false positive calls. 
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redundant call, creates a NxN pairwise binary matrix corresponding to comparing different pairs of cells, where 38 

1 corresponds to a call and 0 to no call. Patterns of values in the matrix are used to determine whether a call is 39 

a mosaic mutation, germline variant or false positive (Fig. 1A-D). In theory, the presence of these patterns should 40 

be sufficient to make the determination, however, real data has noise, smearing the patterns (Fig. S1).  41 

For effective categorization, we developed a scoring system which reflects how likely it is for a call to be 42 

a mosaic mutation or a germline variant. The tool calculates two scores: a germline score and a mosaic score, 43 

each within a range between 0 and 1. A real mosaic variant could only be discovered when comparing a cell 44 

carrying the variant and a cell not carrying one. The number of times a call for a variant shows up in the matrix 45 

is determined by 46 

𝑛 = 𝑓(1 − 𝑓)𝑁!, 47 

 48 

where n is the number of times a variant is seen in all comparison, f is fraction of cells carrying the variant, N is 49 

the total number of cells. By solving the above quadratic equation, we get two solutions: 50 

 51 

𝑓" ≈ 0.5 − -0.25 − 𝑛 𝑁!⁄   and  𝑓# ≈ 0.5 + -0.25 − 𝑛 𝑁!⁄    52 

 53 

Since the mosaic mutations are typically present in a small fraction of cells in the bulk, and germline variants are 54 

present in (almost) all the cells, we conditionally call 𝑓" as frequency of a mosaic mutation and 𝑓# as frequency 55 

of a germline variant. Note, a germline variant can be lost or undetected in some cells, and that is why its cell 56 

frequency in a bulk may be below 1. 57 

 Since 𝑓" = 1 −	𝑓#, we can just use one, such as 𝑓 = 𝑓", where 𝑓 is the fraction of cells with mosaic 58 

mutation or the fraction of cells without germline variant. Now, we can calculate the number of cells 𝑁′ carrying 59 

the mosaic mutation or the number of cells not carrying	germline variants as 𝑁′ ≈ 𝑓𝑁. In case of a true mosaic 60 

mutation, the corresponding calls are arranged in rows in the matrix (Fig. 1B), and would sum up to 61 

 62 

𝑛" =3𝑛𝑟$

%!

$&'

, 63 

 64 
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where 𝑛𝑟$ is the number of calls for the variant in a row corresponding to the ith cell. From the data, the best 65 

estimate of 𝑛" is the maximum from all possible subset of N’ cells from N. Similarly, for a germline variant, 66 

corresponding calls are arranged in columns (Fig. 1C), and would sum up to  67 

 68 

𝑛# =3𝑛𝑐$ ,
%!

$&'

 69 

 70 

where 𝑛𝑐$ is the number of calls for the variant in a column corresponding to ith cell. And best estimate of 𝑛# is 71 

the maximum from all possible subset of N’ cells from N. The mosaic and germline scores are then defined as  72 

 73 

𝑀𝑜𝑠𝑎𝑖𝑐	𝑆𝑐𝑜𝑟𝑒 = max	(𝑛") 𝑛⁄  74 

𝐺𝑒𝑟𝑚𝑙𝑖𝑛𝑒	𝑆𝑐𝑜𝑟𝑒 = max	(𝑛() 𝑛⁄  75 

	76 

A call having a high mosaic score and low germline score is defined as a mosaic mutation. Similarly, a call with 77 

high germline score and low mosaic score is defined as a germline score. When a call has both high germline 78 

and mosaic scores, we define it as a high frequency mosaic mutation. Such mutations are likely present at a 79 

higher fraction of cells in a tissue, yet at a lower fraction than germline variant. For example, such mutations 80 

could occur during early development and be present in a high fraction of cells across tissues in the human body 81 

(6). The distribution of mutations (as dots) on a plane with axes corresponding to the two scores can be used to 82 

divide the calls into mosaic mutations, germline variants, noise or false positive (low mosaic and low germline 83 

score) and high frequency mosaic mutations (high mosaic and high germline score) (Fig. 1E). 84 

 85 

Implementation and usage 86 

Genomes of all pairs of cells need to be compared prior to using All2. Variant calls can be made by a 87 

caller of choice (see Methods). All2 is written in python and has three commands: ‘score’, ‘call’, and ‘matrix’. The 88 

first command takes a manifest file with names of single cells, along with the VCF file containing calls (SNVs 89 

and INDELs) as rows. Case and control fields in the manifest file are used to define the directions of pairwise 90 

comparisons, where the case is compared to control. A user can optionally provide a BED file with the inclusion 91 
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list of genomic regions where to apply the filtering (see Applications). The output of this command is a file with 92 

mosaic and germline scores for each of the calls as well as density scatter plot of the scores showing distribution 93 

of calls based on their scores (Fig. S2A). The second command relies on the output of the ‘score’ command and 94 

annotates the calls as mosaic mutation, germline variant, noise, or high frequency mosaic mutations based on 95 

default or user specified score cut-offs. This command also annotates the density scatter plot (Fig. 1E), provides 96 

a file with annotated calls for each cell, per category plots of call counts, per sample plots of call counts, VAF 97 

(variant allele frequency) plot, and mutation spectrum plots (Fig. S2B-D). The third command plots a matrix of 98 

pairwise comparison for one or multiple calls. The plots also display calculated scores along with VAF for the 99 

call(s) in each cell (Fig. S3). Analogous to SNVs and indels, All2 is capable of filtering structural variant (SV) calls 100 

using commands ‘score_sv’, ‘call_sv’ and ‘matrix_sv’. Two SV calls are considered the same if they have at least 101 

50% reciprocal overlap. For this purpose, the tool supports VCF file as input, e.g., VCFs generated by the SV 102 

caller MANTA (7). 103 

 One implicit underlying assumption of the approach is that in each compared cell, the genome is 104 

covered/sequenced uniformly. This is true in case of the single cell cloning approach, however, single cell 105 

genome amplification may result in non-uniform coverage which, at the extreme, manifests in allelic dropouts 106 

(8). To handle this, we have implemented a dedicated allele dropout analysis (ADA) mode, which considers 107 

allele dropout regions when calculating the scores, thereby reducing the noise (see Application). The ADA 108 

mode can also be used for running All2 on exome data where the exome capture region can be specified per cell 109 

in the manifest file. More details of the command and description of the results can be found on the dedicated 110 

GitHub page https://github.com/abyzovlab/All2. 111 
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 112 

Application to reconstructing cell lineage tree 113 

To demonstrate the uniqueness of All2 approach, we applied it to reconstruct post-zygotic cell divisions 114 

in a living individual. Analysis of developmental cell lineages is one of the central questions in developmental 115 

biology, resolving which can shed light on the etiology of developmental diseases. Unlike model organisms, 116 

lineage tracing in humans can only be done retrospectively using naturally occurring somatic variants that serve 117 

as permanent marks of the lineages. Mutations that occur during early development are present in a high fraction 118 

of cells across tissues in the human body, and their discovery is challenging for existing methods. 119 

 
Figure 2. Calls from All2 enable reconstruction of high-resolution lineage tree. A, C) Application of All2 to iPSC clones discovers more 
variants (cyan) than analysis of deeply sequenced bulk tissues (gray) or pairwise comparison of clonal lines and the bulk (orange). The 
approach also calls variants across entire VAF spectrum. Analysis of bulk may discover variants with intermediate VAF (1%-10%) which 
are not sampled in clones. For the displayed comparison, variants with at least two supporting reads in the bulks are considered for 
each discovery approach. B) Lineage tree reconstructed from the analysis of 25 clones from an adult individual. Variants discovered 
from either bulk (gray) or pairwise (orange) comparisons provide limited information as compared to All2, which is the most 
comprehensive. Multiple additional branches in the lineage tree can be traced when using additional variants (cyan) discovered by 
applying only the All2 approach, which is also reflected in the Venn diagram. SNVs found only in the bulk tissues are marked with 
asterisks and define putative branch not sampled by clones. The percentage values next to branches denote the average fraction of 
the bulk cells carrying the mutations. Clone names are shown on the right. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.462281doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462281
http://creativecommons.org/licenses/by/4.0/


In the analyzed individual, we compared mosaic variant discovery using three approaches: 1) by analysis 120 

of bulk blood and saliva; 2) by pairwise comparison of 25 clonal iPSC lines (representing 25 fibroblast single 121 

cells) with the bulk blood; and 3) by comparing the clonal lines followed by application of All2. To reconstruct the 122 

lineage tree, we selected mosaic variants shared by clones or by multiple bulk tissues (6) (Fig. 2). Analysis of 123 

bulks alone allowed discovering only high frequency mutations but not all. For example, mutations a, b, and c 124 

defining branches of the first zygotic cleavage (Fig. 2B) could not be discovered because of resembling germline 125 

variants by frequency of occurrence in the bulks (i.e., in 80% to 90% of cells). Pairwise comparisons between 126 

clones and bulk tissues are powered to find mutations present in the analyzed cell and at low frequency (typically 127 

<1% VAF) in bulks but misses high frequency mutations. Remarkably, the All2 approach was able to call both 128 

high and low frequency mutations resulting in the most complete lineage tree – a tree that cannot be 129 

reconstructed even if we combine comparisons of clones relative to bulk tissues and analysis of bulks. The 130 

advantage of calling mosaic mutations in bulk is that it allows discovering mutations with intermediate VAF 131 

(between 1% to 10%), which were not sampled by the 25 analyzed clones and consequently, not discovered by 132 

All2. In fact, most mutations discovered from bulks were not sampled by the clones. Increasing the number of 133 

analyzed clones will likely increase the overlap in discovered mutations between those two approaches but would 134 

also increase experimental cost. Thus, this observation suggests complementarity in analyzing clones/single 135 

cells and bulks for lineage reconstruction. 136 

 137 

Allele dropout mode for whole genome amplified single cells 138 

 
Figure 3. All2 in ADA mode reduces false positive calls from allele dropout in MDA. A) Score distribution when applying All2 
to 11 clones derived from single brain progenitor cells. There are 29 calls for high frequency (gray area) and 2548 calls for low 
frequency (green area) mosaic mutations. The ‘C’ points to mosaic calls in the clones). B) Adding one MDA amplified cell to 
the analysis results in double the number of calls for high frequency mosaic mutations. Noise also increases. The ‘S’ points to 
the calls coming from the single cell.  C) Application of a specialized single cell caller SCOUT on the single cell partially mitigates 
issues with calling, i.e., reduces the noise and the number of mosaic calls. D) Applying the ADA mode results in almost the 
same set of high frequency mosaic mutations.  The mode also reduced calls for mosaic mutations in single cell without 
affecting calls in the clones.  
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Using clones as gold standard, we applied All2 in Allele Dropout Analysis (ADA) mode (see Methods) to 139 

MDA amplified single cells, to demonstrate the effectiveness of this mode to filter out spurious calls originating 140 

from biases in the amplification process. MDA uses j29 polymerase under isothermal condition, which results 141 

in an exponential DNA amplification. The exponential amplification leads to uneven coverage and over 142 

representation of one allele over the other (allele imbalance). In extreme, a locus can have only one allele 143 

amplified and germline variants on the unamplified locus will be lost. ADA mode is designed to address this 144 

issue. In ADA mode, All2 takes a list of genomic regions (in bed format) where no allele dropout is observed (see 145 

Methods). Using this, for each call, All2 excludes from the score calculation those cells where a call is not made, 146 

and the surrounding region has allele dropout. This exclusion may change the number of considered cells and 147 

pairwise comparisons, which eventually affects the mosaic and germline scores.  148 

We called mosaic mutations in 11 clones (representing 11 brain progenitor cells) derived from a human 149 

fetal brain (specimen 316) (5) , as well as in an MDA amplified single cell taken from one of the clones. Just by 150 

adding the single MDA-amplified cell into the analysis, more than doubled the mutation counts (Fig. 3A, B). Next, 151 

we applied a single cell specialized caller named SCOUT(9). We observed that even though this partially reduced 152 

the effect of MDA amplification artifacts (Fig. 3C), it still resulted in a large number of mosaic and high frequency 153 

mosaic mutations, which was further mitigated by the ADA mode (Fig. 3D). Additionally, there is a reduction in 154 

the germline variants after applying ADA. These mutations, falsely called as homozygous reference due to allele 155 

dropout in the single cell, are effectively filtered by the ADA mode. Mutation counts per clone (Fig. 3D) were also 156 

similar to those found when analyzing only clones (Fig. 3A). This comparison yields evidence that even though 157 

the number of mutations called in the single cell is high, by applying ADA mode, we were able to reduce the 158 

number of potential false calls introduced by single cell amplification by half, without compromising the mutation 159 

calls from clones not affected by allele dropout.  160 

 161 

Runtime 162 

Runtime depends on the number of cells in the study and the variant caller used (since some variant callers will 163 

output higher number of calls than others). For the first example with 25 iPSC lines (Fig. 2B), application of All2 164 

using 8 GB memory on a 2.4 GHz dual-core processor took less than 15 minutes for the ‘score’ module and less 165 

than 10 minutes for the ‘call’ module to compute mutation annotation and plot the mutation count and VAF plots. 166 
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For the second example with 11 clones and one single cell (Fig. 3), application of All2 in ADA mode took less 167 

than 90 minutes to complete the ‘score’ module and less than 20 minutes for the ‘call’ module. In this case, the 168 

runtime is longer because of the longer list of variant candidates from the single cell. 169 

 170 

Conclusion 171 

We have developed and implemented All2, which can discover mosaic SNVs, indels, and SVs from exhaustive 172 

cell-to-cell comparison of WGS data from single cells or clones. Our method is superior to using deep sequencing 173 

of bulk tissues and/or paired comparison of single cells versus bulk for detection of both low and high frequency 174 

mosaic mutations. A limitation relative to bulk method is that the mutations that are not sampled by the analyzed 175 

single cells cannot be discovered. This can be addressed by increasing the number of analyzed single cell. We 176 

have also applied All2 for comprehensive reconstruction of a developmental lineage tree, showing that All2 allows 177 

a vastly more comprehensive lineage discovery. Furthermore, the method is general and can be applied to any 178 

problem of lineage tracing that relies on the analysis of multiple cells, such as tracing cancer evolution. 179 

We further demonstrate that All2 facilitates removal of false positive calls (in ADA mode) from amplified 180 

single cells. Additionally, since ADA mode takes a bed file with inclusive regions as input, All2 can be applied to 181 

the analyses of exome sequencing where a user can provide a file with target regions. The same mode can also 182 

be applied to exclude copy number altered regions when analyzing cancer cells. All2 provides visualizations such 183 

as allele frequency distribution, mutation spectrum, mutation counts and score distribution plots to help guide 184 

the user to better understand their data as well as change parameter setting for calling mosaic mutations. The 185 

tool is open source and is freely available on GitHub: https://github.com/abyzovlab/All2. 186 

 187 

 188 

Methods 189 

 190 

iPSC line generation 191 

The iPSC lines were derived from fibroblasts using the Epi5 Episomal iPSC Reprogramming Kit (Invitrogen 192 

catalog A15960) delivering the five reprogramming factors Oct4, Sox2, Klf4, L-Myc, and Lin28. The iPSC lines 193 

were propagated using mTeSR1 media (Stem Cell Technologies) on 1X Matrigel-coated dishes (Matrigel®). 194 
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Genomic DNA was extracted at passage six, using QIamp DNA Minikit (Qiagen) following the manufacturer 195 

instructions. 196 

 197 

Saliva collection and DNA extraction 198 

Saliva DNA was collected and purified using the Oragene-Discover kit (DNA Genotek) following the manufacturer 199 

instructions. Saliva DNA was extracted using DNeasy Blood and Tissue kit (Qiagen) with the following 200 

modifications: 5 ml AL-buffer and 200 µl Proteinase K were added to saliva and incubated at 56°C for 30 minutes. 201 

RNA was digested using 20µl RNAse A (Qiagen) for 5 minutes and DNA was extracted using 4 extraction 202 

columns in parallel to optimize the yield.  203 

 204 

Blood collection and DNA extraction 205 

10-15 ml of blood was collected using BD Vacutainer ACD tubes. DNA was extracted using the Gentra Puregene 206 

Blood Kit (Qiagen) following standard manufacturer protocols.  207 

 208 

Whole genome sequencing (WGS)  209 

DNA extracted from iPSC lines were sequenced at 30X, while DNA extracted from saliva and blood was 210 

sequenced at 200X. All sequencing was conducted at BGI using with 2x100 bp paired reads. The sequencing 211 

library preparation was PCR-free.  212 

 213 

Fetal brain tissue and MDA 214 

Collection of fetal brain tissues for subject 316, derivation of clonal neurosphere lines and sequencing has been 215 

previously described (5). Single cells from a clonal neurosphere line were manually picked using a micropipette 216 

under an inverted microscope. Whole genome amplification was performed by multiple displacement 217 

amplification (MDA) using the REPLI-g Single Cell Kit (QIAGEN) following the manufacturer recommendations. 218 

Genomic DNA was extracted using the DNeasy Blood & Tissue Kit (QIAGEN). Multiplex PCR for four arbitrary 219 

loci from different chromosomes was used to exclude single cells if less than four loci were amplified (10). Five 220 

out of eight single cells (62.5%) passed the 4-locus multiplex PCR quality control and were selected for 221 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.462281doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462281
http://creativecommons.org/licenses/by/4.0/


sequencing. Illumina Truseq DNA PCR-free libraries were prepared for the five cells and sequenced on a HiSeq 222 

X (2X150 bp) at 30X coverage. 223 

 224 

Allele dropout analysis mode 225 

We started with raw fastq files which were aligned to the GRCh37 human reference genome using BWA mem 226 

version 0.7.10 (11) , the bam files were then realigned and recalibrated using GATK 3.6 (12). The clones and 227 

the single cells were compared to each other using Mutect2 (13), Strelka2 (14) and SCOUT (9). For the clones, 228 

mutations called by both Mutect2 (13) and Strelka2 (14) with depth of 10 or more reads as well as a PASS value 229 

by both callers were used as input to All2. For the single cell, mutation called by Mutect2 (13), Strelka2 (14) and 230 

SCOUT (9) with depth of greater than 10 reads with PASS value from all callers were used. All2 was run four 231 

times with four different settings as depicted in Fig. 2. Post All2, only mutation which had allele frequency of 35% 232 

or more were considered, to further filter noise introduced during clone amplification, library preparation and 233 

sequencing. The allele dropout regions for single cell were calculated using CNVpytor (15), where the entire 234 

genome was divided into 5000 base pair bins and for each bin, a likelihood score was calculated using allele 235 

frequency of SNPs within the bin. Bins were marked as allele dropout if; i) at least one SNP in the bin had allele 236 

frequency smaller than given parameter snp_threshold or larger than 1-snp_threshold (in our calculations we 237 

used snp_threshold=0.01). ii) maximum likelihood allele frequency within the bin deviated from 0.5 by more than 238 

defined threshold parameter (we used threshold = 0.1). iii) closest bin with heterozygous SNPs on the left side 239 

or closest bin with heterozygous SNPs on the right side was marked as dropout. Since at 50% allele frequency, 240 

the presence of the mutation is evident whether its heterozygous (when both alleles are amplified) or 241 

homozygous (where only one allele is amplified), we retain it in the score calculation despite being in a drop out 242 

region (Fig. S4). Single cell QC on the MDA amplified cells was performed using Scellector (8) and only one cell 243 

(cell5) was used owing to its better quality than the rest (Fig. S5).  244 

 245 

Mutation calling for lineage analyses 246 

The files were processed the same way as the clones above. Calls were made using allele frequency cut-off of 247 

35% to remove mutations introduced during culturing clones. Additionally, only INDELs shorter than 10bp (most 248 

confident calls) were used. Pairwise comparison between bulk data and the clones were done using consensus 249 
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calls between Mutect2 and Strelka2. Mutations with a depth greater than 10 read, with at least 2 alternate 250 

supporting reads and PASS value from both callers were used. For the allele frequency plots (Fig. 2A&C), all 251 

mutations from All2, bulk, and pairwise comparison were used. For details, including calling mosaic mutation 252 

from bulk tissue and lineage tree construction please refer to the method section of Fasching et al (6). 253 
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