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The adaptive B cell response is driven by the expansion, somatic hypermutation, and selection
of B cell clones. A high number of clones in a B cell population indicates a highly diverse
repertoire, while clonal size distribution and sequence diversity within clones can be related to
antigen’s selective pressure. Identifying clones is fundamental to many repertoire studies, in-
cluding repertoire comparisons, clonal tracking and statistical analysis. Several methods have
been developed to group sequences from high-throughput B cell repertoire data. Current methods
use clustering algorithms to group clonally-related sequences based on their similarities or dis-
tances. Such approaches create groups by optimizing a single objective that typically minimizes
intra-clonal distances. However, optimizing several objective functions can be advantageous and
boost the algorithm convergence rate. Here we propose a new method based on multi-objective
clustering. Our approach requires V(D)J annotations to obtain the initial clones and iteratively ap-
plies two objective functions that optimize cohesion and separation within clones simultaneously.
We show that under simulations with varied mutation rates, our method greatly improves clonal
grouping as compared to other tools. When applied to experimental repertoires generated from
high-throughput sequencing, its clustering results are comparable to the most performing tools.
The method based on multi-objective clustering can accurately identify clone members, has fewer
parameter settings and presents the lowest running time among existing tools. All these features
constitute an attractive option for repertoire analysis, particularly in the clinical context to unravel
the mechanisms involved in the development and evolution of B cell malignancies.
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1 Introduction

Lymphocytes are the major cellular component of the adaptive immune system. They recognize and

directly bind to pathogens (antigens) through a specific receptor, the B cell receptor (BCR), located

on the outer cell surface. The BCR consists of two components: the recognition unit, structured by

a membrane immunoglobulin (IG) protein, and an associated signaling unit. Upon antigen-specific

stimulation, B lymphocytes undergo activation, proliferation, and further differentiation, enabling the

secretion of the IG’s soluble form, known as antibodies. IG proteins are composed of two identi-

cal heavy chains (IGH) and two identical light chains (IGL). Each chain has two distinct parts: the

variable region in the N-terminal side responsible for antigen recognition and the constant region on

the C-terminal side anchored to the cell membrane. Complex genetic mechanisms create tremendous

diversity of IGH and IGL variable regions. Three sets of genes encode variable regions in IGH: vari-

able (V), diversity (D), and joining (J). These genes are naturally separated on the genome. However,

they become juxtaposed during early B cell ontogeny by a process called VDJ recombination, which

randomly selects and joins one of each of three types of genes together (1). Joining is imprecise as

nucleotides are randomly deleted and inserted in the V-D (N1) and D-J (N2) junctions. The N1-D-N2

region is at the center of the so-called third complementarity determining region (in short, CDR3) and

has the highest variability within the IGH molecule. VJ recombination also occurs for IGL genes, and

random pairing of IGH and IGL chains allows the production of highly diverse B lymphocytes. In

this work, we consider only IGH sequences since they are more diverse than IGL chains, providing a

reliable signature for immune repertoire studies (2).

Upon antigen activation, B cells undergo rapid proliferation and further diversification of their

BCR sequences by an enzymatically-driven process introducing nucleotide substitutions into the IG

variable genes called somatic hypermutation (SHM). This occurs mainly in highly specialized struc-

tures, the germinal centers of secondary lymphoid organs, where a selection process operates termed

affinity maturation. Cells for which SHM produced BCR with higher affinity for their cognate antigen

expand, while those with a lower affinity are eliminated, thereby resulting in affinity maturation of the

lymphocyte. Consequently, each B lymphocyte expresses a unique IG nucleotide sequence, enabling
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recognition of a particular set of antigens. The collection of an individual’s unique BCRs sequences

is called BCR immune repertoire. During adaptive immune responses, B cell clones expand and

contract. Such clones are important cellular units of the immune system. They consist of groups of

B-cells derived from a common precursor during affinity maturation. Clonally-related B-cells share

the same IGH and IGL rearrangements and can contain many molecular variants due to SHM.

Identifying clones in BCR repertoires (clonal grouping) is the starting point for several studies

involving distinct subjects like autoimmune disease (3), cancer (4), and SARS-CoV-2 infection (5).

Moreover, it is also a commonly used way to distinguish clonal (tumoral) from non-clonal (non-

tumoral) B cell populations in case of suspicion of B cell malignancies (6). Extremely varied BCR

repertoires are called polyclonal or non-clonal repertoires and are generally observed in healthy indi-

viduals. In contrast, individuals diagnosed with lymphoproliferative diseases such as B-cell leukemia

or lymphoma have monoclonal or clonal BCR repertoires in which there is one highly expanded clone.

In-between these two extreme situations, the immune repertoire can display unique or multiple mi-

nor clonal expansions reflecting various perturbations of the immune homeostasis such as infections,

autoimmune diseases, and immunosenescence. This type of immune repertoire is termed oligoclonal.

Next-generation sequencing (NGS), which produces a large set of sequences, has profoundly

changed our ability to study lymphocyte repertoires. Furthermore, identifying clones in high-throughput

B cell repertoire data can help reconstruct cell lineage and unravel inter/intra clonal repertoire diver-

sity. Several computational methods for clonal grouping have been developed, which generally em-

ploy clustering algorithms to infer clonal relationships (7–9). Most methods perform clonal grouping

in two main steps. First, sequences with the same IGHV and IGHJ segments, and junctions of the

same length, are grouped. Second, the sequences within each group are clustered according to some

sequence-based distance. Any standard clustering approach can be applied, such as hierarchical (10),

spectral (8) or agglomerative clustering (7). An alternative to these clustering approaches is to con-

struct a lineage tree and cut it to create sub-trees, or clones (11, 12). All previous methods focus

mainly on minimizing intra-clonal distances; they are based on only one criterion, reflecting a single

measure of the partitioning quality. A single measure might not capture the different characteristics
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of the clustering problem, whereas a multi-objective approach might be more appropriate. Another

possible limitation of existing methods is that such algorithms do not allow sequence interchanges

once the groups are established.

Here we propose MobiLLe, a Multi-Objective Based clustering for Inferring BCR clones from

high-throughput B ceLL rEpertoire data. The method requires IGHV and IGHJ gene annotations and

a fixed CDR3 identity threshold to form initial clones. Next, clones are refined by allowing sequences

to move among different clusters until they find their appropriate place. For that, we optimize two

objective functions for minimizing intra-clonal diversity and maximizing inter-clonal differences in

parallel. Such functions continually evaluate clones’ consistency until no improvement is observed

in their cohesion or separation. By minimizing intra-clonal diversity, we improve each clone’s cohe-

sion, which measures how similar sequences are within the clone. On the other hand, by maximizing

the inter-clonal differences, we improve the separation among distinct clones. We show that our ap-

proach greatly improves clonal grouping on simulated benchmarks and performs comparably to the

most powerful and recent methods on experimental repertoires. MobiLLe produces reliable partition-

ing when existing clonal grouping inference methods fail, being very stable even on higher sequence

mutation rates. When applied to experimental repertoires, When applied to experimental repertoires,

it inferred clonal distributions similar to those of the most performing methods. However, MobiLLe

has high scalability, low run-time, and minimal memory requirement. Moreover, it has a few param-

eter settings that do not require much effort and expertise to be tuned.

2 Methods

2.1 MobiLLe

Multi-objective clustering (MOC) decomposes a data set into related groups, maximizing multiple

objectives in parallel. Several frameworks exist to implement MOC, MobiLLE relies on multi-run

clustering, where a clustering algorithm runs multiple times to optimize different objectives that cap-

ture a compound fitness function (13). MobiLLE proceeds through two main steps: pre-clustering

and refinement. Figure 1 shows its flowchart, and Algorithm 1 the pseudo-code for the refinement
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step.

2.1.1 Pre-clustering

The pre-clustering step aims to group similar sequences to form initial clonal groups that can be

refined later. First, sequences are annotated to identify their IGHV and IGHJ genes (and alleles) and

locate their CDR3 regions. For this purpose, we used IMGT/HighV-QUEST (14), but in principle,

any V(D)J annotation software could be used. Sequences with the same IGHV and IGHJ genes and

the same CDR3 sequence length are then grouped together. Finally, we separate sequences with less

than t% of CDR3 amino acid identity (by default t is 70%), see the ”pre-clustering” panel in Figure

1.

2.1.2 Clustering refinement

In this step, we iteratively refine clonal groups until we reach the minimum values for intra-clonal

distances and the maximum values for inter-clonal distances. The algorithm described in 1 takes

the initial clones C as input (generated during the pre-clustering step). For each sequence i ∈ C

it computes two distances: ai (intra-clonal) and bi (inter-clonal). Such distances measure the cohe-

sion/separation within detected clones; they were initially introduced to compute the Silhouette (15).

ai is the average distance between the sequence i and any other sequence in the same clone; bi is the

smallest average distance of i to all sequences in any other clone. In a well-detected cluster, ai is

smaller than bi; thus, if for a given sequence ai is higher than bi, it might indicate that i was placed in

a wrong cluster, and it should be moved to the cluster with the smallest average distance. If sequences

are moved from a cluster k to a cluster l, then ai and bi need to be recomputed for all sequences

in both clusters. Consequently, each sequence movement launches a new iteration of the algorithm,

and it stops if no movement was observed in the previous iteration or after a predefined number of

iterations.

Certainly, the distance metric d(i, j) (between sequences i and j) plays an important role when

computing ai and bi. Distances based on sequence similarity of the whole sequences can be inaccurate

since different IGHV, and IGHJ genes can present considerable similarities. Moreover, CDR3 regions
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are shorter than IGHV/IGHJ genes, and a normalized distance should be more appropriate. Therefore,

we split the sequences into three parts, IGHV, IGHJ, and CDR3 region, and compute a different

distance of each part, separately. The distance d(i, j) is the arithmetic mean of these three distances

and is defined by the equation:

d(i, j) =
dVij + dCDR3ij + dJij

3
, (1)

where dVij is a binary distance based on IGHV gene identification, it is 0 if i and j were annotated with

the same IGHV gene or 1 otherwise; dCDR3ij is the normalized Levenshtein distance (16) between

i’s and j’s CDR3 amino acid sequences; dJij is the normalized Levenshtein distance between i’s

and j’s IGHJ nucleotide sequences. We recall that the Levenshtein distance computes the minimum

number of single-character editions (insertions, deletions, or substitutions) required to transform one

sequence into the other.

Algorithm 1: Clustering refinement
Require: C {initial groups}

repeat
stop← true
for all k ∈ C do

if |k| > 1 then
for all i ∈ k do
ai ← 1

|k|−1
∑

j∈k d(i, j)

bi ← minl 6=k
1
|l|
∑

j∈l d(i, j)

N = argminl
1
|l|
∑

j∈l d(i, j)
if ai > bi then

move i to cluster N
stop← false

end if
end for

end if
end for

until not stop
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2.2 Data sets

To evaluate MobiLLe and compare it with existing clonal grouping methods, we used three types of

BCR repertoire data: simulated, artificial, and experimental.

2.2.1 Simulated repertoires

IGH simulated sequences are largely used to evaluate clonal grouping methods (7, 8, 17). Some

repertoire simulators have been proposed as part of such tools, but, to the best of our knowledge, an

independent B cell repertoire simulator that could produce different types of IGH repertoires (clonal

and non-clonal) does not exist. In order to create simulated repertoires, we adapted GCtree (18), a

B cell lineage simulator. We ran GCtree several times to produce independent B cell lineages that

assembled represent a single repertoire.

To produce a B cell lineage, GCtree randomly selects IGHV, IGHD, and IGHJ germline genes

from the IMGT database (19), then nucleotide(s) can be added to or removed from the IGHV-IGHD

and IGHD-IGHJ junction regions. Next, a branching process is performed, and point mutations are

included in the descendants. For the branching, GCtree uses an arbitrary offspring distribution that

does not require an explicit bounding. Instead, it uses a Poisson distribution with parameter λ to esti-

mate the expected number of offspring for each node. SHM are simulated by a sequence-dependent

process, where mutations are preferentially introduced within certain hot-spot motifs. GCtree uses the

5-mer context model (20) to estimate the mutability µ1, ..., µi..., µl for each residue i of a sequence of

length l. The mutability of the whole sequence µ0, is then computed by averaging the mutability of its

residues: µ0 =
1
l

∑l
i=1 µi. To determine the number of mutations m to be introduced in each mutant

offspring sequence, GCtree also uses a Poisson distribution with parameter λ0, m is then computed

as Pois(µ0λ0); note that more mutable sequences (higher µ0) tend to receive more point mutations.

Basically, GCtree simulator has two main parameters to be set: λ, to estimate the expected number

of offspring of each node, and λ0, to determine the number of point mutations in mutant offspring

sequences. We kept λ as the default value (e.g., 2), but we varied λ0 to produce simulations with

different mutation rates. We experimented with four values {0.16, 0.26, 0.36, 0.46}, where 0.26 is
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the default value. Note that higher λ0 values produce more divergent B cell lineages. For each λ0

setting, we simulated three types of repertoires: monoclonal, oligoclonal, and polyclonal, obtaining

12 different simulations. The initial clonal size setting of each repertoire is shown in Table S1. Since

we only kept productive sequences (without stop codons), the simulated repertoires can contain fewer

sequences than expected.

2.2.2 Artificial monoclonal repertoires

Gold standard experimental data, where truly clonal relationships are known with certainty, are diffi-

cult to obtain. In order to create experimental-based benchmarks, we constructed artificial monoclonal

repertoires by combining sequences from the major clone of a monoclonal repertoire with sequences

of a polyclonal repertoire. Our goal was to determine if clonal grouping methods could separate

sequences from these two sources. To form a data set, we considered a total of 10000 sequences,

where 10% of them were sampled from the major clone and 90% from the polyclonal background.

Since we know the truly clonally-related sequences in each data set, we could compare the different

tools for determining their grouping differences. We created three artificial repertoires from three

different monoclonal samples, each having a specific V(D)J rearrangement. The major clone of the

artificial monoclonal data set named AMR1 was annotated with IGHV1-69*01/IGHJ6*03 genes, the

major clone of AMR2 with IGHV3-48*02/IGHJ4*02 rearrangements, and the AMR3 data set with

the IGHV3-15*01/IGHJ6*02 rearrangements. We used IMGT/HighV-QUEST (14) as V(D)J assign-

ment tool. AMR1, AMR2, and AMR3 major clone sampling were performed from monoclonal reper-

toires containing 22747, 20371, and 23665 sequences, respectively. The polyclonal background was

sampled out of 136977 sequences.

Monoclonal samples and polyclonal background are human peripheral blood mononuclear cells

obtained during routine diagnostic procedures at Pitié-Salpêtrière hospital (Paris-France). DNA se-

quences were obtained by polymerase chain amplification of IGH-VDJ rearrangements followed by

NGS paired-end sequencing on an Illumina MiSeq platform. We obtained one ”Read 1” and ”Read

2” FASTQ files for each sample, which were then merged by the PEAR software (21). The merged
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FASTQ files were converted to FASTA format with seqtk (https://github.com/lh3/seqtk).

2.2.3 Experimental repertoires

In order to evaluate our approach on realistically-sized data sets, we selected nine samples of hu-

man peripheral blood mono-nuclear cells collected during routine diagnostic procedures at Pitié-

Salpêtrière hospital (Paris-France). From these repertoires, we peaked three samples to carry out

a systematic comparison between MobiLLe’s results and existing clonal grouping methods. DNA se-

quences were obtained and assembled as described above. The first three columns in Table S2 show

the number of reads (sequences), the number of unique sequences, and the clonality status defined by

Genescan (22) (Figure S1) of each experimental repertoire.

2.3 Performance evaluation
2.3.1 clustering accuracy

When clonal assignments were known, we could quantitatively assess clonal grouping algorithms’

ability in identifying clonally-related sequences. For that, we applied classical measures such as

precision and recall for comparing the inferred clusters (clones) to the true ones. Consistently, we

also computed the F-measure (FM), the harmonic mean of precision and recall; it is an aggregate

measure of the inferred cluster’s quality. Precision and recall require three disjoint sets, which are:

true positive (TP), false-positive (FP) and false-negative (FN). From these, we compute precision

p = |TP |
|TP |+|FP | , recall r = |TP |

|TP |+|FN | , and FM = 2∗p∗r
p+r

. The values of these three metrics are in the

interval [0, 1], being 1 the best and 0 the worst performance. Certainly, the way TP, FP and FN are

computed will affect the accuracy measures. There are at least two ways to compute these values

depending on the grouping level considered: pairwise and closeness.

The pairwise procedure considers the binary clustering task and focuses on the relationship be-

tween each pair of sequences. A pair of sequences is counted as: TP if the sequences are found

together in both ‘true’ and ‘inferred’ clusters; FP if the sequences are found separated in the true, but

together in the inferred clone; FN if the pair is found together in the true but separated in the inferred
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clone, see an illustration in Figure S2-A.

The closeness procedure evaluates clone compositions and the repertoire structure. For that, we

first identified the best correspondence between inferred clones and correct clonal assignments. Then,

we associated clone pairs that shared the maximum of common sequences. For each associated pair

i, considering Ii inferred and Ti true clone, we computed TPi as the intersection between the two sets

(Ii ∩ Ti), FPi as the difference between inferred and true clone (Ii \ Ti), and FNi as the difference be-

tween true and inferred clone (Ti \Ii). Finally, we computed TP=
⋃n

i TPi, FP=
⋃n

i FPi and FN=
⋃n

i FNi,

where n is the number of associated clone pairs; see an illustration in Figure S2-B.

2.3.2 Comparison of clonal distributions

In order to compare clones obtained by different tools, we have defined five ”events” that describe

the differences between each pair of clonal distributions. For this, we labelled clusters in a clonal

distribution d2 by comparing them with clusters in a distribution d1. These events are represented in

Figure 2, and can be interpreted as follows:

1. identical: clusters in both distributions are identical, they contain the same set of sequences

(Figure 2A),

2. join: when sequences of different clusters in d1 were joined in the same cluster in d2 (Figure

2B),

3. split: when sequences of a cluster in d1 were divided into several clusters in d2 (Figure 2C),

4. Mix: when a mixture of the join and split events occur. For instance, in Figure 2D, we observed

two events, ”split” (S8 and S9) and ”join” (S10, S11 and S12),

5. Not found: when a cluster in d2 is not found among clusters in d1.

2.4 Clonal grouping tools considered for comparisons

MobiLLe groups, within a clone, sequences that might represent a B cell lineage. Thus, we chose four

tools that employ the same clone definition. Each method has its own set of characteristics concerning
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the underlying algorithm, prior information, and produced outputs. Here we briefly describe them;

for more details, report to original publications.

2.4.1 BRILIA

B cell Repertoire Inductive Lineage and Immunosequence Annotator (BRILIA) builds up lineage tree

reconstruction, clonal grouping, and V(D)J annotation into a single algorithm (12). From a collection

of IGH sequences, BRILIA first provides initial V(D)J gene identification according to the IMGT

database (19). Then, it groups sequences with the same IGHV and IGHJ gene subgroups and the

same CDR3 sequence length. It proceeds by reconstructing lineage trees that will determine groups

of clonally-related sequences. For that, it determines parent-child sequence relationships within each

group for further reconstructing lineage trees. Evolutionary relationships are based on an adjusted

hamming distance that penalizes dissimilarities in the N regions. Next, BRILIA determines the root

of each obtained tree as the sequence involved in a cyclic dependency having the smallest distance

to all other sequences in that cluster. Finally, a clone is a group of sequences sharing a common root

sequence.

2.4.2 Partis

Partis (7) uses hidden Markov models (HMMs) to represent V(D)J rearrangement events (23). An

HMM is a probabilistic model, where the modelled system is assumed to be a Markov process with

hidden states and unknown parameters. Each hidden state emits a symbol representing an elementary

unit of the modelled data; for example, in BCR sequences, the hidden states represent either gene

positions or N-region (addition or deletion) nucleotides. Thus, the HMM states represent nucleotides

of each IGHV, IGHD, and IGHJ gene. The emission probabilities incorporate the probability of SHM

at each nucleotide, and transition probabilities represent the probability of moving from one state to

another. The HMM’ parameters (emission and transition probabilities) are estimated from a large

panel of available sequences. Once the model is trained, BCR sequences are annotated by computing

the Viterbi path through the HMM and finding the maximum-likelihood annotation. After V(D)J

assignment, Partis applies its clonal grouping strategy. First, it creates initial clones of sequences
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sharing the same IGHV and IGHJ genes and the same CDR3 length. Then, it applies an agglomerative

clustering algorithm to merge clusters that maximize the likelihood ratio that could indicate that two

clusters derive from the same rearrangement events.

2.4.3 SCOPe

SCOPe requires V(D)J annotation before clonal grouping, and tools such as IMGT/HighV-QUEST

(14), or IgBlast (24) can be used. To identify a clone, SCOPe applies a spectral clustering method

with an adaptive threshold to determine the local sequence neighbourhood; it means that it does not

require a fixed threshold for detecting clonally-related sequences. Given a set of IGH sequences,

SCOPe first divides them into groups with the same IGHV gene, IGHJ gene, and junction length.

Then, it computes the similarity matrix for each group considering the hamming distance between

junction regions of each pair of sequences within the group. Next, it generates a fully connected

graph from the data points and performs local scaling to determine the local neighbourhood. Based

on the graph, SCOPe builds an adjacency matrix and creates a Laplacian graph. The eigenvalues of

such a graph can then be used to find the best number of clusters, and the eigenvectors can be used to

find the actual cluster labels. Finally, SCOPe performs k-means clustering on the eigenvectors to get

the labels (clone) for each node (sequence).

2.4.4 SONAR

For SONAR (Software for the Ontogenic aNalysis of Antibody Repertoire) (11), a clonal group con-

tains all IG reads that share a common ancestor. This tool focuses further on seeded lineage assign-

ment, where the sequences of one or more known antibodies are used as seeds to find all sequences in

the data set from the same lineage while leaving the rest of the sequences unclassified. In addition, it

can perform ”unseeded lineage assignment,” which consists of classifying sequences into component

lineages without any additional information. In order to perform an unseeded lineage assignment,

SONAR separates sequences based on their assigned IGHV and IGHJ genes. The sequences in each

group are then clustered based on their CDR3 nucleotide identity (by default, 90% of CDR3 se-

quence), using the UCLUST algorithm in USEARCH (25). Eventually, each clone is identified as a
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distinct unseeded lineage.

3 Results

3.1 MobiLLe reconstructs simulated repertoires precisely

We first evaluated MobiLLe performance in reconstructing simulated repertoires with known clonal

composition. The goal was to check if MobiLLe could accurately detect clonal memberships, clonal

sizes, and distributions. In particular, we generated benchmarks that simulate several types of reper-

toire (clonal and non-clonal) with different SHM rates. For that, we adapted GCtree (18), a B cell

lineage simulator, which randomly selects germline sequences for generating the unmutated common

ancestor of each lineage and then introduces point mutations at hot-spot positions. Since GCtree gen-

erates a small number of productive sequences, we did not use selection models that could reduce the

number of generated sequences. Nevertheless, we used a set of parameters to consider the following

aspects of the B cell lineage biology: mutability (substitution), tree branching, and base-line mutation

rates (Section 2.2.1).

We ran GCtree several times to create a collection of B cell lineages, composing a unique reper-

toire. To produce simulated repertoires with different SHM loads, we varied the corresponding GCtree

parameter λ0 that determines the number of mutations in offspring sequences. We experimented with

four different configurations {0.16, 0.26, 0.36, 0.46}, where higher values produce more divergent B

cell lineages. We produced 12 simulated benchmarks, which simulate the three types of repertoires:

monoclonal, oligoclonal, and polyclonal. The first four columns in Table 1 show SHM rates, clonal-

ity status, the number of sequences, and the number of expected clones for all simulated repertoires.

Using these data, we evaluated our method by comparing inferred clones to truly related clonal se-

quences generated during the construction of each simulated repertoire. We used two complementary

approaches in order to evaluate the clonal grouping accuracy: pairwise and closeness, detailed in

Section 2.3.1.

MobiLLe achieved high precision, recall, and F-measure across all simulated data sets for both

pairwise and closeness performance measurement. Across all mutation rates, it accurately identified
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all pairwise relationships and reconstructed precisely the structure of all repertoires, see Table 1.

The absolute performance measures were remarkably high for both clustering accuracy evaluation

approaches, exhibiting a mean recall over 99%, and a mean precision/F-measure equal to 1. Closeness

performance was lower (0.95) for polyclonal repertoire generated with λ0 = 0.26. For this data set

MobiLLe inferred more clones than expected, increasing the number of false negatives and reducing

the recall measure. MobiLLe detected the exact number of expected clones for the vast majority of

repertoires, compare the fourth and fifth columns in Table 1.

3.2 Lower CDR3 identity thresholds do not impact the MobiLLe performance

In order to check the influence of MobiLLe parameter setting in the clonal grouping accuracy, we var-

ied the pre-clustering threshold and measured the performance on simulated data sets. The MobiLLe’s

pre-clustering step adopts three criteria to group clonally-related sequences: having the same IGHV

gene/allele, the same IGHJ gene, and a CDR3 amino acid identity of at least t%. IGHV and IGHJ

gene annotations are often used for grouping sequences into initial clusters by several tools (7, 26).

The only controversial parameter is the CDR3 amino acid identity threshold. Many studies choose a

fixed threshold and define any sequence with junction region sequence similarity above this thresh-

old to be clonally-related (3, 27). We used a fixed threshold t=70% based on the definition of BCR

subgroups with highly similar CDR3 motifs detailed in (28), often referred to as stereotyped BCR.

However, other studies suggest different cutoffs, varying from 60% to 70% (29–31). To verify the

impact of different cut-offs on the MobiLLe’s performance, we varied the pre-clustering threshold

from 50% to 90%. The results are shown in Figure 3. For different repertoire types and different

mutation rates, a threshold of 70% achieved the optimal performance. Note that a higher CDR3 iden-

tity threshold reduces the performance of MobiLLe, mainly in reconstructing the repertoire structure;

see closeness performances (Figure 3BDF). It can be explained by the larger number of singletons

generated with a higher threshold. Once singletons are formed, MobiLLe cannot merge them into

higher density clusters since its intra-clonal distance ai is zero, and it is smaller than any other inter-

clonal distance. We also observed that closeness performances degraded faster than pairwise when
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increasing CDR3 identity threshold (Figure 3BDF), mainly in the monoclonal repertoire with a high

mutation rate (Figure 3B). This is due again to the effect of a large number of singletons that disturb

the repertoire topology. On the other hand, a lower CDR3 identity threshold does not impact the

MobiLLe performance significantly. Figures 3-ABCE show no influence, while Figures 3-DF present

some performance perturbations. MobiLLe can adapt its performance when using CDR3 identity

threshold in the 50%-70% range; higher values are not recommended since many singletons could be

generated.

3.3 Exploring the clonality of experimental repertoires

To demonstrate the application of MobiLLe on experimental data, we selected nine samples of hu-

man peripheral blood mononuclear cells collected during routine diagnostic procedures at the Pitié-

Salpêtrière hospital. Three of these samples contained clonal leukemic cells, and six of them were

considered non-clonal originating from patients devoid of malignancy (Section 2.2.3). Their clonality

status was previously established by conventional methods, including PCR amplification of IGH-VDJ

rearrangements followed by Genescan analysis (22) (Figure S1).

Figure 4 shows clonal abundances/densities for each analyzed sample. To measure the repertoire

disequilibrium, we used the Gini index (32), which reflects the inequalities among values of a fre-

quency distribution; zero indicates perfect equality, while one corresponds to maximal inequality.

Clonal repertoires presented the highest Gini indexes, close to 1 for individuals 1 to 3 (see Figure

4ABC). Repertoires 1 and 3 presented similar clonal distributions, with the presence of a major clone

accounting for the quasi-totality of the repertoire and a small number of minor clones having a low

number of sequences (compare Figure 4A,C and Figures S3, and S5). MobiLLe results agreed with

Genescan analysis, where we observed a single peak, indicating a monoclonal repertoire (Figure S1

A,C).

Individual 2 presented a different clonal profile with two major clones, each one accounting for

more than 40% of the repertoire, see Figure 4B and Figure S4. Detailed sequence analysis revealed

that the two major clones were composed of a productive and an unproductive IGH-VDJ rearrange-
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ment, corresponding to a leukemic cell population with biallelic IGH rearrangements. This biallelic

IGH rearrangement was confirmed by Genescan analysis; Figure S1B shows two peaks, each corre-

sponding to one IGH allele.

To better analyze non-clonal cases, we split them into two groups: (i) those with the predominance

of clones with moderate abundances: I4, I5 and I6 (often termed oligoclonal repertoires), and (ii) the

others with a more equilibrated (balanced) clonal distribution: I7, I8 and I9, termed as polyclonal

repertoires. In the first group, repertoires 4 and 5 presented similar clonal profile, with Gini indexes

around 0.76 and 0.84, respectively, see Figure 4DE and Figures S6 and S7. GeneScan analyses

confirmed the non-clonal status of these individuals; we observed the absence of predominant peaks

in Figures S1D,E. Individual 6 displayed a different configuration from other repertoires in the same

group, with the presence of a relatively abundant clone representing 12% of the repertoire, Figure 4F

and Figures S8. Not surprisingly, the repertoire 6 had the most biased distribution among non-clonal

repertoires with a Gini index of 0.91. We also observed a more unbalanced profile in the Genescan

analysis, Figure S1F.

In the second group, we found more homogeneous and less biased repertoires. Sample 7 and

8 had similar clonal distributions (Figure 4GH, Figures S9, and S10), while repertoire 9 was more

irregular (Gini index = 0.83), see Figure 4I and Figure S11. We also observed a slight difference

when comparing distributions generated by Genescan analysis, where repertoire 9 displayed more

peaks than other repertoires in the same group, compare Figures S1-GHI. In these three cases, the

size of the detected clones was relatively small, each of them accounting for less than 1% of the total

sequences; see Figures S9, S10 and S11.

3.4 Comparison to existing clonal grouping methods

To obtain comparative results, we compared the performance of MobiLLe with four clonal grouping

methods on both simulated and experimental data. We selected the most used tools: Partis, SCOPe,

SONAR and BRILIA, briefly described in Section 2.4, and used the evaluation strategies described in

Section 2.3 to measure their performances and compare clonal distributions.
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3.4.1 Simulated BCR repertoire data

We first compared MobiLLe to state-of-art methods on the 12 simulated repertoires described in

Section 2.2.1. We used precision, recall and F-measure computed in two different ways, pairwise and

closeness, to quantify clustering accuracy (Section 2.3.1).

Pairwise performances

MobiLLe achieved the best pairwise performance across all simulated data sets, Figure 5-Top. SCOPe

and Partis outperformed SONAR and BRILIA. All tools achieved a precision close to 1, demonstrat-

ing that few false positives were detected. However, most tools had over-split clones, detecting many

false negatives that considerably decreased recall and F-measure values.

SCOPe achieved high recall and F-measure for simulated data sets with lower mutation rates (λ0 =

{0.16, 0.26}), see Tables S4-S9. Recall and F-measure values were above 0.94 for these six simulated

repertoires. We observed lower recalls and F-measures for the remaining data sets, produced with

higher mutation rates λ0 = {0.36, 0.46} (Tables S10-S15). On the other hand, Partis obtained a

good pairwise performance across all simulated data sets independently of mutation rates. The only

exception was the monoclonal repertoire produced with λ0 = 0.36 (Table S10). For this data set,

Partis detected 44 clones when 35 were expected, decreasing its recall considerably. Interestingly, for

lower mutation rates, SCOPe outperformed Partis, but we observed the opposite for higher mutation

rates on most simulated repertoires. Thus, Partis seems to be more accurate when analyzing clonally-

related sequences with higher divergence. Partis had difficulties in separating clusters with highly

similar clonally-related sequences, as reported in the initial publication.

For oligoclonal and polyclonal repertoires, the different mutation rates seemed to influence SONAR

performances. Recall and F-measure decreased as mutation rates increased, especially for the oligo-

clonal repertoires. For the monoclonal samples with λ0 = 0.26 (Table S7), SONAR obtained lower

recall and F-measure than with λ0 = 0.36 (Table S10). We observed that SONAR had over-split

the largest clone of the first repertoire (λ0 = 0.26), grouping only 37% of sequences. On the other

hand, it carried out less splits on the most abundant clone of monoclonal repertoire generated with
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λ0 = 0.36, grouping 62% of sequences. Once splits in large clones contribute to accuracy decreasing,

it could explain the lower performance of SONAR on the monoclonal repertoire (λ0 = 0.26). For

the monoclonal repertoire with λ0 = 0.46, SONAR detected four times more clones than expected,

obtaining its lowest recall and F-measure, 0.03 and 0.06, respectively.

Most of the time BRILIA achieved the lowest pairwise performances across all simulated reper-

toires generated with different mutation rates. BRILIA removes sequences, which it cannot an-

notate, reducing the original data set, impacting the accuracy calculation. We also observed that

BRILIA has over-split repertoires, producing the highest number of clones for most simulated data

sets. The best performance was obtained on polyclonal repertoires generated with lower mutation

rates (λ0 = {0.16, 0.26} - Tables S6-S9) and the lowest performance on monoclonal repertoires with

higher mutation rates (λ0 = {0.36, 0.46} - Tables S10-S13).

Closeness performances

MobiLLe achieved the best closeness performance across all simulated data sets independently of mu-

tation rates; see Figure 5-Bottom. The closeness evaluation approach tends to be more challenging

than pairwise since clone properties such as size and distribution are also evaluated rather than pair-

wise relationships. Conversely, as observed for other tools, MobiLLe performance was not impacted

by higher mutation rates or unbalanced clonal distributions. MobiLLe reconstructed all repertoire

structure precisely, showing good stability and high accuracy. On the other hand, the four evaluated

clonal grouping tools obtained high precision values but much lower recalls and F-measures. As

observed for pairwise measures, SCOPe and Partis outperformed SONAR and BRILIA.

SCOPe outperformed Partis for most monoclonal repertoires, but Partis surpassed SCOPe for the

majority of oligoclonal and polyclonal samples. SCOPe achieved higher F-measure values (> 0.73)

on monoclonal repertoires generated with lower mutation rates (λ0 = {0.16, 0.26, 0.36} - Tables

S4-S12). However, its performance sharply decreased on the monoclonal repertoire with the high-

est mutation rate, achieving 0.16 and 0.28 for recall and F-measure (Table S13). Its performances

were affected by higher mutation rates; especially on oligoclonal and polyclonal samples, where we
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observed a notable difference between repertoires generated with λ0 = {0.16, 0.26} and those gener-

ated with λ0 = {0.36, 0.46}; Figure 5D,F. Higher mutation rates did not impact the performance of

Partis on simulated repertoires. Its accuracy was stable on polyclonal repertoires and presented slight

fluctuations on oligoclonal samples. Interesting, on the monoclonal data set, Partis achieved better

performance for highly mutated repertoires; the best F-measure was obtained on the sample generated

with λ0 = {0.46}; Figure 5B and Tables S4-S15.

SONAR performance was completely affected by higher mutation rates. We systematically ob-

served lower recalls/F-measures as mutation rates increase (Figure 5DF and Tables S4-S15). Indepen-

dently of mutation rates, SONAR achieved low performance on monoclonal repertoires; F-measures

were smaller than 0.2 (Tables S4, S7, S10, S13). SONAR over-split the most abundant clones of

monoclonal repertoires, which greatly decreased closeness performances. We observed better results

on oligoclonal and polyclonal repertoires, especially on samples generated with lower mutation rates

(λ0 = {0.16, 0.26} - Tables S4-S9). On the other hand, for all repertoires generated with higher

mutation rates, SONAR achieved an F-measure inferior to 0.4 (Tables S10-S15). BRILIA achieved

the lowest performance for most of the analyzed repertoires. The only exception was the oligoclonal

sample generated with λ0 = 0.46, where it outperformed SONAR (Table S14). For the remaining data

sets, SONAR overpassed BRILIA; we observed a notable difference mainly on repertoires generated

with lower mutation rates, where BRILIA achieved low F-measure systematically (Tables S5, S6, S8,

S9). BRILIA and SONAR achieved an equivalent performance in monoclonal repertoires, with very

low values for recall and F-measure.

3.4.2 Artificial experimental repertoires

To investigate the tools’ performance on experimental benchmarks, we created artificial experimental

repertoires from BCR high throughput sequencing data as described in Section 2.2.2. We generated

three artificial monoclonal repertoires (AMR1, AMR2, and AMR3) by mixing sequences from the

major clone of a monoclonal repertoire (10%) and a polyclonal background (90%). Each data set

contained 10k sequences, and the performance measured clonal grouping tools’ ability in identifying
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memberships within the most abundant clone. Accurate tools might group sequences from the major

clone and separate in different clusters those from the polyclonal background. Thus, we counted the

number of splits (SC) and false-positives (FP) in the major clone to measure the tools’ accuracy. We

also used the alluvial diagram for visualizing clustering results; it represents flows between expected

clones (left) and inferred ones (right).

Figure 6 shows the clonal grouping performance of different tools for AMR1, AMR2, and AMR3

data sets. Blue blocks represent the major clone (sampled from a monoclonal repertoire) in the allu-

vial diagrams and pink or orange inferred clones. Pink blocks contain only sequences belonging to

the major clone (true positives), while the orange blocks contain sequences from the polyclonal back-

ground (false positives). Block height symbolizes the size of a clone, that is, the number of sequences.

For AMR1, MobiLLe obtained the best clonal separation with no split (SC=0) and the smallest false

positive (only 3). Partis and SCOPe also obtained fewer false positives but higher SC, 4 and 5, respec-

tively. SONAR and BRILIA did not find any false positives, but both tools performed a significant

number of splits, 90 and 64, respectively. Note that MobiLLe accurately reconstructed the whole

lineage without detecting separations observed with other tools. The clonally-related sequences sep-

arated by other tools had different CDR3 lengths. They differ in the number of consecutive Tyrosine

(Y) (ARDRRGEWPPSDYYYYYYMDV, ARDRRGEWPPSDYYYYMDV, and ARDRRGEWPPT-

DYYYMDV). Since MobiLLe uses Levenshtein distance to compare CDR3 regions, it allows to

group sequences with different lengths. In this case, MobiLLe tolerated the insertion/deletion of ty-

rosines because the rest of the sequences were similar and considered them as originating from the

same lineage. Interestingly, during our NGS runs routine analyze tyrosines insertions/deletions have

been observed frequently, mainly on BCR sequences annotated with IGHJ6 genes. The origin of such

phenomenon (biological or sequencing artifact) remains unknown.

As observed for AMR1, MobiLLe did not split the clonally-related sequences of AMR2 data set

in different clones (SC = 0). It also obtained the lowest FP value. Similarly, Partis and SCOPe did not

break the most abundant clone, but they detected more FPs than MobiLLe. SONAR and BRILIA still

over-split the major clone, achieving an SC of 90 and 55, respectively. SONAR inferred more clones
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than BRILIA but obtained fewer FPs. Notably, the AMR3’s major clone contains non-productive

sequences that SONAR and BRILIA did not consider. MobiLLe recovered almost all sequences of

the most abundant clone (SC=1), followed by SCOPe (SC=2) and Partis (SC=3), see Figure 6C. The

three tools detected the same number of FP=4. For all artificial monoclonal repertoires, we observed

the same behavior in the results of each tool. We note that clonal grouping methods have clustered

sequences differently. Partis, SCOPe, and MobiLLe have grouped the majority of sequences from the

major clone of monoclonal repertoires. SONAR and BRILIA over-split clonal related sequences, but

they detected fewer FPs. MobiLLe presented the best performance, achieving the minimum of splits

and false positives.

3.4.3 Clonal distribution comparisons

In order to understand the differences of clonal distributions of experimental repertoires, we compared

MobiLLe clone composition to those of each considered clonal grouping tool. For comparing the

methods, we selected three repertoires with different clonality status. I1 is a monoclonal repertoire

with a major clone containing 98% of all sequences, I2 is a monoclonal repertoire with a biallelic IGH

rearrangements, and I8 is a polyclonal repertoire; see Table S2 and Figure S1A,B,H.

We compared the inferred clones of existing clonal grouping tools with MobiLLe’s clustering

results. For that, we used clustering quality measures and defined five events: identical, join, split,

mix, and not found, which represent the (dis)similarities between two clonal distributions, see Section

2.3 and Figure 2. Table Table S16 and S17 show pairwise and closeness performance when comparing

MobiLLe and other tools, while Figure 7 the occurrences of five events. Since MobiLLe removes

sequences with no V(D)J annotations, we quantify the number of MobiLLe’s missing clones as ”Not

found” events. When analyzing the repertoire I1, we observed that BRILIA presented the maximum

of identical clones, followed by Partis and SCOPe. These three tools obtained a similar number of

clusters at the order of magnitude of the MobiLLe output. On the other hand, SONAR produced

a significantly higher number of clusters, performing many splits. Interestingly, BRILIA and Partis

achieved very high pairwise performances (Table S16), indicating that most pairs of clonally-related
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sequences were clustered in the same group. SCOPe inferred more clones than MobiLLe, achieving

a slightly lower pairwise performance but around 0.98 (Table S16). Closeness comparison indicates

that Partis clonal distribution is closer to MobiLLe than BRILIA and SCOPe (Table S17). However,

the disagreement of these tools is mainly in the singleton identifications. On the other hand, pairwise

and closeness recall/F-measure of SONAR was very low since it performed a considerable number of

splits. All compared tools produced fewer joins and achieved high precision, meaning that they did

not group sequences separated by MobiLLe.

For the biallelic monoclonal repertoire I2, SONAR inferred the highest number of identical clones,

approximating the number of clones predicted by MobiLLe. For Partis and SCOPe, the predominant

event was also ”identical”, but both tools inferred fewer clones than MobiLLe. We also observed that

the ”mix” event was frequent, representing around 20%. Further analyses showed that ”mix” event is

associated with minor disagreement involving singletons. It was confirmed by pairwise performance

values (Table S16) that show very high F-measures for SCOPe and Partis. SONAR achieved lower

pairwise recall/F-measure than Partis and SCOPe, indicating more disagreements in the clonal distri-

butions. Interestingly, SCOPe performed more splits than SONAR and Partis, but it did not impact

its pairwise performances since most splits were not in the major clone as observed for SONAR. We

also observed higher closeness values for Partis and SCOPe than SONAR. BRILIA over-split the data

set I2, detecting three times more clones than MobiLLe. Consequently, its pairwise/closeness recall

values were very low, only 0.11 (Table S16) and 0.01 (Table S17).

We observed more identical inferred clones in the polyclonal repertoire I8. BRILIA presented the

highest value, accounting for more than 80%, followed by Partis and SCOPe around 62%. BRILIA

and SCOPe achieved the best pairwise values. Although SCOPe inferred fewer clones than BRILIA,

it identified most clonal membership correctly, achieving a comparable recall/F-measure. Both tools

also presented the highest closeness F-measures. We observed a significant agreement between Partis

and MobiLLe (pairwise and closeness values), but Partis performed more splits than BRILIA and

SCOPe, which slightly decreased its pairwise/closeness recall. In general, the clonal composition of

the three tools was similar to MobiLLe (Table S17). On the other hand, SONAR over-split the clones
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inferred by MobiLLe, detecting the largest number of groups. Moreover, its lower pairwise/closeness

precision pinpointed many false positives predictions compared to MobiLLe results.

3.4.4 Runtime

Computational efficiency is an important factor in clonal grouping development especially in a clinical

context. Efficient methods need to process a large number of BCR sequences within a reasonable

time without compromising clustering quality. In order to compare the computational requirements

of MobiLLe with the four selected clonal grouping tools, we measured the running time on the I1,

I2, and I8 repertoires. Figure 8 shows the time in seconds required by each tool to process the three

repertoires, using a 3.4 GHz Octa-Core processor with 32 GB of memory; see the exact time in Table

S18. MobiLLe took less than 20s to analyze the monoclonal repertoire I1, containing more than

30000 sequences. SONAR was also quick, but we observed an over-split that could explain its faster

performance. BRILIA and SCOPe analyzed the I1 data set in a comparable time, around 200s and

100s, respectively. Partis was the most time-consuming tool, taking more than 2000s to process the

I1 repertoire.

For I2, a biallelic monoclonal repertoire, containing more than 60000 sequences, MobiLLe also

exhibited the fastest performance compared to the four evaluated tools. Of note, this sample took the

longest time to be processed by all tools, including MobiLLe. Although samples I1 and I2 present a

monoclonal structure, I2 has two major clones and significantly more clonal groups than I1. Appar-

ently, the I2 structure slowed down the clustering processing since more comparisons among higher

density clusters were done.

The polyclonal repertoire I8, containing more than 70000, seems less challenging than I2 with

fewer sequences. Again, MobiLLe achieved the best time performance, clustering I8 in 135s. SONAR

and SCOPe were also fast, taking 187s. Partis achieved the lowest performance, taking more than

1500s.

We observed that the clonal distribution significantly influences the running time of MobiLLe

rather than the number of sequences. Calculating intra-clonal distances in repertoires with very abun-
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dant clones is more time-consuming. Accordingly, for repertoires with similar sizes but different

clonal distributions, MobiLLe can present different running times. Therefore, for an equivalent num-

ber of sequences, the analysis of a monoclonal repertoire can be longer than the analysis of a poly-

clonal repertoire.

4 Discussion

The ability to obtain vast numbers (millions) of antigen receptor sequences using NGS techniques

has dramatically changed our possibilities to explore immune (BCR) repertoires. Clonally-related

sequences in a BCR repertoire descend from a common ancestor and present the same V(D)J re-

arrangement, but they may differ due to the accumulation of SHM, making their automatic clonal

grouping challenging. Clonal relationships can be computationally identified from a large set of IGH

sequences by using some clustering approach. Most clonal grouping methods automatically separate

sequences into clonal groups based on their similarities or distances, considering the whole sequence

and (or) junction regions. Commonly, their clustering algorithms are based on only one criterion that

minimizes intra-clonal distances. However, such a single measure might not capture the different

aspects of repertoires and considering multiple objectives seem more appropriate. Moreover, such al-

gorithms do not review their clustering decisions, and sequences cannot move between clusters once

the groups are established. Here we have proposed MobiLLe, a Multi-Objective Based clustering for

Inferring BCR clones from high-throughput B ceLL rEpertoire data. The method first produces initial

clones containing sequences with identical IGHV and IGHJ germline annotations and more than t%

of amino acid identity on CDR3 regions (default t=70%). Next, sequences can move among clones

until achieving minimum intra-clonal diversity and maximum inter-clonal diversity. MobiLLe opti-

mizes two objectives functions that continually evaluate clones’ consistency until no improvement is

observed in their cohesion or separation.

We validated our method on synthetic data that simulated three types of immune repertoires (mon-

oclonal, oligoclonal, and polyclonal) with different SHM rates. On the 12 simulated repertoires,

MobiLLe inferred clonal relationships with very high accuracy, see Table 1, detecting clonal mem-
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berships and precisely reconstructed repertoire structures. The simulations showed that existing al-

gorithms frequently over-split clones, separating sequences that belong to the same B cell lineage

and originate from a common ancestor (Table S4-S15). High SHM rates impact the clustering ac-

curacy of most methods; they achieved lower performance on simulated repertoires with divergent

sequences, mainly on monoclonal samples. On the other hand, MobiLLe was very stable, keeping a

good performance independently of SHM rates and repertoire types.

To evaluate performance on experimental data, we generated three artificial monoclonal reper-

toires by mixing sequences from the major clone of monoclonal repertoires with sequences from poly-

clonal repertoires. Then, we measured the ability of the existing clonal grouping tools and MobiLLe

in grouping members of the most abundant clone. MobiLLe accurately grouped sequences from the

major clone and separated in different clusters those from the polyclonal background. We observed

that MobiLLe performed the minimum number of splits and detected fewer false positives compared

with existing tools. In addition, our method can group sequences with different CDR3 lengths. This

can be useful since SHM also introduces insertions and deletions (indels) in the junction region at a

low-frequency (33, 34). It was the case of AMR1 data set where we observed insertion/deletion of

tyrosine residues in the junction region. Thanks to this flexibility MobiLLe reconstructed the major

clone of AMR1 perfectly.

After validating our method on simulated and experimental-based benchmarks, we applied it to

experimental data sets where clonal groups were unknown. We selected nine repertoires, three of

them contained clonal leukemic cells, and six were considered non-clonal (polyclonal). Clonality

status was established a standardized methodology involving PCR amplification of IGH-VDJ rear-

rangements and Genescan analysis (22). We evaluated if MobiLLe could help estimate repertoires’

clonality and provide additional information about their clonal distribution. MobiLLe results agreed

with Genescan analysis for all investigated samples (Figure S1), showing that it can predict clonality

assignment and distinguish between clonal and non-clonal B cell populations. To help interpret clonal

distributions, we have measured the disequilibrium of a repertoire with the Gini index applied to clus-

ter size distribution. We observed that monoclonal repertoires presented the highest Gini indexes,
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indicating a disequilibrium in the clonal population. On the other hand, non-clonal repertoires exhib-

ited lower Gini indexes, showing a more balanced data set. MobiLLe provides a collection of plots

representing clones and their abundances for facilitating repertoire clonality interpretation. Compared

to other clonal grouping tools, MobiLLe clonal distributions were often closer to Partis and SCOPe,

the most performing tools. The pairwise evaluation confirmed that the clustering results of Partis and

SCOPe were closer to MobiLLe with an F-measure superior to 0.93 for all analyzed repertoires. The

clonal compositions of MobiLLe and BRILIA agreed on two samples but disagreed on the biallelic

monoclonal repertoire. On the other hand, SONAR and MobiLLe agreed only on the biallelic mon-

oclonal repertoire and disagreed on the other samples. MobiLLe was computationally more efficient

than other tools. Moreover, it does not require an optimized distance threshold or training process,

which can be time-consuming, especially when analyzing monoclonal repertoires.

Accurate identification of clonal members is essential for a wide range of repertoire analyses.

However, the design and development of clonal grouping methods present several challenges, such

as determining sequence similarities, choosing threshold distances, and maximizing computational

efficiency. We show that MobiLLe clustering algorithm can identify clones with high accuracy and

low runtime. We believe that our composed distance that analyses each sequence part is more ap-

propriate and yields better results than previous definitions. A fixed distance threshold choice seems

to be counterbalanced by our multi-objective optimization approach, which simultaneously optimizes

the trade-off between intra-clonal cohesion and inter-clonal separability. Finally, MobiLLe is not as

computationally demanding as methods that compute likelihood-based inference or optimized dis-

tance thresholds. The main weakness of our method is the impossibility of merging singletons to

higher-density clusters. A possible improvement is to define a composed function that quantifies the

clustering quality across all clones in the repertoire. Thereafter, merging singletons to other clusters

might improve the objective function.

26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.10.01.462736doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.01.462736


5 Conclusion

Clonal grouping is at the core of BCR repertoire analysis and all downstream investigations such

as repertoire diversity estimation and intra-clonal analysis, among others, depending on the correct

grouping of BCR sequences. Several clonal grouping methods have been proposed, but the most per-

forming tools are either time-consuming or unstable when highly divergent repertoires are analysed.

MobiLLe is a fast and accurate tool for clonal grouping with few parameter settings, low runtime, and

memory usage that does not require a training process or hyper-parameter optimization. It can easily

be applied to experimental repertoires of large sizes, proving useful plots to interpret BCR clonal

groups.

5.1 Tables

Table 1: Evaluating the performance of MobiLLe on simulated repertoires. The third, fourth,
and fifth columns show the number of sequences, the number of expected clones, and the number
of detected clones, respectively. Pre, Rec, and FM are the abbreviations of precision, recall, and
F-measure, respectively.

MobiLLe’s performance

λ0 Clonality # seq # exp. clusters # det. clusters Pairwise Closeness
Pre Rec FM Pre Rec FM

0.16
Monoclonal 958 34 34 1 1 1 1 1 1
Oligoclonal 1014 43 43 1 1 1 1 1 1
Polyclonal 968 44 44 1 1 1 1 1 1

0.26
Monoclonal 659 33 33 1 1 1 1 1 1
Oligoclonal 958 43 43 1 1 1 1 1 1
Polyclonal 964 44 45 1 0.99 1 1 0.95 0.97

0.36
Monoclonal 924 35 35 1 1 1 1 1 1
Oligoclonal 991 40 40 1 1 1 1 1 1
Polyclonal 897 42 43 1 0.99 1 1 1 1

0.46
Monoclonal 952 35 36 1 0.99 1 1 0.99 1
Oligoclonal 1016 43 43 1 1 1 1 1 1
Polyclonal 952 43 43 1 1 1 1 1 1
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Figures

Figure 1: Flowchart of MobiLLe. The method requires IGH annotated sequences (IGHV, IGHJ, and
CDR3 region were previously identified) to form initial clusters (pre-clustering step), we first group
sequences with the same IGHV, IGHJ, and same CDR3 (AA) length; then, we separate sequences
with less than t% CDR3 identity (default 70%). During the refinement step, sequences can move
among different clusters until no improvement is observed in cluster cohesion or separation. The final
groups represent clones with low intra-clonal diversity and high inter-clonal diversity.
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Figure 2: Clonal distribution comparisons. Five ”events” describe the differences between two
clonal distributions (d1 and d2) on the same set of sequences. The identical event counts the number
of identical clones found in both distributions (a). The join event reports the number of clones in d1
found merged in d2 (b), while the split counts the number of clones in d1 found separated in d2 (c).
The ”mix” event is a mixture of these two later events (d) while ”not found” reports the number of
clones in d2 not found in d1 (e).
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Figure 3: Effect of pre-clustering threshold on MobiLLe’s performance. We varied the pre-
clustering threshold t from 50% to 90%, and evaluated the pairwise (top) and closeness (bottom)
performance on 12 simulated repertoires with different SHM rates. For that we varied λ0 parameter
of Gctree B cell lineage simulator.
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Figure 4: Clonal abundances/densities of nine experimental repertoires. Each circle represents a
clone, and the clone’s abundance is displayed through its size. Gini index (GI) is an inequality index
that measures clonal size distribution equitably; zero indicates perfect equality, while one corresponds
to maximal inequality.

36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.10.01.462736doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.01.462736


Figure 5: Comparison of clustering accuracy on simulated repertoires. We compared MobiLLe
performances with four other tools: Partis, SCOPe, SONAR and BRILIA. For that, we generated
benchmarks that simulated three types of repertoires (monoclonal, oligoclonal and polyclonal) with
different SHM rates (0.16, 0.26, 0.36, 0.46), totalling 12 simulated samples. We used F-measure com-
puted in two different ways, pairwise (top) and closeness (bottom), to quantify clustering accuracy.
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Figure 6: Performance comparison on artificial monoclonal repertoires. We generated three ar-
tificial monoclonal repertoires (AMR1, AMR2, and AMR3) by sampling sequences from the major
clone of a monoclonal repertoire (10%) and a polyclonal background (90%). Each data set contained
10000 sequences. Accurate tools might group sequences from the major clone and separate those
from the polyclonal background in different clusters. Therefore, we measured the performance of
clonal grouping methods by computing the number of splits (SC) and false positives (FP) on the ma-
jor clone. To better visualize and compare clustering results, we show alluvial diagrams for AMR1
(a), AMR2 (b) and AMR3 (c), where blue blocks represent the major clone and pink or orange in-
ferred ones. Pink blocks contain only sequences belonging to the major clone (true positives), while
the orange blocks contain sequences from the polyclonal background (false positives). SONAR and
BRILIA did not produce results for the AMR3 data set since they do not deal with non-productive
sequences.
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Figure 7: Clonal distribution comparisons on three experimental repertoires.We compared the
inferred clones of each clonal grouping tool with MobiLLe’s clustering results. For that, we defined
five events: identical, join, split, mix, and not found, representing the (dis)similarities between two
clonal distributions: d1 (MobiLLe) and d2 (another tool). The ”identical” event accounts for the
percentage of identical clones found in both distributions; the ”join” event reports the percentage
of d1 clones found merged in d2 while ”split” the percentage of d1 clones found separated in d2.
The ”mix” event accounts for a mixture of ”join” and ”split” events while ”not found” reports the
percentage of clones in d2 not found in d1; see an illustration in Figure 2.
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Figure 8: Comparing running times of clonal grouping tools. The running times for MobiLLe and
other tools were measured for three experimental repertoires with different clonal compositions. To a
better visualisation, we used log scale, Table S18 shows the time in seconds for each considered tool.
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